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1
Stress and strain

1.1 Introduction

How a material responds to load is an everyday concern for civil engineers. As
an example we can consider a beam that forms some part of a structure. When
loads are applied to the structure the beam experiences deflections. Ifthe loads
are continuously increased the beam will experience progressively increasing
deflections and ultimately the beam will fail. If the applied loads are small
in comparison with the load at failure then the response of the beam may be
proportional, i.e. a small change in load will result in a correspondingly small
change in deflection. This proportional behaviour will not continue if the load
approaches the failure value. At that point a small increase in load will result
in a very large increase in deflection. We say the beam has failed. The mode of
failure will depend on the material from which the beam is made. A steel beam
will bend continuously and the steel itself will appear to flowmuch like a highly
viscousmaterial. A concrete beamwill experience cracking at critical locations
as the brittle cement paste fractures. Flow and fracture are the two failuremodes
we find in all materials of interest in civil engineering. Generally speaking, the
job of the civil engineer is threefold: first to calculate the expected deflection
of the beam when the loads are small; second to estimate the critical load at
which failure is incipient; and third to predict how the beammay respond under
failure conditions.
Geotechnical engineers and engineering geologists are mainly interested in

the behaviour of soils and rocks. They are often confronted by each of the
three tasks mentioned above. Most problems will involve either foundations,
retaining walls or slopes. The loads will usually involve the weight of structures
that must be supported as well as the weight of the soil or rock itself. Failure
may occur by flow or fracture depending on the soil or rock properties. The
geo-engineer will generally be interested in the deformations that may occur
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2 Stress and strain

when the loads are small, the critical load that will bring about failure and what
happens if failure does occur.
When the loads are smaller than a critical value, the geotechnical engineer

will often represent the soil or rock as an elastic material. This is an approxima-
tion but it can be used effectively to provide answers to the first question: what
deformations will occur when loads are small? The approximation of soil as
a linear elastic material has been explored in a number of textbooks including
our own –Elasticity and Geomechanics.∗ For convenience we will refer to this
book asEG. In EG we outlined the fundamentals of the classical or linear
theory of elasticity and we investigated some simple applications useful in
geotechnical engineering. The book you now hold is meant to be a logical
progression fromEG. Plasticity and Geomechanicscarries the reader forward
into the area of failure and flow. We will outline the mathematical theory of
plasticity and consider some simple questions concerning collapse loads, post-
failure deformations and why soils behave as they do when stresses become
too severe. LikeEG this book is not meant to be a treatise. It will hopefully
provide a concise introduction to the fundamentals of the theory of plastic-
ity and will provide some relatively simple applications that are relevant in
geo-engineering.
As a matter of necessity some of the material fromEGmust be repeated

here in order that this book may be self-contained. In the present chapter we
will cover some fundamental ideas concerning deformation, strain and stress,
together with the concept of equilibrium. Chapter 2 then outlines basic elastic
behaviour and discusses aspects of inelastic behaviour in respect to soil and
rock. The nomenclature used here is similar to that adopted inEG. Readers
who feel they have a firm grasp of stress, strain and elasticity, especially those
who may have spent some time withEG, may wish to omit this chapter, and
parts of the next, andmovemore quickly to Chapter 3. In Chapter 3 the concept
of yielding is introduced. This is the state at which the failure process is about
to commence. In Chapter 4 we investigate the process ofplastic flow. That is,
we try to determine the rules that govern deformations occurring once yield has
taken place. Chapter 5 considers two important theorems that provide bounds
on the behaviour of a plastically deforming material. These theorems may be
extremely useful in approximating the response of geotechnical materials in
realistic loading situations without necessitating any elaborate mathematics.
Chapter 6 briefly touches on the mathematics of finding exact solutions for
a limited class of problems and, finally, Chapter 7 introduces certain modern
developments in the use of plasticity specifically for soils. The main body of

∗ Complete references to cited works are given at the end of the chapter where they first appear.



1.2 Soil mechanics and continuum mechanics 3

the book is followed by appendices that offer a more rigourous development of
several important aspects.

1.2 Soil mechanics and continuum mechanics

Even the most casual inspection of any real soil shows clearly the random,
particulate, disordered character we associatewith naturalmaterials of geologic
origin. The soil will be a mixture of particles of varying mineral (and possibly
organic) content, with the pore space between particles being occupied by
either water, or air, or both. There are many important virtues associated with
this aspect of a soil, not least its use as an agricultural medium; but, when we
approach soil in an engineering context, it will often be desirable to overlook its
particulate character. Modern theories that model particulate behaviour directly
do exist and we will discuss one in Chapter 7, but in nearly all engineering
applications we idealise soil as a continuum: a body that maybe subdivided
indefinitely without altering its character.
The treatment of soil as a continuum has its roots in the eighteenth century

when interest in geotechnical engineering began in earnest. Charles Augustus
Coulomb, one of the founding fathers of soil mechanics, clearly implied the
continuum description of soil for engineering purposes in 1773. Since then
nearly all engineering theories of soil behaviourof practical interest have de-
pended on the continuumassumption. This is true of nearly all the soil plasticity
theories we discuss in this book.
Relying on the continuum assumption, we can attribute familiar properties

to all points in a soil body. For example, we can associate with any pointx in
the body a mass densityρ. In continuummechanics we defineρ as the limiting
ratio of an elemental mass�M and volume�V

ρ = lim
�V→0

�M

�V
(1.1)

Of course we realise that were we to shrink the elemental volume�V to zero
in a real soil we would find a highly variable result depending on whether the
point coincides with the position occupied by a particle, or by water, or by air.
Thus we interpret the density in (1.1) as a representative average value, as if
the volume remains finite and of sufficient size to capture the salient qualities
of the soil as a whole in the region of our point. Similar notions apply to other
quantities of engineering interest. For example, there will be forces acting in
the interior of the soil mass. In reality they will be unwieldy combinations of
interparticle contact forces and hydrostatic forces.Wewill consider appropriate
average forces and permit them to be supported by continuous surfaces.We can
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then consider the ratio of an elemental force on an elemental area and define
stresses within the soil. It is elementary concepts such as these that we wish to
elaborate in this chapter.
Although the concept of a continuum is elementary, it represents a powerful

artifice, which enables the mathematical treatment of physical and mechanical
phenomena in materials with complex internal structure such as soils. It allows
us to take advantage of many mathematical tools in formulating theories of
material behaviour for practical engineering applications.

1.3 Sign conventions

Before launching into our discussion of stress and strain, we will first consider
the question of how signs for both quantities will be determined. In nearly all
aspects of solid mechanics, tension is assumed to be positive. This includes
both tensile stress and tensile strain. In geomechanics, on the other hand, most
practitioners prefer to make compressionpositive, or at least to have com-
pressive stress positive. This reflects the fact that particulate materials derive
strength from confinement and confinement results from compressive stress.
We will adopt the convention of compression being positive throughout this
textbook.
Naturally, if compressive stress is considered to be positive then so must be

compressive strain, and that requirement introduces an awkward aspect to the
mathematical development of our subject. We can see the reason for this by
considering a simple tension test as shown in Figure 1.1. In the figure a bar of
some material is stretched by tensile forcesT applied at each end. The axis of
the bar is aligned with the coordinate axisx, and the end of the bar at the origin
is fixed so that it cannot move. If the bar initially has lengthL, then application
of the forceT will be expected to cause an elongation of, say,�. Let the
displacementof the bar be a function ofx defined byu = u(x) = �(x/L).
Physically the displacement tells us how far the particle initially located atx
has moved, due to the forceT . The extensional strain in the bar may be written
asε = du/dx = �/L. If we were to adopt the solid mechanics convention
of tension being positive, then the forceT would be positive and so would be

x
T

T

y

z

Figure 1.1. Prismatic bar in simple tension.
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the extensional strain. Obviously all is well. On the other hand, if we wish to
use the geomechanics convention that compression is positive, then the tensile
forceT is negative; but the strain, defined byε = du/dx remains positive. We
could simply prescribeε as a negative quantity, but that would not provide a
general description for all situations. Instead we need some general method to
correctly produce the appropriate sign for the strain.
There are two possible solutions to our problem. One approach is to redefine

the extensional strain asε = −du/dx. This will have the desired effect of mak-
ing compressive strain always positive, but will have the undesirable effect of
introducingnegative signs in a number of equations where they may not be ex-
pected by the unwary and hencemay cause confusion. The second solution is to
agree from the outset thatpositive displacements will always act in the negative
coordinate direction. If we adopt this convention, then the displacement of the
bar is given byu = u(x) = −�(x/L). This second solution is the one we will
adopt throughout the book. As a result nearly all the familiar equationsof solid
mechanics can be imported directly into our geomechanics context without any
surprising negative signs. Moreover, there will be few opportunities where we
must refer directly to the sign of the displacements, and so the convention of a
positive displacement in the negative coordinate direction will mostly remain in
the background. Specific comments will be made whereverwe feel confusion
might arise.

1.4 Deformation and strain

We begin by considering a continuum body with some generic shape similar
to that shown in Figure 1.2. The body is placed in a reference system that
we take to be a simple three-dimensional, rectangular Cartesian coordinate

deformation

Reference
   configuration

Deformed
    configuration

z

y

x

Figure 1.2. Reference and deformed configurations of body.
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frameas shown in the figure.Adeformationof thebody results in it beingmoved
from its originalreference configurationto a newdeformed configuration.
All deformations of a continuum are composed of two distinct parts. First

there arerigid motions. These are deformations for which the shape of the body
is not changed in any way. Two categories of rigid motion are possible,rigid
translationandrigid rotation. A rigid translation simply moves the body from
one location in space to another without changing its attitude in relation to the
coordinate directions. A rigid rotation changes theattitude of the body but not
its position.
The second part of our deformation involves all the changes of shape of the

body. It may be stretched, or twisted, or inflated or compressed. These sorts of
deformations result instraining. Strains are usually the most interesting aspect
of a deformation.
One way to characterise any deformation is to assign adisplacement vector

to every point in the body. The displacement vector joins the positionof a point
in the reference configuration to its position in the deformed configuration. We
represent the vector by

u = u(x, t) (1.2)

wherex denotes the position of any point within the body andt denotes time. A
typical displacement vector is shown inFigure 1.3. Since there is a displacement
vector associated with every point in the body, we say there is adisplacement
vector fieldcovering thebody. In ourx, y, zcoordinate frame,uhascomponents
denoted byux,uy,uz. Each component is, in general, a function of position

z

y

x

The displacement vector u
links the position of a point
in the reference configuration
to its position in the
deformed configuration

Figure 1.3. The displacement vector.
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and time, and, according to our sign convention, components acting in negative
coordinate directions will be considered to be positive.
If we know the displacement vector field, then we have complete knowledge

of the deformation. Of course, part of the displacement field may be involved
with rigid motions while the remainder results from straining. Our first task is
to separate the two.
We begin by taking spatial derivatives of the components of the displacement

vector. We arrange the derivatives into a 3× 3 matrix called the displacement
gradient matrix,∇u.∗ If we are working in a three-dimensional rectangular
Cartesian coordinate system we can represent∇u in an array as follows:

∇u =




∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z




(1.3)

Note the use of partial derivatives. Note also that the derivatives ofu will not
be affected by rigid translations. This might suggest we could use (1.3) as a
measure of strain. But rigid rotations will give rise to non-zero derivatives of
u, so we need to introduce one more refinement. We use thesymmetric partof
∇u. Let

ε = 1

2
[∇u + (∇u)T ] (1.4)

We callε thestrain matrix. Note that the superscriptT indicates the transpose
of the displacement gradient matrix. Also note thatε is a symmetric matrix. As
its name implies,ε represents the straining that occurs during our deformation.
Just as is the case with the displacement vector,ε is also a function of both
positionx and timet .
We write the components ofε as follows:

ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 (1.5)

The diagonal components ofε are referred to asextensional strains,

εxx = ∂ux
∂x

, εyy = ∂uy
∂y

, εzz = ∂uz
∂z

(1.6)

∗ We use the symbol∇ to denote the del operator∂
∂x î + ∂

∂y ĵ + ∂
∂z k̂, whereî , ĵ , k̂ denote the triad

of unit base vectors.
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z

y

x

90° θ

Two material filaments in
reference configuration

Same filaments in 
deformed configuration

Figure 1.4. Physical meaning of shearing strain.

Each of these represents the change in length per unit length of a material
filament aligned in the appropriate coordinate direction.
The off-diagonal components ofε are calledshear strains

εxy= εyx = 1

2

(
∂ux
∂y

+ ∂uy
∂x

)

εyz= εzy = 1

2

(
∂uy
∂z

+ ∂uz
∂y

)

εzx = εxz = 1

2

(
∂uz
∂x

+ ∂ux
∂z

)
(1.7)

These strains represent one-half the increase∗ in the initially right angle be-
tween twomaterial filaments aligned with the appropriate coordinate directions
in the reference configuration. For example, consider two filaments alignedwith
thex- andy-directions in the reference configuration as shown in Figure 1.4.
After the deformation the attitude of the filaments may have changed and the
angle between them is nowθ . Then 2εxy = 2εyx = θ − π/2. The presence of
the factor of12 in (1.7) is important to ensure that the strain matrix will give the
correct measure of straining in different coordinate systems. Often the change
in an initially right angle (rather than one-half the change) is referred to as the
engineering shear strain. It is usually denoted by the Greek letter gamma,γ .
Obviously if we know one of the shear strains defined in (1.7), then we can
determine the corresponding engineering shear strain.

∗ In solidmechanics the shear strain represents thedecreasein the right angle.Wehave theincrease
becauseof the assumption that compression is positive andour sign convention for displacements.
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An important aspect of thedefinitionof thestrainmatrix in (1.4) is the require-
ment that the displacement derivatives remain small during the deformation.
Sometimes the matrixε is referred to as thesmallstrain matrix. The name is
meant to imply that the components ofε are only a correct measure of the ac-
tual straining so long as the components of∇u are much smaller in magnitude
than 1. More complex definitions of strain are required in the case where de-
formation gradient components have large magnitudes. If the components of
∇u are�1, then products of the components can be ignored andthe small-
strain definition (1.4) results. There are substantial advantages associated with
the small-strain matrixε because it is a linear function of the displacement
derivatives, while the large-strain measures are not. Because of this fact we
may find thatε is used in some situations where it is not strictly applicable.
Simple solutions are often good solutions, even if they are technically only
approximations, and in geotechnical engineering the virtue of simplicity may
justify a considerable loss of rigour.
Arising from the small-strain approximation is another measure of strain,

thevolumetric strain, e. It represents the change in volume per unit volume of
the material in the reference configuration. It is defined as the sum of the three
extensional strains:

e= εxx + εyy + εzz = ∇ · u (1.8)

Here∇ · u represents the divergence of the vectoru.∗ There are a number of
instances where the sum of the diagonal terms of a matrix gives a useful result.
Because of this we define an operator called thetrace, abbreviated astr, which
gives the sum. Thus (1.8) could also be written ase= tr (ε).

In classical plasticity theorywheremetals are the primarymaterial of interest,
it is usual to assume that the material is incompressible and hencee is always
zero. This is often not the case for soils, at least when they are permitted to drain.
In undrained situations a fully saturated soil may be nearly incompressible, but
if drainage can occur volume change is likely. In keeping with our definition
of extensional strain, compressive volumetric strain will be considered to be
positive.
Finally, note that all of the development above is based on the assumption

that we are using a rectangular or Cartesian coordinate frame. At times it may
bemore convenient to use cylindrical or spherical coordinates. In that case there
will be somesubtle differences inmany of the results given thus far. AppendixA

∗ It is the scalar quantity defined by∇ · u = ( ∂
∂x î + ∂

∂y î + ∂
∂z ĵ ) · (ux î + uy ĵ + uz k̂) = ∂ux

∂x + ∂uy
∂y

+ ∂uz
∂z .
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outlines howonemoves from rectangular to cylindrical or spherical coordinates
and summarises the main results in non-Cartesian coordinate frames.

1.5 Strain compatibility

An important concept with regard to deformation and strain is the idea ofstrain
compatibility. In simplest terms this is the physically reasonable requirement
that when an intact body deforms, it does so without the development ofgaps
or overlaps. To be a little more precise, consider a point in the reference config-
uration, and construct some small neighbourhood of surrounding points. If we
examine that same point in the deformed configuration, then we would hope
to find the same neighbouring points surrounding it and, moreover, we would
expect them to have similar relationships to the central point. That is, if neigh-
bouring pointsα andβ are arranged in the reference configuration so thatα is
closer andβ more distant from the central point, then that arrangement should
prevail in the deformed configuration as well.
Another way to look at this concept is to consider the definition of the strain

matrix itself (1.4). We see that six independent components of strain are ob-
tained from three independent components of displacement. If the displacement
vector field is fully specified, then there is clearly nodifficulty in determining the
strains, but what if the problem is turned around? Suppose the six components
of strain are specified. Is it then possible to integrate (1.4) to determine the three
displacements uniquely? In general it is not. Moving from strains to displace-
ments we find that the problem is over-determined, i.e. we havemore equations
than unknowns.
The great French mathematician Barr´e de Saint-Venant solved the general

problem of strain compatibility in 1860. He showed that the strain components
must satisfy a set of sixcompatibility equationsshown in (1.9). A derivation
of these equations may be found in Appendix A ofEG. The derivation shows
how equations (1.9) given below ensure that (1.4) can be integrated to yield
single-valued and continuous displacements:

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2

∂2εxy

∂x∂y

∂2εyy

∂z2
+ ∂2εzz

∂y2
= 2

∂2εyz

∂y∂z

∂2εzz

∂x2
+ ∂2εxx

∂z2
= 2

∂2εxz

∂x∂z
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∂2εxx

∂y∂z
= −∂2εyz

∂x2
+ ∂2εzx

∂x∂y
+ ∂2εxy

∂x∂z
(1.9)

∂2εyy

∂z∂x
= −∂2εzx

∂y2
+ ∂2εxy

∂y∂z
+ ∂2εyz

∂y∂x

∂2εzz

∂x∂y
= −∂2εxy

∂z2
+ ∂2εyz

∂z∂x
+ ∂2εzx

∂z∂y

Finally, it is perhaps worth noting that the compatibility conditions impose
a kinematic constraint on the strains in a continuum where the mechanical
behaviour is asyet unspecified.

1.6 Forces and tractions

We approach the concept of stress through considering the forces that act on an
exterior boundary or inside the body. We are aware that there are two distinct
types of forces:contact forcesandbody forces. Body forces are forces caused
by outside influences such as gravity or magnetism. They are associated with
the volume or mass of the body and they are fully specified at the outset of
any problem. Contact forces are associated with surfaces, either surfaces inside
the body or segments of the exterior bounding surface of the body. Contact
forces result from the action of the body on itself, such as the tension that exists
inside a stretched rubber band or from specified boundary conditions such as
an applied load on the upper surface of a beam.
For the time being we will concentrate our attention on contact forces. Every

contact force is associated with a surface, so we consider a small element of
surfacedA embedded somewhere inside our continuum body. If we magnify
the element as shown in Figure 1.5 then we can see its associated contact force
as a vectordF . PresumablydF results from the action of the body on itself
sincedA lies in the interior of the body. We then define thesurface traction
vector, T, as the limiting value of the ratio of force and area.

T = lim
dA→0

dF
dA

(1.10)

We are aware of course that in the context of a real soil the limiting process
must be treated with considerable care. We are concerned with a continuum, or
at least a continuum approximation of the real material. In a real soil we would
not wish to shrinkdA to zero area, rather to terminatethe limiting process at
some point giving a reasonable representation of the soil structure.
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x

y

z

n̂

dF 

Surface element dA

Figure 1.5. Traction vector acting on a surface element.

Note that the traction vectorT is directly associated with the particular
surface element we have chosen. If we choose a different surface element at
the same point in the body, we will generally find a different traction vector.
Therefore we see that theorientationof the surface element plays an impor-
tant role. Since there are infinitely many possible orientations for our surface,
there are infinitely many traction vectors operating at any given point in the
body. This fact raises significant problems with regard to the description of
stress. A number of eminent researchers in the eighteenth century were unsure
of how stress might be easily characterised in all but simple problems. As it
turns out, the problem is not difficult. We will only need to know tractions on
three surfaces in order to fully prescribe the traction on any other surface.

1.7 The stress matrix

In 1823 the French mathematician Augustin Cauchy showed how we may
solve the problem of determining the traction vector for a given surface. First
we need to identify the orientation of the surface we are interested in. This is
accomplished by the construction of a unit vectorn̂ normal to the surface as
shown in Figure 1.5. Then Cauchy showed that the product of a 3× 3 square
matrixσT with the vectorn̂ gives the tractionT acting on the surface,

T = σT n̂ (1.11)

This equation is derived in detail in Appendix C ofEG. In equation (1.11) the
superscriptT indicates the transpose of the matrix. The matrixσ is called the
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x y 

z

σxx

σxy

σxz

Figure 1.6. Components of the stress matrix acting on a surface perpendicular to the
x-direction.

stress matrix. Its component form looks like this

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (1.12)

Each of the components,σxx, σxy, etc. is a component of a particular surface
traction vector. For example, the components of the first row ofσ are precisely
the components of the traction vector that acts on a surface which is perpen-
dicular to thex-axis as shown in Figure 1.6. This follows immediately if we
note that the unit normal vector to the surface isn̂ = [1,0,0] T . Similarly,
the second and third rows of theσ matrix are composed of, respectively, the
components of traction vectors acting on surfaces perpendicular to they- and
z-axes. The subscripts of the stress matrix components identify which compo-
nent of which surface traction is being represented. Thexx-component,σxx,
is thex-component of the traction acting on the surface perpendicular to the
x-direction. Similarly,σxy is the y-component of that same traction. Theyz-
component,σyz, is thez-component of the traction acting on the surface per-
pendicular to they-direction.

Note that in Figure 1.6 the stress matrix components are drawn pointing in
the opposite direction to the coordinate axes. Because of thisσxx appears to be
a compressive stress. This is the usual sign convention in geomechanics where
compression is positive.
The diagonal components ofσ(σxx, σyy, σzz) are called the normal stress

components, or simply the normal stresses. They act normal to the three sur-
faces perpendicular to the three coordinate directions. The off-diagonal com-
ponents,σxy, σyz, . . . are called the shear stress components, or simply shear
stresses. They act tangential to the three surfaces. Cauchy also showed that, in
the absence of internal couples, the shear stresses must be complementary and
hence the stress matrix is symmetric, i.e.σxy = σyx, σxz = σzx, σzy = σyz.
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Because of this fact, the transpose ofσ in (1.11) is not really important. We
choose not to omit it, however, since the understanding of the physical meaning
of the stress components springs directly from the equation.

1.8 Principal stresses

At any point in the body there will always be at least three surfaces on which
the shear stressesσxy, σyz, . . . will vanish. These are theprincipal surfacesor
principal planes. To see how this comes about note that if there is no shear stress
on a surface the traction vectorT must be parallel to the unit normal vectorn̂.
Then using (1.11) we see that

T = σT n̂ = α n̂ (1.13)

whereα is a scalar multiplier. We can rearrange this result to obtain

(σ − αI ) n̂ = 0 (1.14)

where I denotes the identity matrix and we have used the fact thatσ is a
symmetric matrix. Equation (1.14) gives three homogeneous linear equations.
We know from linear algebra that there will either be no solutions, infinitely
many solutions or a unique solution forany system of homogeneous linear
equations. The condition for the existence of a unique solution is

det(σ − αI ) = 0 (1.15)

So we have an eigenvalue problem. If we expand the determinant in (1.15) we
find the followingcharacteristic equation:

−α3 + I1α
2 − I2α + I3 = 0 (1.16)

where the coefficientsI1, I2 andI3 are functions of the stressmatrix components
σxx, σxy, . . . . This cubic equation will have three roots (or three eigenvalues)
for the multiplierα. Referring back to (1.13)we see that the roots will be the
physical magnitudes of the tractionT on each of the surfaces where there is no
shear stress. We call these theprincipal stressesand denote them byσ1, σ2 and
σ3. Compression is taken to be positive here as everywhere in our development.

The greatest and least principal stress are called themajor principal stress
andminor principal stress, respectively. The remaining stress is called the
intermediate principal stress. In some applications it is convenient to agree to
number the principal stresses so thatσ1 is the major principal stress whileσ3 is
the minor principal stress. This is a common convention but it may not always
be the preferred option and we will not apply any particular rule to howσ1, σ2
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andσ3 may be related. In some circumstances we may have the conventional
definition ofσ1 ≥ σ2 ≥ σ3, but at other times it may be more convenient to
haveσ3 ≥ σ2 ≥ σ1, or one of the other four possible permutations of the three
indices.
If we now substitute each ofσ1, σ2 or σ3 back in (1.13) to replaceα, we

can solve for the corresponding eigenvectorsn̂1, n̂2, n̂3. These three vectors
are called the principal directions. They define the threeprincipal surfaces,
i.e. the surfaces on whichT andn̂ are parallel and therefore the surfaces that
support no shear. A theorem from linear algebra assures us that the eigenvectors
will be mutuallyorthogonal, hence the principal surfaces will also be mutually
orthogonal. This can be a particularly useful result. It means that we can always
findsomecoordinatesystem,sayx′, y′, z′, such that thecoordinatedirectionsare
parallel to the principal directions (or perpendicular to the principal surfaces).
In that coordinate system the stress matrix will have this simple form

σ =

σ1 0 0
0 σ2 0
0 0 σ3


 (1.17)

That is, inthis particular coordinate system, surfaces that are perpendicular to
the coordinate axes support no shear. They are the principal surfaces.
Another interesting point arises here. Note that regardless of what coordinate

system we happen to use, the principal stresses are independent entities. The
components ofσ at a point will, in general, be different in different coordinate
systems, but the three principal stresses that we determine by finding the roots
of (1.16) will always be the same. They are unique quantities associated with
the particular point of interest in the continuum. We say that the principal
stresses areinvariant under a coordinate transformation. Invariants are often
useful quantities owing to their independence from our choice of coordinate
directions. This can be especially useful when it comes to creating descriptions
of how materials behave. Obviously a material cannot know what coordinate
directions we have chosen to use for its description. Therefore it would be
unwise to create a model for the material stress–strain response that depended
on the coordinate axis directions. But if we model the material using invariant
quantities such as principal stresses, then there is no connection between the
material model and the chosen frame of reference.
Of courseσ1, σ2 andσ3 are not the only invariant quantities associated with

the stress matrix. It also follows from (1.16) thatthe three coefficients I1, I2
andI3 must also be invariants. This must be true since, if we were to substitute
one of the invariant principal stresses for the quantityα, the equation would be
satisfied. If the principal stresses do not depend on the choice of coordinates,
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then neither can the coefficientsI1, I2 andI3. We callI1, I2 andI3 theprincipal
stress invariants. They are related to the components of the stress matrix by the
following equations:

I1 = tr(σ)

I2 = 1

2
[(trσ)2 − tr(σ2)] (1.18)

I3 = det(σ)

where we recall that the trace operatortr gives the sum of the diagonal compo-
nents of the matrix. In the event that our coordinatesystem happened to align
with the principal directions, and the stress matrix had the simple form shown
in (1.17), the above equations would become

I1 = σ1 + σ2 + σ3

I2 = σ1σ2 + σ2σ3 + σ3σ1 (1.19)

I3 = σ1σ2σ3

Of course these equations are always true regardless of the choice of coordinate
system. The sumof two invariant quantities will itself be invariant, as willthe
product of two invariants. For thatmatter any combination of invariantswill also
be an invariant. Equation (1.19) is simply the universal relationship between the
principal stresses and the principal stress invariants. Note that the dimensions
of the three principal invariants are [stress], [stress2] and [stress3].
One other invariant quantity that is often defined is themean stressor pres-

sure, denoted byp. It is equal to one-third of the first invariant,I1/3. Thus
p= (σ1 + σ2 + σ3)/3 = (σxx + σyy + σzz)/3. In the theory of elasticity, ten-
sile stress is commonly taken as positive and the pressure is defined as the
negative ofI1/3 so that positive pressure is compressive. We have no need of
that definition since we have made compressive stress positive from the outset.

1.9 Mohr circles

Next, suppose we want to consider the stress state in a body at a specified point.
Let us assume that the components of the stress matrix are known. In that case
(1.11) applies andwe can determine the tractionT acting on any surface passing
through the point. We could characterise the stress state by simply writing
out the stress matrix, or we could list the principal stresses and the principal
directions. In either case six independent numbers would be required.∗ If we

∗ Why are only six numbers needed to describe the three principal stresses and three principal
directions? See Exercise 1.5.
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Figure 1.7. One of infinitely many surface elements generated by theŷ-axis.

wished, we could visualise the stress state as a point in a six-dimensional space.
However, there is another way to characterisethe stress. We can create a simple
graphical representation called the Mohr stress circle. The Mohr stress circle,
or simply Mohr circle, is so important in relation to the theory of plasticity that
Appendix B is completely devoted to its development. Only the major points
will be described here to ensure that this introductory chapter remains brief.
Again suppose that the components of the stress matrix are known for some

particular point in the body. Then we could solve the eigenvalue problem (1.14)
to find the principal directionŝn1, n̂2, n̂3. These three vectors form the basis for
a coordinate system that we might represent byx̂, ŷ, ẑ as shown in Figure 1.7.
We know that the principal surfaces must be perpendicular to these coordinate
directions. Suppose we now consider a family of surfaces composed of all the
surfaces that are perpendicular to the (x̂, ẑ)-plane. One particular surface is
shown inFigure 1.7. Anyothermember of the family could beobtainedby rotat-
ing that surface about thêy-axis. Theŷ-axis is called ageneratorfor the family
of surfaces. We can use (1.11) to ascertain the traction vectorT for each surface
of our family. This will give us infinitely many traction vectors, but we won’t
worry about that point for the moment. Each traction vectorT will have com-
ponents in thêx- and ẑ-directions, but the component in theŷ-direction will
always be zero. This is a consequence of using the principal directions as our
coordinate system.
To obtain aMohr stress circle, we now plot the components of all the traction

vectors for all the surfaces of our family. However, we do not plot the traction
components acting in thêx and ẑ directions. Instead we plot the components
that act normal and tangential to the surface onwhichTacts. To bemore precise,
consider the surface shown in Figure 1.7. If we arrange our view point so that
we look directly down thêy-axis, we see the situation shown in Figure 1.8.
In that figure thêy-axis is perpendicular to the plane of the figure and we see
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Figure 1.8. Traction vector acting on the surface element in Figure 1.7.

it as a point at the origin. Our surface appears as a line. Both the normal vector
to the surfacênand the traction vectorT are shown and both lie in the plane of
the figure.
If we use the angleθ shown in Figure 1.8 to identify the particular surface,

then the unit normal vector components can be written as

n̂ =
[
sinθ

cosθ

]
(1.20)

Also, since the coordinate axes are parallel to the principal directions, the stress
matrix will have the form (1.17). Then (1.11) gives the following result for the
components ofT in the x̂- andẑ-directions:

T =
[

σ1 sinθ

σ3 cosθ

]
(1.21)

Now let σ andτ identify the components ofT that act normal and tangential
to our surface. We findσ by taking the inner product ofT andn̂

σ = T · n̂ = σ1 sin
2 θ + σ3 cos

2 θ (1.22)

It is similarly easy to show that

τ = (σ1 − σ3) sinθ cosθ (1.23)

The final step is to plotτ againstσ for all the surfaces asθ varies between
0 andπ .∗ The result is a circle, the Mohr circle. A typical Mohr circle is
shown in Figure 1.9. Each point on the circumference of the circle identifies
the normal and tangential components of the traction vector acting on one
particular member of our family of surfaces. We refer to the points on the circle
circumference asstress points.

∗ Note that there is no need to letθ run to 2π since a rotation of onlyπ radians brings us back to
our starting surface.
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Figure 1.9. Mohr stress circle.

The centre of the circle must lie on theσ-axis. The circle crosses theσ-axis
at the points that correspond to the two surfaces that support zero shear: the
principal surfaces. As a result the diameter of the circle is the principal stress
difference, in this case (σ1 − σ3). The greatest and least shear stresses are equal
to the positive and negative values of the circle radius(σ1−σ3)/2. If once again
we think of physically rotating the surface shown in Figure 1.8, then a rotation
of π radians will result in the corresponding stress point moving completely
around the circle and returning to its original starting point. In Appendix B
the exact relationship between any surface and its corresponding stress point is
developed in full.
The Mohr circle in Figure 1.9 contains all the stress information for all the

surfaces of our family. Obviously, however, there are many other surfaces we
have not yet considered. We could easily go through the same procedures for
surfaces generated by thex̂-axis and this would give another Mohr circle. Since
the x̂-axis corresponds to thên1 principal direction, the resulting circle would
cross theσ-axis at the principal stressesσ2 andσ3. Similarly, if we considered
surfaces generated by theẑ-axis, we would obtain a third circle spanning the
principal stressesσ2 andσ1. The three circles might look like those sketched
in Figure 1.10. Note how the circles join at the principal stresses and how each
circle spans two ofthe principal stress values. We have drawn thefigure as if
σ1 > σ2 > σ3, i.e. the usual convention used for numbering principal stresses,
but we realise that any other numbering, such asσ2 > σ3 > σ1, is equally
possible.
Now we have exhausted all the obvious possibilities for surfaces. We have

considered all the surfaces that are generated by each of the three principal
directions and this has led tothree Mohr circles. What about all of the other
possible surfaces that are not generated by the principal directions but instead
are oriented at non-right angles to the principal surfaces? These surfaces will
generally have traction vectors that have non-zero components in all three of



20 Stress and strain

σ

σ1
σ2

σ3

τ

Figure 1.10. Mohr stress circle for the three-dimensional stress state.

the coordinate directionŝx, ŷ andẑ. If we determine their components normal
and tangential to their respective surfaces, and plot the componentsσ andτ

we find that the resulting points exactly fill the regions between the three Mohr
circles.That is, the stress points associated with these remaining surfaces all
fall within the hatched regions in Figure 1.10. The three circles plus the interior
points represent the entire stress state graphically.
Often, because of symmetry about theσ-axis, only the upper half of the

Mohr stress circle is drawn. Also only the outermost circle is frequently shown.
This reflects the fact that the most extreme stress states are represented by
points on the outermost circle. Regardless of these details, the Mohr circle is an
extremely useful tool. It allowsone to visualise the entire stress state at any point
in a body easily and it permits an intuitive grasp of stress that is not possible
by considering formal equations such as (1.11). Later in the book when we
consider yield criteria the Mohr circle will be a very valuable tool.

1.10 The effective stress principle

A concept familiar to all geotechnical engineers is the effective stress princi-
ple. It was formulated by one of the founding fathers of soil mechanics, Karl
Terzaghi, in 1925. Terzaghi realised that in a saturated soil the solid particle
skeleton must play a much more important role than the pore water. This is
particularly true in regard to shearing stresses since the pore water can carry
no shear stress at all. All shearing stresses are supported by the solid par-
ticle skeleton. The situation with normal stresses, however, is not quite so
clear.




