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Foundation of radiation theory

In this chapter we review the physical foundation of remote sensing. Except for
possible gravitational effects, information accessible to a distant observer must be
sensed as electromagnetic radiation, either in the form of reflected or refracted solar
or stellar radiation, or in the form of thermal or nonthermal emission. We restrict
the discussion to passive techniques. Active methods, involving the generation of
electromagnetic radiation (radar, lidar), are not explicitly treated. However, the
physical principles discussed in this text are equally applicable to passive and
active methods. In either case a discussion of the measurement and interpretation
of remotely sensed data must be based on electromagnetic theory. In Section 1.1
we begin with that theory by reviewing Maxwell’s equations. The application of
the principle of energy conservation to Maxwell’s equations leads to the Poynting
theorem with the Poynting vector describing radiative energy transport; this is
discussed in Section 1.2. However, the Poynting vector does not characterize more
complex phenomena, such as reflection, refraction, polarization, or interference; all
of these phenomena play significant roles in many aspects of remote sensing. Their
study requires, first, a derivation of the wave equation from Maxwell’s formulas,
and second, finding appropriate solutions for the electric and magnetic field vectors;
this is the subject of Section 1.3. Polarization is briefly reviewed in Section 1.4.
Effects of electromagnetic waves striking an interface between two media and the
conditions that must be satisfied at the boundary are treated in Section 1.5. The
derived conditions are then applied to the boundary to find expressions for reflected
and refracted waves. These expressions, the Fresnel equations, are discussed in
Section 1.6. The same boundary conditions are used again in Section 5.6 to describe
the behavior of thin films employed in many ways in remote sensing instruments.
The Planck function is introduced in Section 1.7. In Section 1.8, we return to the
Poynting vector in a discussion of quantities used in the theory of radiative transfer,
such as spectral intensity and radiative flux.
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2 Foundation of radiation theory

1.1 Maxwell’s equations

Electromagnetic radiation between the red limit of the visible spectrum and the
microwave region is called the infrared. In round numbers the infrared covers the
spectral range from 1 to 1000 µm. Although only the range from 0.35 to 0.75 µm
is truly visible to the human eye, the region between 0.75 and 1 µm is often
considered as a part of the ‘visible’ spectrum because many detectors common to
that spectral domain, such as conventional photomultipliers, photographic film, and
charge-coupled silicon devices, work well up to about 1 µm. At the far end of the
infrared spectrum, tuned circuits, waveguides, and other elements associated with
radio and microwave technology become the commonly employed detection tools.

Whatever the wavelength, electromagnetic radiation obeys the laws expressed by
Maxwell’s equations. These equations describe the interrelationship of electric and
magnetic quantities by field action, in contrast to action at a distance, which up to
Maxwell’s time (1873) was the generally accepted point of view. The field concept
goes back to Michael Faraday. In all likelihood, the concept suggested itself to him
in experiments with magnets and iron filings in which lines of force become almost
an observable reality. However, it was left to James Clerk Maxwell to give the field
concept a far-reaching and elegant mathematical formulation. Fifteen years after
the publication of Maxwell’s treatise (1873), Heinrich Hertz (1888) discovered
electromagnetic waves, an experimental verification of Maxwell’s theory.

In differential form, using the rationalized system and vector notation, the first
pair of Maxwell’s equations is (e.g. Sommerfeld, 1952):

Ḋ + J = ∇ × H (1.1.1)

and

Ḃ = −∇ × E, (1.1.2)

where D and B are the electric displacement and magnetic induction, and E and
H the electric and magnetic field strengths, respectively; J is the current density.
The dot symbolizes differentiation with respect to time. Definitions of the curl
(∇×) and the divergence (∇ ·) operators are given in Appendix 1. The concept of
the electric displacement was introduced by Maxwell. The first equation includes
Ampère’s law and the second represents Faraday’s law of induction.

Besides the main equations (1.1.1) and (1.1.2), two more expressions are tradi-
tionally considered part of Maxwell’s equations,

∇ · D = ρ (1.1.3)
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1.1 Maxwell’s equations 3

and

∇ · B = 0. (1.1.4)

Equation (1.1.3) defines the electric charge density, ρ, while Eq. (1.1.4) states the
nonexistence of magnetic charges or monopoles. Strictly from symmetry consider-
ations of Maxwell’s equations one may be led to postulate the existence of magnetic
charges, but despite many attempts none has been found.

By applying the divergence operator to Eq. (1.1.1) and substituting ρ for ∇ · D,
one arrives at the electric continuity equation,

ρ̇ + ∇ · J = 0, (1.1.5)

which states the conservation of electric charge: a change in the charge density
of a volume element must be associated with a current flow across the boundary
of that arbitrarily chosen element. The continuity equation in fluid dynamics is an
analogous expression of the conservation of mass.

In order to study the interaction of matter with electric and magnetic fields, three
material constants are introduced: the electric conductivity, σ ,

J = σE, (1.1.6)

the dielectric constant, ε,

D = εE, (1.1.7)

and the magnetic permeability, µ,

B = µH. (1.1.8)

Equation (1.1.6) is a form of Ohm’s law. Since J is the current density (A m−2)
and E the electric field strength (V m−1), σ is expressed in �−1 m−1. The inverse
conductivity is the resistivity. In the rationalized system the dielectric constant is
conveniently written

ε = ε0εrel, (1.1.9)

where ε0 is the dielectric constant of free space (see Appendix 2 for numerical
values) and εrel is a dimensionless quantity, which is unity for free space and which
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4 Foundation of radiation theory

has the same value as the dielectric constant in the Gaussian system of units. The
permeability is

µ = µ0µrel, (1.1.10)

where µ0 represents the permeability of free space. The relative permeability is
unity for free space, larger than unity for paramagnetic materials, and less than
unity for diamagnetic substances.

Maxwell’s equations are linear. However, the parameters that describe material
properties may become nonlinear in exceptionally strong fields, such as in power-
ful lasers. In these cases nonlinear terms have to be included. The linear material
equations, Eqs. (1.1.6) to (1.1.8), are not applicable to ferroelectric or ferromag-
netic substances where the relationship between the electric field strength, E, and
the electric displacement, D, or between the magnetic field strength, H, and the
magnetic induction, B, are not only nonlinear, but show hysteresis effects as well.
In any case, Maxwell’s equations are the foundation of electromagnetism, which
includes optics and infrared physics.

1.2 Conservation of energy and the Poynting vector

The Poynting theorem expresses the conservation of energy in electromagnetism.
If one takes the scalar product of Eq. (1.1.1) with E and of Eq. (1.1.2) with H, and
adds the results one finds

H · Ḃ + E · Ḋ + E · J = E · (∇ × H) − H · (∇ × E). (1.2.1)

With the vector identity

E · (∇ × H) − H · (∇ × E) ≡ −∇ · (E × H) (1.2.2)

and the definition

S = E × H (1.2.3)

one obtains

H · Ḃ + E · Ḋ + E · J + ∇ · S = 0. (1.2.4)

This is the Poynting theorem; S is the Poynting vector. The first two terms in
Eq. (1.2.4) represent rate of change of the magnetic and electric energy densities
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1.3 Wave propagation 5

in the field. The third term, E · J, describes the energy dissipated by the motion of
electric charges. Generally, this motion results in Joule heating and, therefore, in
losses to the energy stored in the field. The last term, ∇ · S, represents the net flow
of electromagnetic energy across the boundaries of the chosen volume. All terms
of Eq. (1.2.4) are measured in J m−3 s−1, which is energy per unit volume and unit
time. Since the divergence operator corresponds to a differentiation with respect to
space coordinates, the units of S are J m−2 s−1 or W m−2, thus S is an energy flux
through a surface element.

The definition of the Poynting vector, Eq. (1.2.3), requires that S be orthogonal
to both E and H. In order to better visualize the relative orientation of these three
vectors, we align a Cartesian coordinate system so that the x-axis coincides with
the direction of the Poynting vector. The components of S along the y- and z-axes,
as well as the components of E and H in the direction of the x-axis, must then
be zero: Sy = Sz = Ex = Hx = 0. The vectors E and H do not have components
in the direction of energy transport represented by S. Electromagnetic waves are
transverse, in contrast to sound waves, which are longitudinal. To investigate the
relative orientation between E and H, we use the second of Maxwell’s equations
(Eq. 1.1.2) and the explicit expression of the curl operator (see Appendix 1). With
the assumption that µ is constant and Ex and Hx equal zero, one obtains one scalar
equation for each of the ĵ- and k̂-directions (î, ĵ, and k̂ are the unit vectors in the
x-, y-, and z-directions):

µ
∂Hy

∂t
= ∂Ez

∂x
; µ

∂Hz

∂t
= −∂Ey

∂x
. (1.2.5)

Except for a static field, which is not of interest in this context, Eq. (1.2.5) indicates
that Hy must be zero if Ez vanishes and, conversely, Hz must disappear when Ey

is zero. These conditions require E and H to be at right angles to each other; E,H,

and S form a right-handed, orthogonal system of vectors.

1.3 Wave propagation

In an isotropic, stationary medium, the material constants σ, ε, and µ are uniform
and constant scalars. The first pair of Maxwell’s equations may then be stated:

εĖ + σE = ∇ × H (1.3.1)

and

µḢ = −∇ × E. (1.3.2)
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6 Foundation of radiation theory

If one differentiates Eq. (1.3.1) with respect to time and multiplies by µ, one obtains

εµË + σµĖ = µ
∂

∂t
(∇ × H). (1.3.3)

Application of the curl operator to Eq. (1.3.2) yields

µ∇ × Ḣ = −∇ × (∇ × E). (1.3.4)

For a medium at rest the order of differentiation with respect to space and time may
be interchanged. Applying the vector identity

∇ × (∇ × E) ≡ ∇(∇ · E) − ∇2E (1.3.5)

and assuming the medium to be free of electric charges [(∇ · E) = 0] leads to

εµË + σµĖ = ∇2E. (1.3.6)

The Laplace operator, ∇2, is defined in Appendix 1. This partial differential equa-
tion characterizes wave and relaxation phenomena. Again, we assume the x-axis
to be aligned with the Poynting vector, so that Ex = 0. To simplify matters fur-
ther, we rotate the coordinate system around the x-axis until the y-axis coincides
with the direction of the electric field strength, so that Ez = 0 also. Only the y-
component ofE remains and Eq. (1.3.6) becomes a scalar equation for the unknown
Ey(x, t),

εµË y + σµĖ y = E ′′
y . (1.3.7)

We denote differentiation with respect to time by a dot and with respect to a space co-
ordinate (in this case with respect to x) by a prime. The assumption Ey = T (t)X (x)
separates the variables,

εµ
T̈

T
+ σµ

Ṫ

T
= X ′′

X
= −k2. (1.3.8)

Since the left side depends only on the variable t and the middle part only on the
variable x , Eq. (1.3.8) can only be satisfied if the left and the middle part equal a
constant, −k2. The reason for choosing a negative square and the physical meaning
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1.3 Wave propagation 7

of k will become apparent later. With the introduction of k, Eq. (1.3.8) yields two
ordinary differential equations:

εµT̈ + σµṪ + k2T = 0 (1.3.9)

and

X ′′ + k2X = 0. (1.3.10)

A solution of Eq. (1.3.10) is readily shown to be

X = A e±ikx . (1.3.11)

The amplitude A is not defined by Eq. (1.3.10); it is determined by boundary condi-
tions. For convenience we use notation with complex arguments in the treatment of
wave phenomena. To simplify notation we omit the amplitudes but reintroduce them
when needed. To solve Eq. (1.3.9) one may assume a solution of exponential form,

T = ept , (1.3.12)

which yields a characteristic equation for p,

εµp2 + σµp + k2 = 0. (1.3.13)

We make two choices for p. In the first case we find the roots of Eq. (1.3.13) for
p, assuming the coefficients ε, µ, σ , and k to be real quantities. Later, we will be
interested in periodic solutions of Eq. (1.3.12), which imply p = ± iω. In that case,
if σ �= 0, at least one of the coefficients must be complex. The roots of Eq. (1.3.13)
for p are

p = − σ

2ε
±

(
σ 2

4ε2
− k2

εµ

) 1
2

. (1.3.14)

The parameter p is complex because the term with σ 2 in the parentheses is
generally smaller than the term containing k2,

Ey = exp

[
− σ t

2ε
± i

(
k2

εµ
− σ 2

4ε2

) 1
2

t

]
exp (± ikx). (1.3.15)
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8 Foundation of radiation theory

Ey is an oscillating function of t and x . Before we discuss the physical content
of Eq. (1.3.15) we consider the meaning of some of the quantities involved.
It is convenient to introduce new terms pertinent to the description of optical
phenomena in the infrared. Consider the inverse product ε−1µ−1, which has the
dimension of the square of a velocity, m2 s−2. This is the propagation velocity, v,
of electromagnetic waves in a medium with dielectric constant ε and permeability
µ. For free space this velocity is the velocity of light, c. We have

v = (εµ)−
1
2 ; c = (ε0µ0)

− 1
2 . (1.3.16)

Consequently

c

v
=

(
εµ

ε0µ0

) 1
2

= (εrelµrel)
1
2 = n. (1.3.17)

The ratio of the propagation velocity of free space to that of a medium is the
refractive index, n, of the medium. In this case both n and k are real quantities.
Since µrel is nearly unity for most materials of importance in the infrared, the
refractive index can often be approximated by n ∼ (εrel)

1
2 .

The constant k has the dimension of inverse length; it is the number of radians
per meter, the angular wavenumber. Therefore,

kλ = 2π, (1.3.18)

where λ is the wavelength in meters. The angular frequency, ω, measured in radians
per second, is then

ω = kv. (1.3.19)

The frequency, f , in hertz (cycles per second), and the wavenumber, ν, in m−1, are

f = ω

2π
; ν = k

2π
. (1.3.20)

Even for a wavelength of 1000 µm the frequency is approximately 3 × 1011 Hz, a
very high frequency compared with radio waves. The FM broadcast band is about
100 MHz or 108 Hz, for comparison. The term k2/εµ in Eq. (1.3.15) is simply ω2
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1.3 Wave propagation 9

and the solution for Ey becomes:

Ey = exp

(
− σ t

2ε

)
exp

{
±iω

[
1 −

(
σ

2εω

)2
] 1

2

t

}
exp (±ikx). (1.3.21)

As required for a second order differential equation, Eq. (1.3.21) represents two
solutions, indicated by the ± signs. One solution describes a wave traveling in
the direction of x (outgoing wave, opposite signs, + − or − +), and the other,
a wave traveling in the opposite direction (incoming wave, equal signs, + + or
− −). If the amplitudes of these waves are equal, only a standing wave exists.
For a nonconductive medium, where σ is zero, the solution for the outgoing wave
simplifies to

Ey(σ = 0) = e±i(kx−ωt), (1.3.22)

which is a plane, unattenuated wave traveling in the x-direction. This case is shown
in Fig. 1.3.1 by the periodic curve marked ‘0’.

For a weakly conducting material – dry soil or rocks, for example – two effects
may be noted. First, due to the factor exp (−σ t/2ε) in Eq. (1.3.21), the
amplitudes of the waves diminish exponentially with time. Materials with good
optical transmission properties must, therefore, be electrical insulators, but not
all insulators are transparent. For many substances the frequency dependence of
the refractive index is due to quantum mechanical resonances. Equation (1.3.17)
is valid for low frequencies where v and n can be determined from the static
values of ε and µ, but not necessarily at infrared or visible wavelengths. The
second effect to be noted in Eq. (1.3.21) concerns a frequency shift by the factor
[1 − (σ/2εω)2]

1
2 . As long as σ is small compared with 2εω, as in the case marked

0.05 in Fig. 1.3.1, the frequency shift is negligible, but it becomes noticeable for
the case σ/2εω = 0.2. If σ is equal to or larger than 2εω – that is, if the conduction
current is comparable to or larger than the displacement current, as in metals – then
the square root in Eq. (1.3.21) becomes zero or imaginary; in either case periodic
solutions disappear and only an exponential decay exists, shown by curve 1 of
Fig. 1.3.1.

Now we return to the choice of p in Eq. (1.3.12). With the assumption p = ±iω
the solution for T becomes

T = e±iωt , (1.3.23)
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10 Foundation of radiation theory

Fig. 1.3.1 Amplitudes of electromagnetic waves propagating in a medium. The parameter
refers to the ratio of conduction to displacement current. If this ratio is zero the material is
transparent. If this ratio is one or larger, such as in metals, only an exponential decay exists.

but in this case k is complex. We have

k = (εµω2 + iσµω)
1
2 = ω

c
(nr + ini), (1.3.24)

where nr is the real and ni the imaginary part of the refractive index, n. Squaring
Eq. (1.3.24) and setting the real and imaginary parts of both sides equal leads to
equations for the real part of k,

ωnr

c
= ω

(
εµ

2

{ [
1 +

(
σ

εω

)2
] 1

2

+ 1

}) 1
2

, (1.3.25)
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