Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

Chapter 1

Declarative programming in AnsProlog*: introduction
and preliminaries

Among other characteristics, an intelligent entity — whether an intelligent au-
tonomous agent, or an intelligent assistant — must have the ability to go beyond
just following direct instructions while in pursuit of a goal. This is necessary to be
able to behave intelligently when the assumptions surrounding the direct instruc-
tions are not valid, or there are no direct instructions at all. For example even a
seemingly direct instruction of ‘bring me coffee’ to an assistant requires the assis-
tant to figure out what to do if the coffee pot is out of water, or if the coffee machine
is broken. The assistant will definitely be referred to as lacking intelligence if he
or she were to report to the boss that there is no water in the coffee pot and ask the
boss what to do next. On the other hand, an assistant will be considered intelligent
if he or she can take a high level request of ‘make travel arrangements for my trip
to International Al conference 20XX’ and figure out the lecture times of the boss;
take into account airline, hotel and car rental preferences; take into account the
budget limitations, etc.; overcome hurdles such as the preferred flight being sold
out; and make satisfactory arrangements. This example illustrates one benchmark
of intelligence —the level of request an entity can handle. At one end of the spectrum
the request is a detailed algorithm that spells out how to satisfy the request, which
no matter how detailed it is may not be sufficient in cases where the assumptions
inherent in the algorithm are violated. At the other end of the spectrum the request
spells out what needs to be done, and the entity has the knowledge — again in the
what form rather than the how form — and the knowledge processing ability to figure
out the exact steps (that will satisfy the request) and execute them, and when it does
not have the necessary knowledge it either knows where to obtain the necessary
knowledge, or is able to gracefully get around its ignorance through its ability to
reason in the presence of incomplete knowledge.

The languages for spelling out how are often referred to as procedural while the
languages for spelling out what are referred to as declarative. Thus our initial thesis
that intelligent entities must be able to comprehend and process descriptions of what

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

2 1 Declarative programming in AnsProlog*: introduction and preliminaries

leads to the necessity of inventing suitable declarative languages and developing
support structures around those languages to facilitate their use. We consider the
development of such languages to be fundamental to knowledge based intelligence,
perhaps similar to the role of the language of calculus in mathematics and physics.
This book is about such a declarative language — the language of AnsProlog*. We
now give a brief history behind the quest for a suitable declarative language for
knowledge representation, reasoning, and declarative problem solving.

Classical logic which has been used as a specification language for procedu-
ral programming languages was an obvious initial choice to represent declarative
knowledge. But it was quickly realized that classical logic embodies the monotonic-
ity property according to which the conclusion entailed by a body of knowledge
stubbornly remains valid no matter what additional knowledge is added. This disal-
lowed human like reasoning where conclusions are made with the available (often
incomplete) knowledge and may be withdrawn in the presence of additional knowl-
edge. This led to the development of the field of nonmonotonic logic, and several
nonmonotonic logics such as circumscription, default logic, auto-epistemic logic,
and nonmonotonic modal logics were proposed. The Al journal special issue of
1980 (volume 13, numbers 1 and 2) contained initial articles on some of these log-
ics. In the last twenty years there have been several studies on these languages on
issues such as representation of small common-sense reasoning examples, alterna-
tive semantics of these languages, and the relationship between the languages. But
the dearth of efficient implementations, use in large applications — say of more than
ten pages, and studies on building block support structures has for the time being
diminished their applicability. Perhaps the above is due to some fundamental defi-
ciency, such as: all of these languages which build on top of the classical logic syntax
and allow nesting are quite complex, and all except default logic lack structure, thus
making it harder to use them, analyze them, and develop interpreters for them.

An alternative nonmonotonic language paradigm with a different origin whose
initial focus was to consider a subset of classical logic (rather than extending it) is
the programming language PROLOG and the class of languages clubbed together
as ‘logic programming’. PROLOG and logic programming grew out of work on
automated theorem proving and Robinson’s resolution rule. One important land-
mark in this was the realization by Kowalski and Colmerauer that logic can be used
as a programming language, and the term PROLOG was developed as an acronym
from PROgramming in LOGic. A subset of first-order logic referred to as Horn
clauses that allowed faster and simpler inferencing through resolution was chosen
as the starting point. The notion of closed world assumption (CWA) in databases
was then imported to PROLOG and logic programming and the negation as failure
operator not was used to refer to negative information. The evolution of PROLOG
was guided by concerns that it be made a full fledged programming language with

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

1.1 Motivation: Why AnsProlog*? 3

efficient implementations, often at the cost of sacrificing the declarativeness of
logic. Nevertheless, research also continued on logic programming languages with
declarative semantics. In the late 1980s and early 1990s the focus was on finding
the right semantics for agreed syntactic sub-classes. One of the two most popular
semantics proposed during that time is the answer set semantics, also referred to
as the stable model semantics.

This book is about the language of logic programming with respect to the an-
swer set semantics. We refer to this language as AnsProlog*, as a short form of
‘Programming in logic with Answer sets’!. In the following section we give an
overview of how AnsProlog* is different from PROLOG and also the other non-
monotonic languages, and present the case for AnsProlog® to be the most suit-
able declarative language for knowledge representation, reasoning, and declarative
problem solving.

1.1 Motivation: Why AnsProlog*?

In this section?, for the purpose of giving a quick overview without getting into a
lot of terminology, we consider an AnsProlog* program to be a collection of rules
of the form:

Loor---or Ly <= Lgy1,...,Ly,n0t Ly, ..., n0t L,.

where each of the L;s is a literal in the sense of classical logic. Intuitively, the above
rule means that if Ly, ..., L, are to be true and if Ly, ..., L, can be safely
assumed to be false then at least one of Ly, ..., L; must be true.

This simple language has a lot going for it to be the leading language for knowl-
edge representation, reasoning, and declarative problem solving. To start with, the
nonclassical symbols <—, and not in AnsProlog* give it a structure and allow us to
easily define syntactic sub-classes and study their properties. It so happens that these
various sub-classes have a range of complexity and expressiveness thus allowing us
to choose the appropriate sub-classes for particular applications. Moreover, there
exists a more tractable approximate characterization which can be used — at the pos-
sible cost of completeness — when time is a concern. Unlike the other nonmonotonic
logics, AnsProlog* now has efficient implementations which have been used to pro-
gram large applications. In addition, the expressiveness studies show AnsProlog*
to be as expressive as some of these logics, while syntactically it seems less intimi-
dating as it does not allow arbitrary formulas. Finally, the most important reason to
study and use AnsProlog™ is that there is now a large body (much larger than for any
other knowledge representation language) of support structure around AnsProlog*

! In the recent literature it has also been referred to as A-Prolog [BGNO0O, GelO1].
2 In Section 1.2 we introduce more specific terminologies and use those in the rest of the book.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

4 1 Declarative programming in AnsProlog*: introduction and preliminaries

that includes the above mentioned implementations and theoretical building block
results that allow systematic construction of AnsProlog* programs, and assimilation
of new information. We now expand on these points in greater detail.

1.1.1 AnsProlog* vs PROLOG

Although, PROLOG grew out of programming with Horn clauses — a subset of first-
order logic, several nondeclarative features were included in PROLOG to make
it programmer friendly. We propose AnsProlog* as a declarative alternative to
PROLOG. Besides the fact that AnsProlog* allows disjunction in the head of rules,
the following are the main differences between AnsProlog* and Prolog.

* The ordering of literals in the body of a rule matters in PROLOG as it processes them
from left to right. Similarly, the positioning of a rule in the program matters in PROLOG
as it processes them from start to end. The ordering of rules and positioning of literals in
the body of a rule do not matter in AnsProlog*. From the perspective of AnsProlog*, a
program is a set of AnsProlog* rules, and in each AnsProlog* rule, the body is a set of
literals and literals preceded by not.

* Query processing in PROLOG is top-down from query to facts. In AnsProlog* query-
processing methodology is not part of the semantics. Most sound and complete interpreters
with respect to AnsProlog* do bottom-up query processing from facts to conclusions or
queries.

* Because of the top-down query processing, and start to end, and left to right processing
of rules and literals in the body of a rule respectively, a PROLOG program may get into
an infinite loop for even simple programs without negation as failure.

* The cut operator in PROLOG is extra-logical, although there have been some recent
attempts at characterizing it. This operator is not part of AnsProlog*.

* There are certain problems, such as floundering and getting stuck in a loop, in the way
PROLOG deals with negation as failure. In general, PROLOG has trouble with programs
that have recursions through the negation as failure operator. AnsProlog* does not have
these problems, and as its name indicates it uses the answer set semantics to characterize
negation as failure.

In this book, besides viewing AnsProlog* as a declarative alternative to PROLOG,
we also view PROLOG systems as top-down query answering systems that are
correct with respect to a sub-class of AnsProlog* under certain conditions. In
Section 8.4 we present these conditions and give examples that satisfy these
conditions.

1.1.2 AnsProlog* vs Logic programming

AnsProlog* is a particular kind of logic programming. In AnsProlog* we fix the
semantics to answer set semantics, and only focus on that. On the other hand logic
programming refers to a broader agenda where different semantics are considered

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

1.1 Motivation: Why AnsProlog*? 5

as alternatives. We now compare AnsProlog (a sub-class of AnsProlog* with only
one atom in the head, and without classical negation in the body) with the alternative
semantics of programs with AnsProlog syntax.

Since the early days of logic programming there have been several proposals for
semantics of programs with AnsProlog syntax. We discuss some of the popular ones
in greater detail in Chapter 9. Among them, the most popular ones are the stable
model semantics and the well-founded semantics. The stable models are same as the
answer sets of AnsProlog programs, the main focus of this book. The well-founded
semantics differs from the stable model semantics in that:

¢ Well-founded models are three-valued, while stable models are two valued.
* Each AnsProlog program has a unique well-founded model, while some AnsProlog
programs have multiple stable models and some do not have any.

For example, the program {p <— not p.} has no stable models while it has the unique
well-founded model where p is assigned the truth value unknown.

The program {b <— not a.,a <— not b., p < a., p < b.} has two stable models {p, a}
and {p, b} while its unique well-founded model assigns the truth value unknown to p, a,
and b.

¢ Computing the well-founded model or entailment with respect to it is more tractable
than computing the entailment with respect to stable models. On the other hand the latter
increases the expressive power of the language.

As will be clear from many of the applications that will be discussed in Chapters 4
and 5, the nondeterminism that can be expressed through multiple stable models
plays an important role. In particular, they are important for enumerating choices
that are used in planning and also in formalizing aggregation. On the other hand,
the absence of stable models of certain programs, which was initially thought of
as a drawback of the stable model semantics, is useful in formulating integrity
constraints whose violation forces elimination of models.

1.1.3 AnsProlog™ vs Default logic

The sub-class AnsProlog can be considered as a particular subclass of default logic
that leads to a more efficient implementation. Recall that a default logic is a pair
(W, D), where W is a first-order theory and D is a collection of defaults of the type
w, where «, 8, and y are well-founded formulas. AnsProlog can be consid-
ered as a special case of a default theory where W = {J, y is an atom, « is a con-
junction of atoms, and §;s are literals. Moreover, it has been shown that AnsProlog*
and default logic have the same expressiveness. In summary, AnsProlog* is syntac-
tically simpler than default logic and yet has the same expressiveness, thus making

it more usable.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

6 1 Declarative programming in AnsProlog*: introduction and preliminaries

1.1.4 AnsProlog* vs Circumscription and classical logic

The connective ‘<’ and the negation as failure operator ‘not’ in AnsProlog* add
structure to an AnsProlog* program. The AnsProlog* rule a <— b. is different from
the classical logic formula b D a, and the connective ‘<’ divides the rule of an
AnsProlog* program into two parts: the head and the body.

This structure allows us to define several syntactic and semi-syntactic notions
such as: splitting, stratification, signing, etc. Using these notions we can define
several subclasses of AnsProlog* programs, and study their properties such as:
consistency, coherence, complexity, expressiveness, filter-abducibility, and compi-
lability to classical logic.

The sub-classes and their specific properties have led to several building block
results and realization theorems that help in developing large AnsProlog* programs
in a systematic manner. For example, suppose we have a set of rules with the
predicates pi,..., p, in them. Now if we add additional rules to the program
such that py, ..., p, only appear in the body of the new rules, then if the overall
program is consistent the addition of the new rules does not change the meaning
of the original predicates py, ..., p,. Additional realization theorems deal with
issues such as: When can closed world assumption (CWA) about certain predicates
be explicitly stated without changing the meaning of the modified program? How
to modify an AnsProlog* program which assumes CWA so that it reasons appro-
priately when CWA is removed for certain predicates and we have incomplete
information about these predicates?

The non-classical operator <— encodes a form of directionality that makes it eas-
ier to encode causality, which can not be expressed in classical logic in a straight-
forward way. AnsProlog* is more expressive than propositional and first-order
logic and can express transitive closure and aggregation that are not expressible in
them.

1.1.5 AnsProlog* as a knowledge representation language

There has been extensive study about the suitability of AnsProlog* as a knowledge
representation language. Some of the properties that have been studied are:

* When an AnsProlog* program exhibits restricted monotonicity. That is, it behaves mono-
tonically with respect to addition of literals about certain predicates. This is important
when developing an AnsProlog* program where we do not want future information to
change the meaning of a definition.

* When is an AnsProlog* program language independent? When is it language tolerant?
When is it sort-ignorable; i.e., when can sorts be ignored?

* When can new knowledge be added through filtering?

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

1.1 Motivation: Why AnsProlog*? 7

In addition it has been shown that AnsProlog* provides compact representation
in certain knowledge representation problems; i.e., an equivalent representation in
a tractable language would lead to an exponential blow-up in space. Similarly, it
has been shown that certain representations in AnsProlog* can not be modularly
translated into propositional logic. On the other hand problems such as constraint
satisfaction problems, dynamic constraint satisfaction problems, etc. can be modu-
larly represented in AnsProlog*. In a similar manner to its relationship with default
logic, subclasses of other nonmonotonic formalisms such as auto-epistemic logic
have also been shown to be equivalent to AnsProlog*.

Finally, the popular sub-class AnsProlog has a sound approximate characteri-
zation, called the well-founded semantics, which has nice properties and which is
computationally more tractable.

1.1.6 AnsProlog* implementations: Both a specification
and a programming language

Since AnsProlog* is fully declarative, representation (or programming) in
AnsProlog* can be considered both as a specification and a program. Thus
AnsProlog* representations eliminate the ubiquitous gap between specification and
programming.

There are now some efficient implementations of AnsProlog* sub-classes, and
many applications are built on top of these implementations. Although there are also
some implementations of other nonmonotonic logics such as default logic (DeReS
at the University of Kentucky) and circumscription (at the Linkoping University),
these implementations are very slow and very few applications have been developed
based on them.

1.1.7 Applications of AnsProlog*

The following is a list of applications of AnsProlog* to database query languages,
knowledge representation, reasoning, and planning.

* AnsProlog* has a greater ability than Datalog in expressing database query features. In
particular, AnsProlog™ can be used to give a declarative characterization of the standard
aggregate operators, and recently it has been used to define new aggregate operators, and
even data mining operators. It can also be used for querying in the presence of different
kinds of incomplete information, including null values.

* AnsProlog* has been used in planning and allows easy expression of different kinds
of (procedural, temporal, and hierarchical) domain control knowledge, ramification and
qualification constraints, conditional effects, and other advanced constructs, and can be
used for approximate planning in the presence of incompleteness. Unlike propositional
logic, AnsProlog* can be used for conformant planning, and there are attempts to use
AnsProlog* for planning with sensing and diagnostic reasoning. It has also been used for

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

8 1 Declarative programming in AnsProlog*: introduction and preliminaries

assimilating observation of an agent and planning from the current situation by an agent
in a dynamic world.

* AnsProlog* has been used in product configuration, representing constraint satisfaction
problems (CSPs) and dynamic constraint satisfaction problems (DCSPs).

* AnsProlog* has been used for scheduling, supply chain planning, and in solving combi-
natorial auctions.

* AnsProlog* has been used in formalizing deadlock and reachability in Petri nets, in
characterizing monitors, and in cryptography.

* AnsProlog* has been used in verification of contingency plans for shuttles, and also has
been used in verifying correctness of circuits in the presence of delays.

* AnsProlog* has been used in benchmark knowledge representation problems such as
reasoning about actions, plan verification, and the frame problem therein, in reasoning
with inheritance hierarchies, and in reasoning with prioritized defaults. It has been used
to formulate normative statements, exceptions, weak exceptions, and limited reasoning
about what is known and what is not.

* AnsProlog* is most appropriate for reasoning with incomplete information. It allows vari-
ous degrees of trade-off between computing efficiency and completeness when reasoning
with incomplete information.

1.2 Answer set frameworks and programs

In this section we define the syntax of an AnsProlog* program (and its extensions
and sub-classes), and the various notations that will be used in defining the syntax
and semantics of these programs and in their analysis in the rest of the book.

An answer set framework® consists of two alphabets (an axiom alphabet and a
query alphabet), two languages (an axiom language, and a query language) defined
over the two alphabets, a set of axioms, and an entailment relation between sets of
axioms and queries. The query alphabet will be closely associated with the axiom
alphabet and the query language will be fairly simple and will be discussed later in
Section 1.3.5. We will now focus on the axiom language.

Definition 1 The axiom alphabet (or simply the alphaber) of an answer set frame-
work consists of seven classes of symbols:

(1) variables,

(2) object constants (also referred to as constants),
(3) function symbols,

(4) predicate symbols,

(5) connectives,

(6) punctuation symbols, and

(7) the special symbol _L;

3 In contrast logical theories usually have a single alphabet, a single language, and have inference rules to derive
theorems from a given set of axioms. The theorems and axioms are both in the same language.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

1.2 Answer set frameworks and programs 9

where the connectives and punctuation symbols are fixed to the set {—, or,
<, not,‘)} and { ‘C,), °” } respectively; while the other classes vary from
alphabet to alphabet. U

We now present an example to illustrate the role of the above classes of symbols.
Consider a world of blocks in a table. In this world, we may have object constants
such as block1, block?2, . .. corresponding to the particular blocks and the object
constant fable referring to the table. We may have predicates on_table, and on that
can be used to describe the various properties that hold in a particular instance of the
world. For example, on_table(block1) means that block] is on the table. Similarly,
on(block2, block3) may mean that block2 is on top of block3. An example of a
function symbol could be on_top, where on_top(block3) will refer to the block (if
any) that is on top of block3.

Unlike the earlier prevalent view of considering logic programs as a subset of first
order logic we consider answer set theories to be different from first-order theories,
particularly with some different connectives. Hence, to make a clear distinction
between the connectives in a first-order theory and the connectives in the axiom
alphabet of an answer set framework, we use different symbols than normally used
in first-order theories: or instead of Vv, and °,” instead of A.

We use some informal notational conventions. In general, variables are arbitrary
strings of English letters and numbers that start with an upper-case letter, while
constants, predicate symbols and function symbols are strings that start with a
lower-case letter. Sometimes — when dealing with abstractions — we use the addi-
tional convention of using letters p, ¢, ... for predicate symbols, X, Y, Z, ... for
variables, f, g, h, ... for function symbols, and a, b, c, . .. for constants.

Definition 2 A ferm is inductively defined as follows:

(1) A variable is a term.
(2) A constant is a term.

(3) If f is an n-ary function symbol and 7y, ..., t, are terms then f(#},...,1,) is a term.
O
Definition 3 A term is said to be ground, if no variable occurs in it. O

Definition 4 Herbrand Universe and Herbrand Base

® The Herbrand Universe of a language £, denoted by HU ., is the set of all ground terms
which can be formed with the functions and constants in L.

* An atom is of the form p(¢, ..., t,), where p is a predicate symbol and each ¢; is a term.
If each of the #;s is ground then the atom is said to be ground.

* The Herbrand Base of a language £, denoted by H B, is the set of all ground atoms that
can be formed with predicates from £ and terms from HU .

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

Cambridge University Press

0521818028 - Knowledge Representation, Reasoning and Declarative Problem Solving
Chitta Baral

Excerpt

More information

10 1 Declarative programming in AnsProlog*: introduction and preliminaries

* A literal is either an atom or an atom preceded by the symbol —. The former is referred
to as a positive literal, while the latter is referred to as a negative literal.

A literal is referred to as ground if the atom in it is ground.
* A naf-literal is either an atom or an atom preceded by the symbol not.

The former is referred to as a positive naf-literal, while the latter is referred to as a negative
naf-literal.
* A gen-literal is either a literal or a literal preceded by the symbol not. O

Example 1 Consider an alphabet with variables X and Y, object constants a, b,
function symbol f of arity 1, and predicate symbols p of arity 1. Let £ be the
language defined by this alphabet.

Then f(X) and f(f(Y)) are examples of terms, while f(a) is an example of a
ground term. Both p(f(X)) and p(Y) are examples of atoms, while p(a) and
p(f(a)) are examples of ground atoms.

The Herbrand Universe of L; is the set {a, b, f(a), f(b), f(f(a)), f(f(D)),

S @), fUFFB)), -}
The Herbrand Base of £ is the set {p(a), p(b), p(f(a)), p(f(b)), p(f(f(a))),
p(fCfD)), p(f(fF(f(@)), p(f(f(f b)), ...} O

Definition 5 A rule is of the form:
Loor---or Ly <= Lgy1,...,Ly,n0t Lyiq,...,not L,. (1.2.1)

where L;s are literals or when k = 0, Ly may be the symbol 1, and k > 0, m > k,
and n > m.

A rule is said to be ground if all the literals of the rule are ground.

The parts on the left and on the right of ‘<’ are called the head (or conclusion)
and the body (or premise) of the rule, respectively.

A rule with an empty body and a single disjunct in the head (i.e., k = 0) is called
a fact, and then if L is a ground literal we refer to it as a ground fact.

A fact can be simply written without the < as:

Lo. (12.2)

When k = 0, and Ly = L, we refer to the rule as a constraint.
The _Ls in the heads of constraints are often eliminated and simply written as
rules with empty head, as in

«~Ly,....,L,,not L,,,y,...,not L,. (1.2.3)

© Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521818028

