This book explains the financial appraisal of capital budgeting projects. The coverage extends from the development of basic concepts, principles and techniques to the application of them in increasingly complex and real-world situations. Identification and estimation (including forecasting) of cash flows, project appraisal formulae and the application of net present value (NPV), internal rate of return (IRR) and other project evaluation criteria are illustrated with a variety of calculation examples. Risk analysis is extensively covered by the use of the risk-adjusted discount rate, the certainty equivalent, sensitivity analysis, simulation and Monte Carlo analysis.

The NPV and IRR models are further applied to forestry, property and international investments. Resource constraints are introduced in capital budgeting decisions with a variety of worked examples using the linear programming technique.

All calculations are extensively supported by Excel workbooks on the Web, and each chapter is well reviewed by end-of-chapter questions.

Don Dayananda is Senior Lecturer in the School of Commerce at Central Queensland University.

Richard Irons is Lecturer in the School of Commerce at Central Queensland University.

Steve Harrison is Associate Professor in the School of Economics at the University of Queensland.

John Herbohn is Senior Lecturer in the School of Natural and Rural Systems Management at the University of Queensland.

Patrick Rowland is Senior Lecturer in the Department of Property Studies at Curtin University of Technology.
Contents

List of figures xiii
List of tables xiv
Preface xvii

1 Capital budgeting: an overview 1
Study objectives 2
Shareholder wealth maximization and net present value 3
Classification of investment projects 4
The capital budgeting process 5
Organization of the book 9
Concluding comments 10
Review questions 11

2 Project cash flows 12
Study objectives 14
Essentials in cash flow identification 14
Example 2.1 15
Example 2.2 16
Asset expansion project cash flows 23
Example 2.3. The Delta Project 27
Asset replacement project cash flows 31
Example 2.4. The Repco Replacement Investment Project 32
Concluding comments 34
Review questions 35

3 Forecasting cash flows: quantitative techniques and routes 37
Study objectives 39
Quantitative techniques: forecasting with regression analysis;
forecasting with time-trend projections; forecasting using
smoothing models 39
Contents

More complex time series forecasting methods 49
Forecasting routes 51
Concluding comments 52
Review questions 53

4 Forecasting cash flows: qualitative or judgemental techniques 55

Study objectives 56
Obtaining information from individuals 56
Using groups to make forecasts 60
The Delphi technique applied to appraising forestry projects 64
Example 4.1. Appraising forestry projects involving new species 65
Example 4.2. Collecting data for forestry projects involving new planting systems 66
Scenario projection 69
Example 4.3. Using scenario projection to forecast demand 70
Concluding comments: which technique is best? 71
Review questions 73

5 Essential formulae in project appraisal 74

Study objectives 75
Symbols used 75
Rate of return 76
Example 5.1 76
Note on timing and timing symbols 76
Future value of a single sum 77
Example 5.2 77
Example 5.3 78
Present value of a single sum 78
Example 5.4 78
Example 5.5 79
Future value of a series of cash flows 79
Example 5.6 79
Present value of a series of cash flows 80
Example 5.7 80
Example 5.8 80
Present value when the discount rate varies 81
Example 5.9 81
Present value of an ordinary annuity 81
Example 5.10 82
Present value of a deferred annuity 83
Example 5.11 83
Example 5.12 83
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpetuity</td>
<td>84</td>
</tr>
<tr>
<td>Net present value</td>
<td>85</td>
</tr>
<tr>
<td>Example 5.13</td>
<td>85</td>
</tr>
<tr>
<td>Net present value of an infinite chain</td>
<td>85</td>
</tr>
<tr>
<td>Internal rate of return</td>
<td>86</td>
</tr>
<tr>
<td>Example 5.14</td>
<td>86</td>
</tr>
<tr>
<td>Loan calculations</td>
<td>87</td>
</tr>
<tr>
<td>Example 5.15</td>
<td>87</td>
</tr>
<tr>
<td>Loan amortization schedule</td>
<td>89</td>
</tr>
<tr>
<td>Concluding comments</td>
<td>89</td>
</tr>
<tr>
<td>Review questions</td>
<td>90</td>
</tr>
</tbody>
</table>

6 Project analysis under certainty

Study objectives | 92 |
Certainty Assumption | 92 |
Net present value model | 93 |
The net present value model applied | 95 |
Other project appraisal methods | 96 |
Suitability of different project evaluation techniques | 97 |
Mutual exclusivity and project ranking | 102 |
Asset replacement investment decisions | 108 |
Project retirement | 109 |
Concluding comments | 111 |
Review questions | 111 |

7 Project analysis under risk

Study objectives | 114 |
The concepts of risk and uncertainty | 115 |
Main elements of the RADR and CE techniques | 116 |
The risk-adjusted discount rate method | 118 |
Estimating the RADR | 118 |
Estimating the RADR using the firm’s cost of capital | 119 |
Example 7.1. Computation of the WACC for Costor Company | 120 |
Estimating the RADR using the CAPM | 120 |
The certainty equivalent method | 126 |
Example 7.2. Computing NPV using CE: Cecorp | 127 |
The relationship between CE and RADR | 128 |
Example 7.3. Ceradr Company investment project | 128 |
Comparison of RADR and CE | 129 |
Concluding comments | 130 |
Review questions | 130 |
Contents

8 Sensitivity and break-even analysis

- Study objectives 133
- Sensitivity analysis 134
- Procedures in sensitivity analysis 135
- Sensitivity analysis example: Delta Project 135
- Developing pessimistic and optimistic forecasts 138
- Pessimistic and optimistic forecasts of variable values for the Delta Project example 141
- Applying the sensitivity tests 144
- Sensitivity test results 145
- Break-even analysis 149
- Break-even analysis and decision-making 150
- Concluding comments 150
- Review questions 151

9 Simulation concepts and methods

- Study objectives 154
- What is simulation? 154
- Elements of simulation models for capital budgeting 156
- Steps in simulation modelling and experimentation 158
- Risk analysis or Monte Carlo simulation 162
- Example 9.1. Computer project 163
- Design and development of a more complex simulation model 171
- Example 9.2. FlyByNight project 171
- Deterministic simulation of financial performance 175
- Example 9.3. FlyByNight deterministic model 175
- Stochastic simulation of financial performance 177
- Example 9.4. FlyByNight stochastic simulation 177
- Choice of experimental design 179
- Advantages and disadvantages of simulation compared with other techniques in capital budgeting 179
- Concluding comments 180
- Review questions 180
- Appendix: Generation of random variates 181

10 Case study in financial modelling and simulation of a forestry investment

- Study objectives 185
- Key parameters for forestry models 186
- Sources of variability in forestry investment performance 187
- Methods of allowing for risk in the evaluation of forestry investments 189
- Problems faced in developing forestry financial models 190
- Developing a financial model: a step-by-step approach 191
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 10.1. Flores Venture Capital Ltd forestry project</td>
<td>192</td>
</tr>
<tr>
<td>Comparing forestry projects of different harvest rotations</td>
<td>199</td>
</tr>
<tr>
<td>Example 10.2. FVC Ltd: comparison of one-stage and two-stage harvest options</td>
<td>199</td>
</tr>
<tr>
<td>Risk analysis or Monte Carlo analysis</td>
<td>200</td>
</tr>
<tr>
<td>Example 10.3. Simulation analysis of FVC Ltd forestry project</td>
<td>200</td>
</tr>
<tr>
<td>Concluding comments</td>
<td>202</td>
</tr>
<tr>
<td>Review questions</td>
<td>203</td>
</tr>
<tr>
<td>11 Resource constraints and linear programming</td>
<td>204</td>
</tr>
<tr>
<td>Study objectives</td>
<td>206</td>
</tr>
<tr>
<td>LP with two decision variables and three constraints</td>
<td>206</td>
</tr>
<tr>
<td>Example 11.1. Roclap: product mix problem</td>
<td>206</td>
</tr>
<tr>
<td>Investment opportunities and by-product constraints</td>
<td>212</td>
</tr>
<tr>
<td>Example 11.2. Capital rationing problem</td>
<td>212</td>
</tr>
<tr>
<td>LP and project choice</td>
<td>214</td>
</tr>
<tr>
<td>Example 11.3. Project portfolio selection problem</td>
<td>215</td>
</tr>
<tr>
<td>Concluding comments</td>
<td>217</td>
</tr>
<tr>
<td>Review questions</td>
<td>217</td>
</tr>
<tr>
<td>12 More advanced linear programming concepts and methods</td>
<td>219</td>
</tr>
<tr>
<td>Study objectives</td>
<td>219</td>
</tr>
<tr>
<td>Basic LP assumptions and their implications for capital budgeting</td>
<td>220</td>
</tr>
<tr>
<td>Expanding the number of projects and constraints</td>
<td>221</td>
</tr>
<tr>
<td>Example 12.1. Power generator’s decision problem</td>
<td>222</td>
</tr>
<tr>
<td>Indivisible investments and integer activity levels</td>
<td>224</td>
</tr>
<tr>
<td>Example 12.2. Resort development problem</td>
<td>225</td>
</tr>
<tr>
<td>Borrowing and capital transfers</td>
<td>226</td>
</tr>
<tr>
<td>Example 12.3. Borrowing and capital transfer problem</td>
<td>226</td>
</tr>
<tr>
<td>Contingent or dependent projects</td>
<td>228</td>
</tr>
<tr>
<td>Example 12.4. Infrastructure problem</td>
<td>228</td>
</tr>
<tr>
<td>Mutually exclusive projects</td>
<td>229</td>
</tr>
<tr>
<td>Example 12.5. Sports gear problem</td>
<td>230</td>
</tr>
<tr>
<td>Some other LP extensions for capital budgeting</td>
<td>231</td>
</tr>
<tr>
<td>Concluding comments</td>
<td>233</td>
</tr>
<tr>
<td>Review questions</td>
<td>234</td>
</tr>
<tr>
<td>13 Financial modelling case study in forestry project evaluation</td>
<td>236</td>
</tr>
<tr>
<td>Study objectives</td>
<td>237</td>
</tr>
<tr>
<td>Forestry evaluation models: uses and user groups</td>
<td>237</td>
</tr>
<tr>
<td>Financial models available to evaluate forestry investments</td>
<td>238</td>
</tr>
<tr>
<td>The Australian Cabinet Timbers Financial Model (ACTFM)</td>
<td>239</td>
</tr>
<tr>
<td>Review of model development and design options</td>
<td>246</td>
</tr>
</tbody>
</table>
Contents

Concluding comments 249
Review questions 250

14 Property investment analysis 251
Study objectives 252
Income-producing properties 252
Example 14.1. Property cash flows from the industrial property 256
Example 14.2. Equity cash flows before tax from the industrial property 258
Example 14.3. Equity cash flows after tax from the industrial property 261
Corporate real estate 263
Example 14.4. Acquiring the industrial property for operations 263
Example 14.5. Leasing or buying the industrial property for operations 266
Development feasibility 268
Example 14.6. Initial screening of an industrial building project 268
Example 14.7. Project cash flows from a property development 270
Example 14.8. Equity cash flows from the development project 271
Concluding comments 272
Review questions 272

15 Forecasting and analysing risks in property investments 274
Study objectives 275
Forecasting 275
Example 15.1. Forecasting operating cash flows for the industrial property 278
Example 15.2. Forecasting resale proceeds for the industrial property 283
Example 15.3. Forecasting development cash flows for a residential project 285
Risk analysis 288
Example 15.4. Net present value of the industrial property – sensitivity analysis 289
Example 15.5. Overbuilding for the industrial property – scenario analysis 290
Example 15.6. Development risks – Monte Carlo (risk) simulation 293
Concluding comments 293
Review questions 295

16 Multinational corporations and international project appraisal 297
Study objectives 298
Definition of selected terms used in the chapter 298
The parent’s perspective versus the subsidiary’s perspective 299
Example 16.1. Garment project 301
Exchange rate risk 303
Country risk 304
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A strategy to reduce a project’s exchange rate and country risks</td>
<td>305</td>
</tr>
<tr>
<td>Other country risk reduction measures</td>
<td>309</td>
</tr>
<tr>
<td>Incorporating exchange rate and country risk in project analysis</td>
<td>310</td>
</tr>
<tr>
<td>Concluding comments</td>
<td>311</td>
</tr>
<tr>
<td>Review questions</td>
<td>311</td>
</tr>
</tbody>
</table>

References 313

Index 316
Figures

1.1 Corporate goal, financial management and capital budgeting .. page 2
1.2 The capital budgeting process ... 5
3.1 Forecasting techniques and routes .. 39
4.1 Major steps in the survey and data analysis process ... 57
4.2 A simple model for appraising investment in forestry projects 64
4.3 Modified extract of survey form used in stage 1 of Delphi survey in Example 4.1 66
6.1 Net present value profiles for projects A and B ... 100
7.1 Main features of RADR and CE techniques .. 117
8.1 Project NPV versus unit selling price .. 148
8.2 Project NPV versus required rate of return .. 148
8.3 Project NPV versus initial outlay .. 148
9.1 Cumulative relative frequency curve for NPV of computer project 169
10.1 NPV and LEV profiles of FVC Ltd forestry investment .. 197
10.2 Cumulative relative frequency distribution for forestry investment for FVC Ltd 202
11.1 Graphical solution to the product mix problem ... 207
11.2 Product mix problem: iso-contribution lines and optimal product mix 208
13.1 Schematic representation of the structure of the ACTFM .. 240
13.2 ACTFM: example of plantation output sheet ... 242
13.3 Prescriptive costs sheet ... 244
13.4 Costs during plantation sheet ... 244
13.5 Annual costs sheet ... 244
15.1 Trend in industrial rents per square metre .. 281
15.2 Distribution of possible net present values ... 294
16.1 A strategy for an MNC to reduce a host country project’s exchange rate and country risks 306
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Delta Corporation’s historical sales</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Delta Project: cash flow analysis</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Repco Replacement Investment Project: initial investment</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Repco Replacement Investment Project: incremental operating cash flows</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Repco Replacement Investment Project: terminal cash flow</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Repco Replacement Investment Project: overall cash flow</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Desk sales and number of households</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Desk sales, number of households and average household income</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Household and income projections, 2002–2006</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Desk sales forecasts using two-variable and multiple regressions</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Desk sales forecasts using time-trend regression</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Hypothetical sales data and calculation of simple moving average</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Forecasts using exponential smoothing model</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>Ticket sales, households and household income</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Planting and harvesting scenario for a maple and messmate mixture</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Estimates of model parameters for a maple and messmate mixed plantation</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>First three months of a loan amortization schedule</td>
<td>89</td>
</tr>
<tr>
<td>6.1</td>
<td>Delta Project: annual net cash flow</td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>Cash flows, NPV and IRR for projects Big and Small</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Cash flows, NPV and IRR for projects Near and Far</td>
<td>104</td>
</tr>
<tr>
<td>6.4</td>
<td>Cash flows, NPV and IRR for projects Short and Long</td>
<td>104</td>
</tr>
<tr>
<td>6.5</td>
<td>Replication chain cash flows as an annuity due</td>
<td>105</td>
</tr>
<tr>
<td>6.6</td>
<td>Cash flows within timed replication chains</td>
<td>107</td>
</tr>
<tr>
<td>6.7</td>
<td>Calculated individual NPVs for various replication cycle lengths within a chain</td>
<td>108</td>
</tr>
<tr>
<td>6.8</td>
<td>Calculated total NPVs for perpetual replacement over various replication cycle lengths within a chain</td>
<td>109</td>
</tr>
<tr>
<td>6.9</td>
<td>Repco Replacement Investment Project: incremental cash flows</td>
<td>109</td>
</tr>
<tr>
<td>6.10</td>
<td>Cash flow forecasts for various retirement lives</td>
<td>110</td>
</tr>
<tr>
<td>6.11</td>
<td>Operational cash flows</td>
<td>112</td>
</tr>
<tr>
<td>7.1</td>
<td>Stock-market index Value and Delta Company share price</td>
<td>122</td>
</tr>
</tbody>
</table>
List of tables

7.2 Stock-market index and share price returns 123
7.3 Cceorp: CE coefficients and cash flows 127
7.4 CapmBeta Company stock returns and stock-market index returns 131
7.5 CapmBeta Company: forecasted project cash flows 131
8.1 Pessimistic, most likely and optimistic forecasts 144
8.2 Results of sensitivity tests 145
9.1 Computer project: pessimistic, modal and optimistic values for selected cash flow variables 164
9.2 Computer project: random numbers and generated values under triangular distributions for the four stochastic variables 167
9.3 Computer project: Annual net cash flows and NPVs for first five replicates 168
9.4 Computer project: ordered NPVs and cumulative relative frequencies 168
9.5 FlyByNight: parameters of the basic model 173
9.6 FlyByNight: output from the basic model simulation run 174
9.7 FlyByNight: NPV levels from the deterministic simulation 176
9.8 FlyByNight: NPV estimates for individual replicates and mean of replicates 178
9A.1 Probability distribution of number of tickets sold 182
9A.2 Cumulative probability distribution of number of tickets sold, and ranges of random numbers 183
10.1 Sources of risk in farm forestry 188
10.2 FVC Ltd forestry project: Main cash categories and predicted timing 193
10.3 FVC Ltd forestry project: Cash outflows and timing associated with a two-species plantation 194
10.4 Estimated cash inflows for 1,000 ha plantation 195
10.5 NPV calculations for FVC Ltd forestry project 196
10.6 FVC Ltd forestry project: parameters selected for sensitivity analysis 198
10.7 NPVs for FVC Ltd forestry investment 198
10.8 Impact of harvesting all trees at year 34 compared with the two-stage harvest in Example 10.1 200
10.9 Calculation of random values used in NPV calculations 201
11.1 Initial tableau for the product mix problem 209
11.2 Revised LP tableau after solution for the product mix problem 211
11.3 Sensitivity report for the product mix problem 211
11.4 LP tableau after solution for the capital rationing problem 214
11.5 Sensitivity report for the capital rationing problem 214
11.6 NPVs, cash outflows and available capital in the project portfolio selection problem 215
11.7 LP model for the project portfolio selection problem 216
12.1 Power generator’s decision problem: alternative technologies 222
12.2 LP tableau for power generator problem after solution 223
12.3 LP tableau and optimal plan for property developer decision problem 226
12.4 Property developer decision problem: alternative solution methods 226
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Tableau after solution for borrowing and capital transfer problem</td>
<td>227</td>
</tr>
<tr>
<td>12.6</td>
<td>Tableau with solution for coal-miner’s example</td>
<td>229</td>
</tr>
<tr>
<td>12.7</td>
<td>Tableau and solution for sports gear problem</td>
<td>230</td>
</tr>
<tr>
<td>12.8</td>
<td>Capital expenditure for alternative hotel designs</td>
<td>235</td>
</tr>
<tr>
<td>13.1</td>
<td>Estimated harvest ages, timber yields and timber prices for eucalypt and cabinet timber species in North Queensland</td>
<td>243</td>
</tr>
<tr>
<td>13.2</td>
<td>Modelling options for forestry investments</td>
<td>247</td>
</tr>
<tr>
<td>14.1</td>
<td>Operating cash flows before tax</td>
<td>253</td>
</tr>
<tr>
<td>14.2</td>
<td>Property cash flows before tax</td>
<td>257</td>
</tr>
<tr>
<td>14.3</td>
<td>Equity cash flows before tax</td>
<td>259</td>
</tr>
<tr>
<td>14.4</td>
<td>Equity cash flows after tax (an Australian example)</td>
<td>262</td>
</tr>
<tr>
<td>14.5</td>
<td>Evaluating moving to new premises</td>
<td>265</td>
</tr>
<tr>
<td>14.6</td>
<td>The costs of leasing or buying</td>
<td>267</td>
</tr>
<tr>
<td>14.7</td>
<td>Preliminary analysis of a property development</td>
<td>269</td>
</tr>
<tr>
<td>14.8</td>
<td>Project cash flows from a property development</td>
<td>270</td>
</tr>
<tr>
<td>14.9</td>
<td>Equity cash flows from a property development</td>
<td>271</td>
</tr>
<tr>
<td>15.1</td>
<td>Forecasting rent from leased properties</td>
<td>278</td>
</tr>
<tr>
<td>15.2</td>
<td>Lease rent for the industrial property</td>
<td>279</td>
</tr>
<tr>
<td>15.3</td>
<td>Industrial property market statistics</td>
<td>280</td>
</tr>
<tr>
<td>15.4</td>
<td>Operating cash flows for the industrial property</td>
<td>282</td>
</tr>
<tr>
<td>15.5</td>
<td>Property cash flows before tax for the industrial property</td>
<td>284</td>
</tr>
<tr>
<td>15.6</td>
<td>Development project cash flows before tax</td>
<td>286</td>
</tr>
<tr>
<td>15.7</td>
<td>Sensitivity table for net present value</td>
<td>290</td>
</tr>
<tr>
<td>15.8</td>
<td>Cash flows and returns from contrasting scenarios</td>
<td>291</td>
</tr>
<tr>
<td>15.9</td>
<td>Monte Carlo simulation of office development</td>
<td>292</td>
</tr>
<tr>
<td>15.10</td>
<td>Lease terms for suburban office building</td>
<td>295</td>
</tr>
<tr>
<td>15.11</td>
<td>Market data for suburban offices</td>
<td>295</td>
</tr>
<tr>
<td>16.1</td>
<td>Analysis of the proposed garment project</td>
<td>302</td>
</tr>
</tbody>
</table>
Preface

Capital budgeting is primarily concerned with how a firm makes decisions on sizable investments in long-lived projects to achieve the firm’s overall goal. This is the decision area of financial management that establishes criteria for investing resources in long-term real assets.

Investment decisions (on sizable long-term projects) today will determine the firm’s strategic position many years hence, and fix the future course of the firm. These investments will have a considerable impact on the firm’s future cash flows and the risk associated with those cash flows. Capital budgeting decisions have a long-range impact on the firm’s performance and they are critical to the firm’s success or failure.

One of the most crucial and complex stages in the capital budgeting decision process is the financial or economic evaluation of the investment proposals. This ‘project analysis’ is the focus of this book. Project analysis usually involves the identification of relevant cash flows, their forecasting, risk analysis, and the application of project evaluation concepts, techniques and criteria to assess whether the proposed projects are likely to add value to the firm. When the project choice is subject to resource constraints, mathematical programming techniques such as linear programming are employed to select the feasible optimal combination of projects.

Motivation for the book

The writing of this book was motivated by the lack of a suitable capital budgeting textbook with the following desirable features and coverage:

- Analysis and applications based on sound conceptual and theoretical foundations with pedagogical tools appropriate for capital budgeting
- Cash flow forecasting
- Project choice under resource constraints
- Comprehensive illustrations of concepts, methods and approaches for project analysis under uncertainty (or risk), with applications to different industries
- Preparing the reader for actual project analysis in the real world which involves voluminous, tedious, complex and repetitive computations and relies heavily on computer packages.
Preface

The book bridges this gap in the market by including these features and areas of coverage.

Distinctive features and areas of coverage

Distinctive features include:

- Practical approach with applications based on sound and appropriate concepts and theory
- Concepts, techniques and applications are illustrated by worked examples, tables and charts
- Worked examples are extensively supported with live Excel workbooks easily accessible on the Web
- Use of pedagogical tools – such as Excel spreadsheet calculations accessible on the World Wide Web – to help the users of the book grasp important and difficult concepts and calculations, and make them clear, useful, attractive and sometimes fun by the use of technology (computer packages)
- Complex and difficult topics are explained intuitively with tableaux rather than in terms of algebra.

Areas of coverage include:

- Quantitative and qualitative techniques for cash flow forecasting
- Application of mathematical programming techniques such as linear programming for decision support when the project choice is subject to resource constraints
- Sensitivity and break-even analysis and simulation – with applications to various industries such as the computer, airline, forestry and property industries, each of which has its unique characteristics
- As well as the standard industrial investment examples, the exotic and environmentally sensitive area of forestry investment and the increasingly demanding area of property investment are analysed with examples and case studies. The intricacies of investment across international borders are also discussed.

All of this material is reinforced with some challenging end-of-chapter review questions. Solutions to all the calculation questions are fully worked on Excel spreadsheets and are available on the Web.

Organization of the book

This book follows a natural progression from the development of basic concepts, principles and techniques to the application of them in increasingly complex and real-world situations. Identification and estimation of cash flows are important initial steps in project analysis and are dealt with in Chapters 2 to 4. Once the cash flows have been estimated, investment proposals are subjected to project evaluation techniques. The application of these techniques involves financial mathematics (Chapter 5). Chapter 6 uses the cash flow concepts and
the formulae (from Chapters 2 and 5) to evaluate case study projects using several project evaluation criteria such as net present value (NPV), internal rate of return (IRR) and payback period, and demonstrates the versatility of the NPV criterion. This basic model is then expanded to deal with risk (or uncertainty of cash flows) through the use of the risk-adjusted discount rate and certainty equivalent methods (Chapter 7), sensitivity and break-even analyses (Chapter 8) and risk simulation methods (Chapter 9). These concepts and methods are then applied in a case study involving the evaluation of a forestry investment in Chapter 10. Resource constraints on the capital budgeting decision are considered in Chapters 11 and 12 by introducing the basics of linear programming (LP), applying the LP technique for selection of the optimal project portfolios and presenting extensions to the LP technique which make the approach more versatile. A number of special topics in capital budgeting are covered towards the end of the book. They include forestry investment analysis (Chapter 13), property investment analysis (Chapters 14 and 15) and evaluation of international investments (Chapter 16).

Joint authorship

The positive side of joint authorship has been the rich interplay of ideas and lively debate on both conceptual and applied matters. The book has certainly benefited from this spirited interplay of ideas. Keeping five academics working, and working towards a common goal, an integrated exposition, has been a challenging management task. We have all benefited from the discipline of a common goal and pressing deadlines.

Intended audience

We have endeavoured in this text to make the capital budgeting concepts, theory, techniques and applications accessible to the interested reader, and trust that the reader will garner a better understanding of this important topic from our treatment. This book should suit both advanced undergraduate and postgraduate students, investment practitioners, financial modellers and practising managers. Although the book relies on material that is covered in corporate finance, economics, accounting and statistics courses, it is self-contained in that prior knowledge of those areas, while useful, is not essential.

Teaching and learning aids

Excel workbooks referred to in the text are accessible on the Web (at http://publishing.cambridge.org/resources/052181782x/). They provide details relating to calculations and the student can use the examples provided to practise various computations. Estimating regression equations, performing sensitivity and break-even analyses, conducting simulation experiments and solving linear programming problems are all done using Excel and they are all provided on the Web for the readers of this book to experiment with.

A Instructor’s Manual includes answers to end-of-chapter review questions.
Acknowledgements

We have benefited from the encouragement and support of colleagues, family and friends. We particularly acknowledge the support given by Kathy Ramm, Head of the School of Commerce, Central Queensland University. We are also grateful to the talented staff at Cambridge University Press, especially Ashwin Rattan (Commissioning Editor, Economics and Finance), Chris Harrison (Publishing Director, Humanities and Social Sciences), Robert Whitelock (Senior Copy-Editorial Controller, Humanities and Social Sciences), Chris Doubleday (commissioned copy-editor for this book), Karl Howe (Production Controller) and Deirdre Gyenes (Design Controller).

A final word

We have significant combined research, teaching and industry experience behind us, and trust that this understanding of the learning process shines through in the text. Corporate financial management is not a process to be lightly embarked upon, but we hope your journey can be made more rewarding by the way in which this book has been presented.