Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter <u>More Information</u>

PLANT MICROEVOLUTION AND CONSERVATION IN HUMAN-INFLUENCED ECOSYSTEMS

As human activities increasingly domesticate the Earth's ecosystems, new selection pressures are acting to produce winners and losers amongst our wildlife. With particular emphasis on plants, Briggs examines the implications of human influences on microevolutionary processes in different groups of organisms, including wild, weedy, invasive, feral and endangered species. Using case studies from around the world, he argues that Darwinian evolution is ongoing. He considers how far it is possible to conserve endangered species and threatened ecosystems through management, and questions the extent to which damaged landscapes and their plant and animal communities can be precisely recreated or restored. Many of Darwin's ideas are highlighted, including his insights into natural selection, speciation, the vulnerability of rare organisms, the impact of invasive species, and the effects of climate change on organisms. This is a thought-provoking text for students and researchers of evolution, conservation, climate change and sustainable use of resources.

Particular highlights include:

- An assessment of how neo-Darwinian concepts impact on the theory and practice of conservation in the context of climate change, alerting the reader to the implications of this novel approach
- Background information on basic elements of genetics, molecular methods, climate change, ecology and population biology, with particular reference to plants, which serves as a useful guide for students
- Case studies from many different countries, which make the book globally relevant

DAVID BRIGGS is Emeritus Fellow of Wolfson College, University of Cambridge. He completed his B.Sc. and Ph.D. at Durham University. He has served as Demonstrator in Botany, Botany School, University of Cambridge from 1961 to 1964; Lecturer in Botany, University of Glasgow from 1964 to 1974; and Lecturer in Botany, and Curator of the Herbarium, Department of Plant Sciences at Cambridge University from 1974 to 2001. For many years he was a member of Cambridge University Botanic Garden Syndicate – the committee that directs the general policy of the garden. He has a lifelong interest in conservation, evolution, genetics and taxonomy. His practical conservation experience includes being a former member of the Wicken Fen Committee of the National Trust and the Milngavie Civic Trust. He was formerly the Chair of Cam Valley Forum – an action group active in the conservation of the Cam, its flood plain and tributaries.

Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter <u>More Information</u>

PLANT MICROEVOLUTION AND CONSERVATION IN HUMAN-INFLUENCED ECOSYSTEMS

DAVID BRIGGS Wolfson College, University of Cambridge, UK

Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521818353

© D. Briggs 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2009

A catalogue record for this publication is available from the British Library

ISBN	978-0-521-81835-3	Hardback
ISBN	978-0-521-52154-3	Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter <u>More Information</u>

Contents

	Preface	<i>page</i> xv
	Acknowledgements	xvii
	List of abbreviations	xix
1	Introduction	1
	Human influences: implications for conservation	1
	Outline of the chapters	3
2	Studying change	9
	Defining terms and questioning assumptions	10
	Experiments and investigations	11
	Darwin's scientific method	11
	Advances in the design of experiments	12
	Elements of experimental design	12
	Quasi-experiments	14
	'Proof' and falsification	14
	Testing hypotheses about the past	15
	Predicting the future	15
	Weighing the evidence	16
	Concluding remarks	16
3	Key concepts in plant evolution	18
	Darwin's ideas about the evolution of species	21
	Post-Darwinian contributions to our understanding of evolution	22
	Cyto-genetic studies	22
	Chemical basis of hereditary information	23
	Genetic mutation	25
	Chromosome changes	26
	Microevolution in plant populations	28
	Plants are different from animals	32
	Different modes of natural selection	34
	r- and K-selection	35
	Fitness	36

v

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

vi Contents Neutral theory of selection 36 Post-Darwinian models of speciation 38 Gradual speciation 39 Speciation and founder effects 39 Introgressive hybridisation 40 Sympatric speciation 41 Cytogenetics of polyploidy 41 The success of polyploids 43 Evidence from the fossil record 44 Mass extinctions 44 Punctuated equilibrium 45 Continental drift 46 Orbital variations 46 Conclusions 47 The origin and extent of human-influenced ecosystems 4 50 The origin of humans 50 Human uses of plants 51 Reaching 5 million: hunter-gatherers 52 53 Reaching 50 million: the beginnings of agriculture The process of domestication of plants 53 Reaching half a billion: the spread of agriculture from 2000 BC to AD 1500 55 The first billion humans: from subsistence to commercial farming 1500-1825 56 Populations rising to 2 billion: the expanding frontiers of agriculture 1825-1927 57 From 2 to over 6.5 billion: the rise of industrial food production 1927 to the present day 58 What is the present extent of human-modified ecosystems? 59 Human geomorphic activities 62 The rise of concern about the environment 62 Conservation through protection 63 The wise use of resources 64 Environmental concerns about pollution 65 Concerns about the loss of biodiversity 71 Confronting the adverse effects of introduced organisms 71 Soil erosion and salination 72 The inexorable rise of human populations 73 Demographic projections for the next 40-50 years 74 Ecological footprints 74 Conclusions 76

Cambridge University Press & Assessn	nent
0 2	ution and Conservation in Human-influenced Ecosystems
David Briggs	
Frontmatter	
More Information	

	Contents	vii
5	Consequences of human influences on the biosphere	77
	Cultural landscapes	77
	Is there any wilderness left?	80
	Wilderness concepts	81
	Wilderness and the 'Pristine Myth'	81
	Megafaunal extinctions	82
	Cultural landscapes and fire	82
	How 'virgin' is virgin rainforest?	83
	Wild areas in Europe	84
	The myth of oceans as wilderness	86
	The myth and its implications	86
	The first conservationists	86
	Man and nature	87
	Human activities as viewed by environmentalists	88
	Human activities: the concept of niche construction	88
	Ecosystems: natural and human influenced	91
	Conclusions	95
6	Categories	97
	Species	97
	Early ideas about species	97
	Species concepts	98
	Numbers of species in different categories	100
	Conservation uses of the term 'species'	100
	How many plant species are there in the world?	101
	Native and introduced species	104
	Lines of evidence concerning status	104
	Assessing the evidence: criteria for native and introduced status	110
	Wildlife	113
	Wild and cultivated plants	114
	Feral plants	115
	Weeds	116
	Invasive plants	117
	Endangered species	118
	The taxonomic community becomes aware of the possibility of	
	large-scale extinctions	121
	The current extinction rate and prospects for the future	121
	The time frame of the extinction process	123
	Assessing the threat of extinction	123
	Assessing the risk of species extinction under climate change	124
	Threats to cultivated plants and forest trees	124
	Conclusions	125

Cambridge University Press & Assessment
978-0-521-81835-3 – Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

viii	Contents	
7	Investigating microevolution in plants in anthropogenic ecosystems	127
	Natural selection	127
	Studies of wild populations: some early experiments	128
	How might natural selection in human-influenced ecosystems be	
	studied?	129
	Methods of detecting natural selection used in plant studies	129
	Important techniques for studying selection	130
	The use of molecular markers in microevolutionary studies	131
	Assessment of microevolutionary studies	137
	The relationship of microevolution to conservation	139
	Conserving species: typological approaches	140
	Changing goals: preservation vs. conservation of evolutionary	
	potential	140
	Conclusions	141
8	Plant microevolution in managed grassland ecosystems	142
	Herbivory in anthropogenic ecosystems	142
	The antiquity of grassland management for pasture and hay	144
	Early studies of grazing and hay ecotypes in garden trials	147
	The finding of unplanned dateable 'experiments'	147
	Artificial selection experiments	147
	Experimental investigations of selection	148
	Seasonal ecotypes	148
	Comparative studies of pasture and hay ecotypes	151
	Park Grass Experiment: Anthoxanthum odoratum	154
	Selection in lawns and golf courses	157
	Temperature-controlled germination	158
	Disruptive selection in Poa annua	159
	Comparative studies of lawns and other grassland types	161
	Gene flow in grasslands by movement of hay	164
	Seed banks	165
	Gene flow by dispersal of seeds in animal husbandry	165
	Concluding remarks	166
9	Harvesting crops: arable and forestry	168
	Arable weedy populations: general purpose genotypes or specialist	
	races?	169
	Crop mimicry	170
	Life-history variation	175
	Growth strategies in relation to land use	175
	Speed of development in relation to weeding pressures	176
	Vernalisation and winter and summer annual habit	178
	Timing of maturity in relation to crop harvest	179
	Dormancy	179

Cambridge University Press & Assessment
0 2
978-0-521-81835-3 – Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

	Contents	ix
	Seed production and soil seed banks	180
	Herbicide resistance	181
	Incidence of herbicide resistance	182
	Speed with which resistance develops	184
	Fitness: costs and benefits	186
	Withdrawal of herbicide treatment	188
	Effects of herbicide treatments: winners and losers	189
	How have weed populations changed under herbicide treatments?	189
	Selection pressures associated with the development of modern	
	agricultural practices	190
	Differential responses to farming practices	191
	Winners and losers in forested areas	191
	Coda	197
10	Pollution and microevolutionary change	200
	Reductionist approaches in the study of the effects of pollution	201
	Effects of sulphur dioxide pollution	202
	Ozone pollution	204
	The evolution of ozone resistance	207
	Resistance to heavy metals	209
	Naturally occurring areas with high heavy metal content	210
	Sources of anthropogenic heavy metal pollution	210
	Heavy metals in soils	211
	Definitions	212
	Testing for metal tolerance	212
	Genetics of tolerance	214
	Origin of tolerant variants	214
	Restraints on the evolution of tolerance	216
	Gene flow and selection	217
	Speed of development of heavy metal tolerance: lines of evidence	219
	Conclusions	223
11	Introduced plants	225
	The 'introduction process'	227
	Establishment: founder effects, genetic drift and multiple	
	introductions	230
	Plant introductions: winners and losers	239
	Some species are successfully introduced but many fail to establish	239
	Establishment of introduced species: the importance of mutualisms	241
	Development of introduced populations: the lag phase	242
	Allee effects	243
	Dispersal vectors and the availability of new habitat	244
	Lag phase: causes unknown	245
	Natural selection in naturalising populations of plants	246

х	Contents	
	General-purpose genotypes	248
	Evolutionary changes in animal populations linked to	
	introduced plants	249
	Natural selection: which species are likely to succeed as invaders?	250
	The successes of invasive plants: interrelationships with other species	251
	Ecological consequences of introductions	255
	Coda	258
12	Endangered species: investigating the extinction process at the	
	population level	261
	A general model of declining populations	262
	Habitat loss and ecosystem changes	263
	The vortex model and cultural landscapes	263
	The nature of fragmented populations	264
	Populations declining to extinction	264
	Studying populations of plants	266
	Pollen limitation in plant populations	270
	Allee effects in plants: dioecy and gynodioecy	272
	Allee effects in plants: self-incompatibility	272
	Climatic limitations on reproduction	275
	The extinction vortex: stochastic events	275
	The vortex model: genetic effects	277
	The genetics of small and fragmented populations	279
	How large do populations have to be to ensure long-term survival?	283
	PVA predictions and conservation	285
	Metapopulations	286
	Concluding comments	288
13	Hybridisation and speciation in anthropogenically influenced ecosystems	290
	Will new species quickly evolve to take the place of those that	
	become extinct?	290
	The evolution of a new polyploidy in <i>Spartina</i>	291
	The origin of Senecio cambrensis	293
	Evolution of new Tragopogon species	294
	Evolution of new homoploid species through hybridisation	295
	The rarity of recent polyploidy in wild plants	295
	What happens when human activities cause a breakdown of	200
	reproductive isolation?	296 207
	Hybridisation: the extent of gene flow	297
	Hybridisation and introgression: the use of molecular markers to test	207
	hypotheses Breakdown of applogical isolation in <i>Uris</i> : species interactions	297
	Breakdown of ecological isolation in <i>Iris</i> : species interactions	298 303
	Introgression in <i>Rorippa</i> in Germany	303

14

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

Contents	xi
Introgression between introduced species: is hybridisation a stimulus	
to invasiveness?	303
How might hybridisation stimulate invasiveness?	304
Invasiveness following interspecific hybridisation between	
introduced fungi	305
Invasiveness following intraspecific hybridisation	305
Crop-wild-weed interactions	306
Microevolution in action through hybridisation in weeds	307
New weedy species arise through crop-weed-wild interactions	307
Hybridisation increases the extinction risk in endangered species	307
Transgenic crops and their interactions with wild and weedy relatives	308
The microevolution of weed beets	310
Transgenic beet	312
Keeping the transgene within the crop	314
Crop-weed-wild hybrids: estimates of their fitness	315
Hybridisation and conservation	315
Extinction of endangered species through hybridisation and	
introgression	316
Conservation of hybridising species	318
Concluding remarks	319
Ex situ conservation	323
Botanic gardens	323
History of botanic gardens	324
Traditional botanic gardens: what do they contain?	325
Botanic gardens: Victorian relics or twenty-first century challenge?	326
Gardeners and conservation	327
<i>Ex situ</i> conservation in botanic gardens	328
Some inherent limitations of botanic gardens	330
Ex situ conservation: seed banks of wild species	333
Micropropagation	335
Other types of gene bank	336
Genetic changes in cultivation and in seed banks	337
<i>Ex situ</i> conservation of whole ecosystems	343
Selection in gardens can also change the breeding behaviour	
of a species	344
How far has ex situ conservation of plants in botanic gardens	
succeeded?	345
Botanic gardens and the conservation message	348
Future prospects for <i>ex situ</i> conservation in botanic gardens	349
Will <i>ex situ</i> conservation lead to domestication?	350
Conclusions	352

Cambridge University Press & Assessment
0 2
978-0-521-81835-3 – Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

xii	Contents	
15	In situ conservation: within and outside reserves	354
	A call for parks to preserve forests	354
	Early parks and 'reservations'	354
	Protection of forests and preservation of sites of scenic beauty	356
	The establishment of American National Parks	357
	The aims of the national parks	358
	The concept of human exclusion	358
	Changing aims	359
	The establishment of parks and reserves in Europe	362
	Managing reserves in cultural landscapes: Wicken Fen as a case study	364
	Conservation management: a Darwinian perspective	365
	Examples of 'resort to precedent' in the management of individual	
	species	367
	Reintroducing traditional management	367
	Ecosystem management in the past	368
	Restoration of traditional practices	369
	The devising of non-traditional practices by conservation mangers	370
	The role of experiments in conservation management	370
	A call for evidence-based conservation	373
	Conflicts in conservation management	375
	Is resort to precedent sufficient to ensure the survival of endangered	
	species and ecosystems in cultural landscapes?	376
	National parks and reserves: threats from illegal activities	380
	Conclusions	382
16	Creative conservation through restoration and reintroduction	384
	Creative conservation through restoration projects: some examples	386
	Which stocks of plants should be used in creative conservation?	386
	Creative conservation of endangered species	395
	Complex ecosystems: understanding succession	401
	Aims and objectives in restorations for conservation: differing views	403
	Changes in management style: implications for microevolution	405
	Restoration and management: gardening the wild	406
	Concluding remarks	408
17	Reserves in the landscape	412
	Reserve design	412
	The application of the theory of island biogeography to conservation	413
	Fragmentation	416
	Impact of fragmentation	417
	The matrix surrounding reserves	418
	Edge effects	419
	The proximity of reserves to migration corridors	421
	Corridors in the landscape	422

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

	Contents	xiii
	Evidence for functioning corridors	423
	Strengths and weaknesses of corridors as linkages between reserves	425
	Reserves and the conservation of particular species	425
	The location of present-day reserves in relation to biodiversity	
	'hotspots'	427
	Aquatic freshwater ecosystems in parks, reserves and matrix	428
	Marine reserves	429
	Concluding comments	429
18	Climate change	434
	The greenhouse effect and climate change	434
	Direct observations of climate change	436
	Long-term changes in climate	437
	The likelihood that humans are contributing to climate change	437
	Projections of climate change in the future	437
	Assessment of climate change in the future	437
	Concluding remarks	440
19	Microevolution and climate change	443
	Responses to increased carbon dioxide in the air, rising temperatures	442
	and drought	443
	Recent changes in the timing of various life cycle events	448
	Phenology: different environmental cues provide the triggers for key processes	449
	Range shifts: vegetation zones and individual species	449
	Plant responses to previous climate change	454
	Adaptation and migration of species: is there a significant role for	
	selection?	455
	Microevolutionary responses to climate change	457
	Interactions amongst species and the effects of climate change	459
	Migration in the face of climate change: microevolutionary	
	speculations	460
	Concluding remarks	464
20	The implications of climate change for the theory and practice of	
	conservation	466
	Doubts about modelling	466
	National parks and nature reserves as the major focus of conservation efforts	160
		468
	Climate change in areas of high conservation significance	468 471
	The mandates of national parks	471 472
	Management and restoration in reserves and the wider environment Choice of stocks to use in restoration and management	472
	The withdrawal of management and restoration	472
	The conservation of endangered species	473
	The conservation of chuangered species	473

Cambridge University Press & Assessment
978-0-521-81835-3 – Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

xiv	Contents	
	Relocation of reserves	474
	Wildlife corridors	474
	Stepping stone areas to encourage migration	476
	Assisted migration	479
	Climate change: our response to the warning signs	481
	Human adaptation: the threats this poses to areas of conservation	
	interest	483
	Conclusions	484
21	Overview	487
	Microevolution and conservation: Darwin's insights	487
	Cultural landscapes	487
	Conservation strategies	488
	In situ conservation: protected fortresses	489
	Sustainable development	489
	Human activities impose selective forces	491
	Human activities and domestication	493
	Maintaining species in a 'wild' state in managed environments	494
	From the domesticated to the feral	495
	Co-evolution of humans, domesticated cattle and plants	497
	Kulturfolger	498
	Will humankind make the necessary adaptation to bring climate	
	change under control?	500
	References	505
	Index	584

Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter More Information

Preface

It is often erroneously believed that evolution is something that happened in the past. However, there is strong evidence that evolution is continuing at the present time, as plants face new selection pressures generated by human activities that destroy, damage, fragment and alter ecosystems. In a world grappling with anthropogenic climate change, such pressures are likely to increase, as human populations, presently about 6.5 billion, are projected to rise to 12.8 billion by 2050 (if fertility remains at present levels).

In human-influenced landscapes, two broad classes of plants are often recognised, based on their apparent success or relative failure. Thus, some species are 'winners' (crop plants, weeds, invasive plants etc.). Others, the endangered species, are 'losers' or 'potential losers', with extinction their likely fate. Put simply, some plant species appear to be at a selective advantage in changing ecosystems and their populations are stable or increasing, while others faced with the same selection pressures are declining and threatened with extinction. Traditionally, but with some honourable exceptions, these two facets of evolutionary change are treated as separate subjects in academic books and elsewhere. Here, the notion of winners and losers is considered as a single concept, as major insights emerge through such an approach.

Another main focus of the book is the examination of conservation efforts in the light of our understanding of evolution. Many conservationists believe that the major challenge is to persuade the general public and political leaders that conservation of biodiversity is important and resources should (indeed must) be found to secure the future of endangered species and ecosystems. However, given that a great deal of support has often been secured, the key question to confront, in the current struggle to devise successful conservation strategies and effective management, is whether such activities are likely to succeed. In essence, conservationists are attempting to ensure the long-term survival of threatened species and ecosystems by preventing or modifying the impact of deleterious selection pressures brought about by human influences. They have the belief that by re-imposing the appropriate edaphic and biotic environments long-term self-sustaining populations of endangered species may be perpetuated. How far are conservation objectives likely to succeed in the long term? If these endeavours fail, and many species become extinct, what are the likely consequences for biodiversity and human development? How will the losses or potential losses influence the future of plant evolution? It is timely to examine the

Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter <u>More Information</u>

xvi

Preface

theoretical and practical basis of plant conservation in a Darwinian context, especially in 2009, as this year marks the 200th anniversary of Darwin's birth and the 150th anniversary of the publication of *On the Origin of Species*.

There are a number of excellent accounts of plant evolution, conservation, environmental issues and climate change, and reference will be made to many in the text. It is not my intention to provide comprehensive coverage of these major areas of concern, but to consider, with appropriate examples, the 'interface' between microevolution and conservation in plants growing in ecosystems subject to human influence and management. Ideally, all the many life forms of biodiversity should be considered, but this is not possible within the confines of this book. The focus is on wild, introduced, invasive, feral and weedy plants, together with crop–weed and crop–wild relative interactions. The fate of rare and endangered plants will also figure large in the account.

The text deals primarily with plants. But, given that much of conservation theory and practice comes from zoological investigations, and acknowledging the manifold interactions in ecosystems, some important ideas and selected research findings from studies of animals will be briefly considered. Such studies continue to provide important models for botanical researches.

The intention in writing this book is to provide an authoritative, up-to-date text for undergraduate and postgraduate students studying evolution, conservation and aspects of climate change, while at the same time exploring the implications of recent advances to conservation practitioners. The book is also designed to appeal to the general reader with a real interest in the subject. With this diversity of readership in mind, some important background areas of genetics, landscape ecology and population biology are explored. As the text examines interconnections between complex subjects, references to important papers are provided in order that the reader can build on the framework provided.

This book is written in the same spirit as the three editions of D. Briggs and S. M. Walters, *Plant Variation and Evolution* (1969, 1984 and 1997). I have set out to provide a critical but concise account of the logical and historical development of the subject, as well as a review of current excitements and advances, while at the same time paying attention to difficulties and uncertainties. Throughout the book the aim is to engender a critical attitude of mind, reflecting my own outlook in being uncommitted and even sceptical about neat explanations and simple formulations.

Acknowledgements

I pay tribute to Max Walters, formerly Director of the University Botanic Garden, University of Cambridge, who died 11 December 2005. Together, he and I wrote the three editions of *Plant Variation and Evolution*. He was a most valued colleague and mentor, who encouraged me to write this book. I thank Max and his wife Lorna for life-long friendship and many kindnesses: they always made my family welcome with their wonderful Yorkshire teas.

I thank those teachers, colleagues and friends who gave me encouragement and provided life-changing opportunities: Ada Radford (my first biology teacher), Donald Pigott, David Valentine, Harry Godwin, Harold Whitehouse, Percy Brian, Richard West, John Burnett, Jack Harley, David Lewis and Peter Ayres.

As I accompanied them in the field or in conversations over coffee, I have discussed many issues about microevolution and conservation with a large number of friends and colleagues. To all of them I offer my thanks: John Akeroyd, Janis Antonovics, John Barrett, David Bellamy, John Birks, May Block, Margaret Bradshaw, Tony Bradshaw, Arthur Cain, Judy Cheney, David Coombe, Gigi Crompton, Quentin Cronk, Jim and Camilla Dickson, Jeff Duckett, Trevor Elkington, Harriet Gillett, Peter Grubb, Mark Gurney, John Harper, Joe Harvey, John Harvey, Peter Jack, David Kohn, Andrew Lack, Vince Lea, Elin Lemche, Roselyne Lumaret, Terry Mansfield, Hugh McAllister, Pierre Morisset, Gina Murrell, Peter Orris, Philip Oswald, John Parker, Joseph Pollard, Duncan Porter, Chris Preston, Oliver Rackham, John Raven, Tom ap Rees, Peter Sell, Alison Smith, Edmund Tanner, Andrew and Jane Theaker, John Thompson, Alex Watt, David Webb, John West and Peter Yeo.

In particular I would like to thank those I taught in the Universities of Cambridge and Glasgow: their challenging questions about microevolution and conservation stimulated me to write this book.

I am especially grateful to Joachim Kadereit, James Cullen and Suzanne Warwick who offered comments on the first drafts of this book. I very greatly value their friendship, expert advice and encouragement.

I pay special tribute to my family for encouraging me to write this book, my parents Mabel and Tom Briggs, Nancy Briggs, Jonathan Briggs, Nicholas Oates, Alastair Briggs, Françoise

Cambridge University Press & Assessment
978-0-521-81835-3 - Plant Microevolution and Conservation in Human-influenced Ecosystems
David Briggs
Frontmatter
More Information

xviii

Acknowledgements

Etienne, Catherine, Miranda, Ella, Judith and Adrian Howe, Norman Singer and Geoffrey Charlesworth.

Without my wife's support, tolerance and unfailing commitment, this book would never have been written. With good humour and constant encouragement, she has helped me bring this project to fruition. I thank her for all her help, especially for hours of painstaking checking and proofreading.

I am very grateful for the friendly help, advice and encouragement I have received from the staff of Cambridge University Library and the Central Science Library, and from the editors of Cambridge University Press: Denise Cheuk, Shana Coates, Annette Cooper, Alan Crowden, Rachel Eley, Jacqueline Garget, Clare Georgy, Diya Gupta, Chris Hudson, Linda Nicol, Margaret Patterson, Jonathan Ratcliffe and Tracey Sanderson. I thank her for all her help, especially for hours of painstaking checking and proofreading, with my son Alistair. Cambridge University Press & Assessment 978-0-521-81835-3 — Plant Microevolution and Conservation in Human-influenced Ecosystems David Briggs Frontmatter <u>More Information</u>

Abbreviations

AFLP	Amplified Fragment Length Polymorphism
BDFFP	Biological Dynamics of Forest Fragmentation Project
BGCI	Botanic Gardens Conservation International
BP	Before the present
CITES	Convention on International Trade in Endangered Species
cpDNA	Chloroplast DNA
EU	European Union
FAO	Food & Agriculture Organization of the United Nations
IPCC	Intergovernmental Panel on Climate Change
ISSR	Inter Simple Sequence Repeat markers
IUCN	International Union for Conservation of Nature
MVP	Minimum Viable Population
ppb	Parts per billion
PPGRI	International Plant Genetic Resources Institute
ppm	Parts per million
PVA	Population Viability Analysis
RAPD	Randomly Amplified Polymorphic DNA
RFLP	Restriction Fragment Length Polymorphism
RSPB	Royal Society for the Protection of Birds
SSSI	Site of Special Scientific Interest
STR	Short Tandem Repeat
UN-ECE	United Nations-Economic Commission for Europe
UNEP	United Nations Environmental Programme
WCMC	World Conservation Monitoring Centre
	-