Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Table of Contents <u>More Information</u>

Contents

	Preface	<i>page</i> xv
	Acknowledgements	xvii
	List of abbreviations	xix
1	Introduction	1
	Human influences: implications for conservation	1
	Outline of the chapters	3
2	Studying change	9
	Defining terms and questioning assumptions	10
	Experiments and investigations	11
	Darwin's scientific method	11
	Advances in the design of experiments	12
	Elements of experimental design	12
	Quasi-experiments	14
	'Proof' and falsification	14
	Testing hypotheses about the past	15
	Predicting the future	15
	Weighing the evidence	16
	Concluding remarks	16
3	Key concepts in plant evolution	18
	Darwin's ideas about the evolution of species	21
	Post-Darwinian contributions to our understanding of evolution	22
	Cyto-genetic studies	22
	Chemical basis of hereditary information	23
	Genetic mutation	25
	Chromosome changes	26
	Microevolution in plant populations	28
	Plants are different from animals	32
	Different modes of natural selection	34
	r- and K-selection	35
	Fitness	36

v

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

vi	Contents	
	Neutral theory of selection	36
	Post-Darwinian models of speciation	38
	Gradual speciation	39
	Speciation and founder effects	39
	Introgressive hybridisation	40
	Sympatric speciation	41
	Cytogenetics of polyploidy	41
	The success of polyploids	43
	Evidence from the fossil record	44
	Mass extinctions	44
	Punctuated equilibrium	45
	Continental drift	46
	Orbital variations	46
	Conclusions	47
4	The origin and extent of human-influenced ecosystems	50
	The origin of humans	50
	Human uses of plants	51
	Reaching 5 million: hunter-gatherers	52
	Reaching 50 million: the beginnings of agriculture	53
	The process of domestication of plants	53
	Reaching half a billion: the spread of agriculture from 2000 BC to AD 1500	55
	The first billion humans: from subsistence to commercial farming 1500–1825	56
	Populations rising to 2 billion: the expanding frontiers of agriculture	20
	1825–1927	57
	From 2 to over 6.5 billion: the rise of industrial food production 1927	57
	to the present day	58
	What is the present extent of human-modified ecosystems?	59
	Human geomorphic activities	62
	The rise of concern about the environment	62
	Conservation through protection	63
	The wise use of resources	64
	Environmental concerns about pollution	65
	Concerns about the loss of biodiversity	71
	Confronting the adverse effects of introduced organisms	71
	Soil erosion and salination	72
	The inexorable rise of human populations	73
	Demographic projections for the next 40–50 years	74
	Ecological footprints	74
	Conclusions	76

Cambridge University Press & Assessment
0
978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

	Contents	vii
5	Consequences of human influences on the biosphere	77
	Cultural landscapes	77
	Is there any wilderness left?	80
	Wilderness concepts	81
	Wilderness and the 'Pristine Myth'	81
	Megafaunal extinctions	82
	Cultural landscapes and fire	82
	How 'virgin' is virgin rainforest?	83
	Wild areas in Europe	84
	The myth of oceans as wilderness	86
	The myth and its implications	86
	The first conservationists	86
	Man and nature	87
	Human activities as viewed by environmentalists	88
	Human activities: the concept of niche construction	88
	Ecosystems: natural and human influenced	91
	Conclusions	95
6	Categories	97
	Species	97
	Early ideas about species	97
	Species concepts	98
	Numbers of species in different categories	100
	Conservation uses of the term 'species'	100
	How many plant species are there in the world?	101
	Native and introduced species	104
	Lines of evidence concerning status	104
	Assessing the evidence: criteria for native and introduced status	110
	Wildlife	113
	Wild and cultivated plants	114
	Feral plants	115
	Weeds	116
	Invasive plants	117
	Endangered species	118
	The taxonomic community becomes aware of the possibility of	
	large-scale extinctions	121
	The current extinction rate and prospects for the future	121
	The time frame of the extinction process	123
	Assessing the threat of extinction	123
	Assessing the risk of species extinction under climate change	124
	Threats to cultivated plants and forest trees	124
	Conclusions	125

Combridge Huisensite Dever 9 Account
Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

viii	Contents	
7	Investigating microevolution in plants in anthropogenic ecosystems	127
	Natural selection	127
	Studies of wild populations: some early experiments	128
	How might natural selection in human-influenced ecosystems be	
	studied?	129
	Methods of detecting natural selection used in plant studies	129
	Important techniques for studying selection	130
	The use of molecular markers in microevolutionary studies	131
	Assessment of microevolutionary studies	137
	The relationship of microevolution to conservation	139
	Conserving species: typological approaches	140
	Changing goals: preservation vs. conservation of evolutionary	
	potential	140
	Conclusions	141
8	Plant microevolution in managed grassland ecosystems	142
	Herbivory in anthropogenic ecosystems	142
	The antiquity of grassland management for pasture and hay	144
	Early studies of grazing and hay ecotypes in garden trials	147
	The finding of unplanned dateable 'experiments'	147
	Artificial selection experiments	147
	Experimental investigations of selection	148
	Seasonal ecotypes	148
	Comparative studies of pasture and hay ecotypes	151
	Park Grass Experiment: Anthoxanthum odoratum	154
	Selection in lawns and golf courses	157
	Temperature-controlled germination	158
	Disruptive selection in <i>Poa annua</i>	159
	Comparative studies of lawns and other grassland types	161
	Gene flow in grasslands by movement of hay	164
	Seed banks	165
	Gene flow by dispersal of seeds in animal husbandry	165
9	Concluding remarks	166 168
9	Harvesting crops: arable and forestry Arable weedy populations: general purpose genotypes or specialist	100
	races?	169
	Crop mimicry	109
	Life-history variation	170
	Growth strategies in relation to land use	175
	Speed of development in relation to weeding pressures	175
	Vernalisation and winter and summer annual habit	170
	Timing of maturity in relation to crop harvest	170
	Dormancy	179
	2 0 minut 9 j	177

Cambridge University Press & Assessment
978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

	Contents	ix
	Seed production and soil seed banks	180
	Herbicide resistance	181
	Incidence of herbicide resistance	182
	Speed with which resistance develops	184
	Fitness: costs and benefits	186
	Withdrawal of herbicide treatment	188
	Effects of herbicide treatments: winners and losers	189
	How have weed populations changed under herbicide treatments?	189
	Selection pressures associated with the development of modern	
	agricultural practices	190
	Differential responses to farming practices	191
	Winners and losers in forested areas	191
	Coda	197
10	Pollution and microevolutionary change	200
	Reductionist approaches in the study of the effects of pollution	201
	Effects of sulphur dioxide pollution	202
	Ozone pollution	204
	The evolution of ozone resistance	207
	Resistance to heavy metals	209
	Naturally occurring areas with high heavy metal content	210
	Sources of anthropogenic heavy metal pollution	210
	Heavy metals in soils	211
	Definitions	212
	Testing for metal tolerance	212
	Genetics of tolerance	214
	Origin of tolerant variants	214
	Restraints on the evolution of tolerance	216
	Gene flow and selection	217
	Speed of development of heavy metal tolerance: lines of evidence	219
	Conclusions	223
11	Introduced plants	225
	The 'introduction process'	227
	Establishment: founder effects, genetic drift and multiple	
	introductions	230
	Plant introductions: winners and losers	239
	Some species are successfully introduced but many fail to establish	239
	Establishment of introduced species: the importance of mutualisms	241
	Development of introduced populations: the lag phase	242
	Allee effects	243
	Dispersal vectors and the availability of new habitat	244
	Lag phase: causes unknown	245
	Natural selection in naturalising populations of plants	246

X	Contents	
	General-purpose genotypes	248
	Evolutionary changes in animal populations linked to	
	introduced plants	249
	Natural selection: which species are likely to succeed as invaders?	250
	The successes of invasive plants: interrelationships with other species	251
	Ecological consequences of introductions	255
	Coda	258
12	Endangered species: investigating the extinction process at the	
	population level	261
	A general model of declining populations	262
	Habitat loss and ecosystem changes	263
	The vortex model and cultural landscapes	263
	The nature of fragmented populations	264
	Populations declining to extinction	264
	Studying populations of plants	266
	Pollen limitation in plant populations	270
	Allee effects in plants: dioecy and gynodioecy	272
	Allee effects in plants: self-incompatibility	272
	Climatic limitations on reproduction	275
	The extinction vortex: stochastic events	275
	The vortex model: genetic effects	277
	The genetics of small and fragmented populations	279
	How large do populations have to be to ensure long-term survival?	283
	PVA predictions and conservation	285
	Metapopulations	286
	Concluding comments	288
13	Hybridisation and speciation in anthropogenically influenced ecosystems	290
	Will new species quickly evolve to take the place of those that	• • • •
	become extinct?	290
	The evolution of a new polyploidy in <i>Spartina</i>	291
	The origin of Senecio cambrensis	293
	Evolution of new <i>Tragopogon</i> species	294
	Evolution of new homoploid species through hybridisation	295
	The rarity of recent polyploidy in wild plants	295
	What happens when human activities cause a breakdown of	206
	reproductive isolation?	296 207
	Hybridisation: the extent of gene flow	297
	Hybridisation and introgression: the use of molecular markers to test	207
	hypotheses Breakdown of applogical isolation in <i>University</i> spacing interactions	297
	Breakdown of ecological isolation in <i>Iris</i> : species interactions	298 303
	Introgression in <i>Rorippa</i> in Germany	303

14

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

Contents	xi
Introgression between introduced species: is hybridisation a stimulus	
to invasiveness?	303
How might hybridisation stimulate invasiveness?	304
Invasiveness following interspecific hybridisation between	
introduced fungi	305
Invasiveness following intraspecific hybridisation	305
Crop-wild-weed interactions	306
Microevolution in action through hybridisation in weeds	307
New weedy species arise through crop-weed-wild interactions	307
Hybridisation increases the extinction risk in endangered species	307
Transgenic crops and their interactions with wild and weedy relatives	308
The microevolution of weed beets	310
Transgenic beet	312
Keeping the transgene within the crop	314
Crop-weed-wild hybrids: estimates of their fitness	315
Hybridisation and conservation	315
Extinction of endangered species through hybridisation and	
introgression	316
Conservation of hybridising species	318
Concluding remarks	319
Ex situ conservation	323
Botanic gardens	323
History of botanic gardens	324
Traditional botanic gardens: what do they contain?	325
Botanic gardens: Victorian relics or twenty-first century challenge?	326
Gardeners and conservation	327
Ex situ conservation in botanic gardens	328
Some inherent limitations of botanic gardens	330
Ex situ conservation: seed banks of wild species	333
Micropropagation	335
Other types of gene bank	336
Genetic changes in cultivation and in seed banks	337
Ex situ conservation of whole ecosystems	343
Selection in gardens can also change the breeding behaviour	
of a species	344
How far has <i>ex situ</i> conservation of plants in botanic gardens succeeded?	245
	345
Botanic gardens and the conservation message	348
Future prospects for <i>ex situ</i> conservation in botanic gardens Will <i>ex situ</i> conservation lead to domestication?	349
	350
Conclusions	352

xii	Contents	
15	In situ conservation: within and outside reserves	354
	A call for parks to preserve forests	354
	Early parks and 'reservations'	354
	Protection of forests and preservation of sites of scenic beauty	356
	The establishment of American National Parks	357
	The aims of the national parks	358
	The concept of human exclusion	358
	Changing aims	359
	The establishment of parks and reserves in Europe	362
	Managing reserves in cultural landscapes: Wicken Fen as a case study	364
	Conservation management: a Darwinian perspective	365
	Examples of 'resort to precedent' in the management of individual	
	species	367
	Reintroducing traditional management	367
	Ecosystem management in the past	368
	Restoration of traditional practices	369
	The devising of non-traditional practices by conservation mangers	370
	The role of experiments in conservation management	370
	A call for evidence-based conservation	373
	Conflicts in conservation management	375
	Is resort to precedent sufficient to ensure the survival of endangered	
	species and ecosystems in cultural landscapes?	376
	National parks and reserves: threats from illegal activities	380
	Conclusions	382
16	Creative conservation through restoration and reintroduction	384
	Creative conservation through restoration projects: some examples	386
	Which stocks of plants should be used in creative conservation?	386
	Creative conservation of endangered species	395
	Complex ecosystems: understanding succession	401
	Aims and objectives in restorations for conservation: differing views	403
	Changes in management style: implications for microevolution	405
	Restoration and management: gardening the wild	406
	Concluding remarks	408
17	Reserves in the landscape	412
	Reserve design	412
	The application of the theory of island biogeography to conservation	413
	Fragmentation	416
	Impact of fragmentation	417
	The matrix surrounding reserves	418
	Edge effects	419
	The proximity of reserves to migration corridors	421
	Corridors in the landscape	422

Combridge Huisensite Dever 9 Account
Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

	Contents	xiii
	Evidence for functioning corridors	423
	Strengths and weaknesses of corridors as linkages between reserves	425
	Reserves and the conservation of particular species	425
	The location of present-day reserves in relation to biodiversity	
	'hotspots'	427
	Aquatic freshwater ecosystems in parks, reserves and matrix	428
	Marine reserves	429
	Concluding comments	429
18	Climate change	434
	The greenhouse effect and climate change	434
	Direct observations of climate change	436
	Long-term changes in climate	437
	The likelihood that humans are contributing to climate change	437
	Projections of climate change in the future	437
	Assessment of climate change in the future	437
	Concluding remarks	440
19	Microevolution and climate change	443
	Responses to increased carbon dioxide in the air, rising temperatures	
	and drought	443
	Recent changes in the timing of various life cycle events	448
	Phenology: different environmental cues provide the triggers for key	440
	processes	449
	Range shifts: vegetation zones and individual species	449 454
	Plant responses to previous climate change	434
	Adaptation and migration of species: is there a significant role for selection?	455
	Microevolutionary responses to climate change	4 <i>33</i> 457
	Interactions amongst species and the effects of climate change	459
	Migration in the face of climate change: microevolutionary	439
	speculations	460
	Concluding remarks	464
20	The implications of climate change for the theory and practice of	101
20	conservation	466
	Doubts about modelling	466
	National parks and nature reserves as the major focus of conservation	
	efforts	468
	Climate change in areas of high conservation significance	468
	The mandates of national parks	471
	Management and restoration in reserves and the wider environment	472 472
	Choice of stocks to use in restoration and management	
	The withdrawal of management and restoration	473
	The conservation of endangered species	473

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Table of Contents
More Information

xiv	Contents	
	Relocation of reserves	474
	Wildlife corridors	474
	Stepping stone areas to encourage migration	476
	Assisted migration	479
	Climate change: our response to the warning signs	481
	Human adaptation: the threats this poses to areas of conservation	
	interest	483
	Conclusions	484
21	Overview	487
	Microevolution and conservation: Darwin's insights	487
	Cultural landscapes	487
	Conservation strategies	488
	In situ conservation: protected fortresses	489
	Sustainable development	489
	Human activities impose selective forces	491
	Human activities and domestication	493
	Maintaining species in a 'wild' state in managed environments	494
	From the domesticated to the feral	495
	Co-evolution of humans, domesticated cattle and plants	497
	Kulturfolger	498
	Will humankind make the necessary adaptation to bring climate	
	change under control?	500
	References	505
	Index	584