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1 Forces

1.1 Force

In the study of statics we are concerned with two fundamental quantities: length or
distance, which requires no explanation, and force. The quantity length can be seen
with the eye but with force, the only thing that is ever seen is its effect. We can see
a spring being stretched or a rubber ball being squashed but what is seen is only the
effect of a force being applied and not the force itself. With a rigid body there is no
distortion due to the force and in statics it does not move either. Hence, there is no
visual indication of forces being applied.
We detect a force being applied to our human body by our sense of touch or feel.

Again, it is not the force itself but its effect which is felt – we feel the movement of our
stomachs when we go over a humpback bridge in a fast car; we feel that the soles of
our feet are squashed slightly when we stand.
We have now encountered one of the fundamental conceptual difficulties in the study

of mechanics. Force cannot be seen or measured directly but must always be imagined.
Generally the existence of some force requires little imagination but to imagine all the
different forces which exist in a given situationmay not be too easy. Furthermore, in or-
der to perform any analysis, the forcesmust be defined precisely inmathematical terms.
For the moment we shall content ourselves with a qualitative definition of force. ‘A

force is that quantity which tries to move the object on which it acts.’ This qualitative
definition will suffice for statical problems in which the object does not move but
we shall have to give it further consideration when we study the subject of dynamics.
If the object does not move, the force must be opposed and balanced by another force.
If we push with our hand against a wall, we know that we are exerting a force; we
also know that the wall would be pushed over if it were not so strong. By saying that
the wall is strong we mean that the wall itself can produce a force to balance the one
applied by us.

EXERCISE 1
Note down a few different forces and state whether, and if so how, they might be observed.

3
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1.2 Forces of contact

Before giving a precise mathematical description of force, we shall discuss two general
categories. We shall start with the type which is more easily imagined; this is that due
to contact between one object and another.
In the example of pushing against a wall with one’s hand, the wall and hand are in

contact, a force is exerted by the hand on the wall and this is opposed by another force
from the wall to the hand. In the same way, when we are standing on the ground we
can feel the force of the ground on our feet in opposition to the force due to our weight
transmitted through our feet to the ground. Sometimes we think of a force being a pull
but if we analyse the situation, the force of contact from one object to another is still
a push. For instance, suppose a rope is tied around an object so that the latter may be
pulled along. When this happens, the force from the rope which moves the object is a
push on the rear of the object.
Another form of contact force is that which occurs when a moving object strikes

another one. Any player of ball games will be familiar with this type of force. It only
acts for a short time and is called an impulsive force. It is given special consideration
in dynamics but it also occurs in statics in the following sense. When the surface of an
object is in contact with a gas, the gas exerts a pressure, that is a force spread over the
surface. The pressure is caused by the individual particles of the gas bouncing against
the surface and exerting impulsive forces. The magnitude of each force is so small but
the frequency of occurrence is so high that the effect is that of a force continuously
distributed over the whole surface.
Forces of contact need not be exerted normal to the surface of contact. It is also

possible to exert what is called a tangential or frictional component of force. In this case
the force is applied obliquely to the surface;we can think of part being applied normally,
i.e. perpendicular to the surface, and part tangentially. The maximum proportion of the
tangential part whichmay be applied depends upon the nature of the surfaces in contact.
Iceskaters knowhowsmall the tangential component canbeandmanufacturersofmotor
car tyres know how high.
A fact which must be emphasized concerning contact forces is that the forces each

way are always equal and opposite, i.e. action and reaction are equal and opposite.
When you push against the wall with your hand, the force from your hand on the wall
is equal and opposite to the force from the wall against your hand. The rule is true for
any pair of contact forces.

EXERCISE 2
Note down some of the contact forces which you have experienced or which have been applied to
objects with which you have been concerned during the day. For each contact force, note the equal
and opposite force which opposed it.
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1.3 Mysterious forces

It is not too difficult to imagine the contact forces already described from our everyday
experience but what is it that prevents a solid object from bending, squashing or just
falling apart under the action of such forces?Mysterious forces of attraction act between
the separate molecules of the material binding them together in a particular way and
resisting outside forces which try to disturb the pattern. Theseintermolecular forces
constitute the strength of the material. Although we shall not be concerned with it
here, knowledge of the strength of materials is of great importance to engineers when
designing buildings, machinery, etc.
Another mysterious force which will concern us deeply is theforce of gravity. The

magnitude of the force of gravity acting on a particular object depends on the size and
physical nature of the object. In our study this force will remain constant and it will
always act vertically downwards, this being referred to as theweightof the object. This
is sufficient for most earthbound problems but when studying artificial satellites and
space-craft it is necessary to consider the full properties of gravity.
Gravity is a force of attraction between any two bodies. It needs no material for its

transmission nor is it impeded or changed in any way by material placed in between
the bodies in question. The magnitude of the force was given mathematical form by Sir
Isaac Newton and published in hisPhilosophiae Naturalis Principia Mathematicain
1687. The force is proportional to the product of themasses of the two bodies divided by
the square of the distance between them. We shall say more about mass when studying
dynamics but it is a constant property of any body. The lawof gravitation, i.e. the inverse
square law, was deduced by correlating it with the elliptical motion of planets about
the sun as focus. Newton proved that such motion would be produced by the inverse
square law of attraction to the sun acting on each planet.
Given that abodygeneratesanattractive forceproportional to itsmass, it is reasonable

that an inversesquare lawwith respect todistanceshouldapply.The forceacts in towards
the body from all directions around. However, the force acts over a larger area as the
distance from the body increases. Since the effort is spread out over a larger area we
can expect the strength at any particular point in the area to decrease accordingly. Thus
we expect the magnitude of the force to be inversely proportional to the area of the
sphere with the body at the centre and the point at which the force acts being on the
surface of the sphere. The area is proportional to the square of the radius of the sphere;
hence the inverse square law follows.
Magnetic and electrostatic forces are also important mysterious forces. However,

they will not be dicussed here since we shall not be concerned with them in this text.

EXERCISE 3
Find the altitude at which the weight of a body is one per cent less than its weight at sea level. (Assume
that the radius of the earth from sea level is 6370 km.)



6 Forces

EXERCISE 4
Find the percentage reduction in weight when the body is lifted from sea level to a height of 3 km.

1.4 Quantitative definition of force

In statics, force is that quantity which tries to move the object on which it acts. The
magnitude of a force is the measure of its strength. It is then necessary to define basic
units of measurement.
In lifting different objects we are very familiar with the concept of weight,which

is the downward gravitational force on an object. It is tempting to use the weight of a
particular object as the unit of force.However, weight varieswith altitude (seeExercises
3 and 4) and alsowith latitude. To avoid this, a dynamical unit of force has beenadopted.
The basic SI unit (Syst`eme International d’Unit´es) is the newton (symbol N). It is the

force which would give a mass of one kilogramme (1 kg) an acceleration of one metre
per second per second (1m/s2 or 1ms−2). The kilogramme is the mass of a particular
piece of platinum–iridium. Of course, once a standard has been set, other masses can
easily be evaluated by comparing relative weights. Incidentally, the mass of 1 kg is
approximately the mass of one cubic decimetre of distilled water at the temperature
(3.98◦C) at which its density is maximum.
If you are more familiar with the pound-force (lbf) as the unit of force, then
1 lbf = 4.449 N or 1N= 0.2248 lbf.
In quantifying a force, not only must its magnitude be given but also its direction of

application, i.e. the direction inwhich it tries tomove the object onwhich it acts. Having
both magnitude and direction, force is avectorquantity. Sometimes it is convenient to
represent a force graphically by an arrow (see Figure 1.1) which points in a direction
corresponding to thedirectionof the forceandhasa lengthproportional to themagnitude
of the force.

EXERCISE 5
Consider an aeroplane (see Figure 1.2) flying along at constant speed and height. Since there is no
acceleration, forces should balance out in the same way that they do in statics. Draw vectors which
might correspond to (a) the weight of the aeroplane, (b) the thrust from its enginesand (c) the force
from the surrounding air on the aeroplane which is a combination of lift and drag (lift/drag).

Figure 1.1. Force vector.
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Figure 1.2. Simple sketch of an aeroplane.

1.5 Point of application

In studying forces acting on a rigid body, it is necessary to know the points of the body to
which the forces are applied. For instance, consider a horizontal force applied to a stone
which is resting on horizontal ground. If the force is strong enough the stone will move,
but whether it moves by toppling or slipping depends on where the force is applied.
Forces rarely act at a single point of a body. Usually the force is spread out over a

surface or volume. If the stone mentioned above is pushed with your hand, then the
force from your hand is spread out over the surface of contact between your hand and
the stone. The force from the ground which is acting on the stone is spread out over the
surface of contact with the ground. The gravitational force acting on the stone is spread
out over the whole volume of the stone. In order to perform the analysis in minute
detail it would be necessary to consider each small force acting on each small element
of area and on each small element of volume. However, since we are only considering
rigid bodies, we are not concernedwith internal stress. Thus we can replacemany small
forces by one large force. In our example, the small forces from the small elements
of area of contact of your hand are represented by a single large force acting on the
stone. Similarly, we have a single large force acting from the ground. Also, for the small
gravitational forces acting on all the small elements of volume of the stone, we have
instead a single force equal to the weight of the stone acting at a point in the stone
which is called thecentre of gravity.
The derivation of the points of action of these equivalent resultant forces will be

discussed later. For the time being we shall assume that the representation is valid so
that we can study the example of the stone as though there were only three forces acting
on it, one from your hand, one from the ground and one from gravity.

EXERCISE 6
Continue Exercise 5 by drawing in the three force vectors on a rough sketch of the aeroplane.

1.6 Line of action

In the answer to Exercise 6, it appears that the three resultant forces of weight, thrust
and lift/drag all act at the same point. Of course this may not be so but it does not
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matter provided the lines of action of the three resultant forces intersect at one point.
For instance, this point need not coincide with the centre of gravity but it must be in
the same vertical line as the centre of gravity.
Thus, with a rigid body the effect of a force is the same for any point of application

along its line of action. This property is referred to as theprinciple of transmissibility.
If two non-parallel but coplanar forces act on a body, it is convenient to imagine them
to be acting at the point of intersection of their lines of action.

EXERCISE 7
Suppose that a smooth sphere is held on an inclined plane by a string which is fastened to a point on
the surface of the sphere at one end and to a point on the plane at the other end. Sketch the side view
and draw in the force vectors atthe points of intersection of their lines of action.

EXERCISE 8
Do the same as in Exercise 7 for a ladder leaning against a wall, assuming that the lines of action of
the three forces (weight and reactions from wall and ground) are concurrent.

Problems 1 and 2.

1.7 Equilibrium of two forces

A force tries to move its point of application and it will move it unless there is an equal
and opposite counterbalancing force. When you push a wall with your hand, the wall
will move unless it is strong enough to produce an equal and opposite force on your
hand. If you are holding a dog with a lead, you will only remain stationary if you pull
on the lead with the same amount of force as that exerted by the dog. By considering
such physical examples we can see that for two forces to balance each other, they must
be equal in magnitude and opposite in direction.
Yet another property is also required for the balance to exist. Supposewe have a large

wheel mounted on a vertical axle. If one person pushes the wheel tangentially along
the rim on one side and another person pushes on the other side, the wheel will start to
move if the two pushes are equal in magnitude and opposite in direction. In fact two
forces only balance each other if not only are they equal in magnitude and opposite in
direction but also have the same line of action.When you are holding the dog, the line of
the lead is the line of action of both the force from your hand and the force from the dog.
When the three conditions hold, we say that the two forces are inequilibrium. If a

rigid body is acted on by only two such forces, the body will not move and we say
that the body is in equilibrium. When a stone rests in equilibrium on the ground, the
resultant contact force from the ground is equal, opposite and collinear to the resultant
gravitational force acting on the stone.
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EXERCISE 9
Suppose that a rigid straight rod rests on its side on a smooth horizontal surface. Let two horizontal
forces of equal magnitude be applied to the rod simultaneously, one at either end. Consider what
will happen to the rod immediately after the forces have been applied for a few different situations
regarding the directions in which the separate forces are applied. Show that there will be only two
possible situations in which the rod will remain in equilibrium.

1.8 Parallelogram of forces (vector addition)

If two non-parallel forcesF1 andF2 act at a point A, they have a combined effect
equivalent to a single forceR acting at A. The single forceR is called theresultantand
it may be found as follows. LetF1 andF2 be represented in magnitude and direction
by two sides of a parallelogram meeting at A. ThenR is represented in magnitude and
direction by the diagonal of the parallelogram from A, as shown in Figure 1.3. This is
an empirical result referred to as the parallelogram law.
The parallelogram law may be illustrated by the following experiment. Take three

different known weights of magnitudesW1,W2 andW3, and attachW1 andW2 to either
end of a length of string. Drape the string over two smooth pegs set a distance apart at
about the same height. Then attachW3 with a small piece of string to a point A of the
other string between the two pegs. Finally, allowW3 to drop gently and possibly move
sideways until an equilibrium position is established (see Figure 1.4).
Nowmeasure the angles to the horizontal made by the sections of string between the

two pegs and A. Make an accurate drawing of the strings which meet at A and mark off
distances proportional toW1 andW2 as shown in Figure 1.5. Since the pegs are smooth,

F1

F2

R

Figure 1.3. Parallelogram of forces.

Figure 1.4. String over two smooth pegs.
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F1 W1

F3 W3

F2 W2

Figure 1.5. Three forces acting at A.

F1 F1

F2

F2

R

Figure 1.6. Vector addition.

Fy

Fx

F

Figure 1.7. Cartesian componentsFx andFy of vectorF.

the tensions in the string of magnitudesF1 andF2 must be equal to the weightsW1 and
W2, respectively. Complete the parallelogram on the sidesF1 andF2 and let B be the
corner opposite A.
Since thepointA is inequilibrium, the resultant ofF1 andF2 shouldbeequal, opposite

and collinear toF3 which is the tension in the string supportingW3 with F3 = W3. If
the parallelogram law holds, then AB should be collinear with the line corresponding
to the vertical string and the length AB should correspond to the weightW3.
The parallelogram law also applies to thevector sumof two vectors. Hence, the

resultant of two forces acting at a point is their vector sum. Thus, if we use boldface
letters to indicate vector quantities, the resultantR of two forcesF1 andF2 acting at a
point may be written asR = F1 + F2.
Also, since opposite sides of a parallelogram are equal,R may be found by drawing

F2 onto the end ofF1 and joining the start ofF1 to the end ofF2 as shown in Figure 1.6.
A force vectorF may also be written in terms of itsCartesian componentsF =

Fx + Fy as shown in Figure 1.7.
Similarly, if we want the resultantR of two forcesF1 andF2 acting at a point, then

R = F1 + F2 = F1x + F1y + F2x + F2y = (F1x + F2x)+ (F1y + F2y) = Rx + Ry.

In other words, thex-component ofR is the sum of thex-components ofF1 and
F2 and they-component ofR is the sum of they-components ofF1 andF2. This
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F1

Rx

R
Ry

F2

Figure 1.8. Addition of Cartesian components in vector addition.

Figure 1.9. Three elastic bands used to demonstrate the parallelogram law.

F1

F2

2

Figure 1.10. Two forcesF1 andF2 acting at a point A.

can be seen diagramatically by drawing in the Cartesian components as illustrated in
Figure 1.8.

EXERCISE 10
Use a piece of cotton thread to tie together three identical elastic bands. Having measured the un-
stretched length of the bands, peg themout as indicated in Figure 1.9, so that each band is in a stretched
state but not beyond the elastic limit. The points A, B and C represent the fixed positions of the pegs
but the point P takes up its equilibrium position pulled in three directions by the tensions in the bands.
Use the fact that tension in each band is proportional to extension in order to verify the parallelogram
law for the resultant of two forces acting at a point.

EXERCISE 11
Calculate themagnitude and direction of the resultantR of the two forcesF1 andF2 acting at the point
A given the magnitudesF1 = 1N, F2 = 2N and directionsθ1 = 60◦, θ2 = 30◦ (see Figure 1.10).

Problems 3 and 4.
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1.9 Resultant of three coplanar forces acting at a point

Consider the three forcesF1, F2 andF3 shown in Figure 1.11. The resultantR1 of F1

andF2 can be found by drawing the vectorF2 on the end ofF1 and joining the start of
F1 to the end ofF2. Then the final resultantR of R1 andF3, i.e. ofF1, F2 andF3, is
found by drawing the vectorF3 on the end ofR1 and joining the start ofR1 to the end of
F3. Having done this, we see that the intermediate step of insertingR1 may be omitted.
Hence, the construction shown in Figure 1.11 is replaced by that of Figure 1.12. The
procedure is simply to join the vectorsF1, F2 andF3 end-on-end; then the resultantR
corresponds to the vector joining the start ofF1 to the end ofF3.
The resultant vectorR corresponds to the vector addition

R = F1 + F2 + F3.

In terms of Cartesian components:

Rx = F1x + F2x + F3x

and

Ry = F1y + F2y + F3y.

The three forcesF1, F2 andF3 will be in equilibrium if their resultantR is zero. In
this case, joining the vectors end-on-end, the end ofF3 will coincide with the start of
F1. Thus we have the triangle of forces, which states that three coplanar forces acting
at a point are in equilibrium if their vectors joined end-on-end correspond to the sides
of a triangle, as illustrated in Figure 1.13.

F1

F1 R1

R

F2

F2

F3

F3

Figure 1.11. Constructing the resultant of three coplanar forces acting at a point.

F1

F2

F3

R

Figure 1.12. The final constructionR = F1 + F2 + F3.
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F1 F2

F3

Figure 1.13. Triangle of forces.

F1

F2

F3

Figure 1.14. Three coplanar forces acting at a point.

Referring to Figures 1.13 and 1.14, we notice that the angle in the triangle between
F1 andF2 is 180◦ minus the angle between the forcesF1 andF2 acting at the point P, and
similarly for the other angles. Now, the sine rule for a triangle states that the length of
each side is proportional to the sine of the angle opposite. Since sin(180◦ − θ) = sinθ ,
we have Lamy’s theorem which states that ‘three coplanar forces acting at a point are
in equilibrium if the magnitude of each force is proportional to the sine of the angle
between the other two forces’.

EXERCISE 12
Let three forcesF1, F2 andF3 have magnitudes in newtons of

√
6,1+ √

3 and 2, respectively. If the
angles made with the positivex-direction are 45◦ for F1, 180◦ for F2 and−60◦ for F3, show that the
three forces are in equilibrium by (a) calculating their resultant, (b) triangle of forces and (c) Lamy’s
theorem.

Problems 5 and 6.

1.10 Generalizations for forces acting at a point

Firstly, consider more than three coplanar forces acting at a point. The vector addition
procedure can be continued. For instance, drawing the vectors end-on-end givesR3,
say, for the resultant of the first three. Then, as shown in Figure 1.15, drawing the vector
for F4 onto the end ofR3, the resultant ofR3 andF4 is given by the vectorR4 joining
the start ofR3 to the end ofF4. R3 can now be omitted.
This procedure is obviously valid for finding the resultant of any number of coplanar

forces acting at a point. Furthermore, the forces will be in equilibrium if the final
resultant is zero, i.e. when the end of the last vector coincides with the start of the
first. Hence, we have thepolygon of forces, which states that ‘n coplanar forces acting



14 Forces

F1

F2

F3

R3

R4

F4

Figure 1.15. Constructing the resultant of four coplanar forces acting at a point.

at a point are in equilibrium if their vectors joined end-on-end complete ann-sided
polygon’.
Although it is not convenient for two-dimensional drawing, the basic concept can be

extended to finding the resultant of non-coplanar forces acting at a point. Any two of the
forces are coplanar, so the resultantR2 of F1 andF2 is the vector sumR2 = F1 + F2.
ThenR2 andF3 must be coplanar with resultantR3 = R2 + F3 = F1 + F2 + F3. Thus,
if there aren forces, their resultant isRn = F1 + F2 + · · · + Fn.
We have now moved from two-dimensional to three-dimensional space. Each vec-

tor has threeCartesian components, i.e. its x-, y- andz-components. The Cartesian
components ofRn are :

Rnx = F1x + F2x + · · · + Fnx

Rny = F1y + F2y + · · · + Fny

Rnz = F1z + F2z + · · · + Fnz

wherex, y andz signify the corresponding component in each case.
As in the coplanar case, the forces will be in equilibrium if their resultantRn is zero,

i.e. Rnx = Rny = Rnz = 0.

EXERCISE 13
Let four coplanar forcesF1, F2, F3 andF4 acting at a point have magnitudes in newtons of 2,

√
6,

2 and
√
2, and directions relative to the positivex-axis of 150◦,45◦, −60◦ and−135◦, respectively.

Show that the four forces are in equilibrium by (a) calculating their resultant and (b) using a polygon
of forces.

EXERCISE 14
Find the resultant of three non-coplanar forces acting at a point, where each is given in newtons in
terms of its Cartesian components:F1 = (1, −2, −1), F2 = (2,1, −1) andF3 = (−1, −1,1). Besides
giving the resultant in terms of its Cartesian components, find its magnitude and the angles which it
makes with thex-, y- andz-axes.

Problems 7 and 8.
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1.11 More exercises

EXERCISE 15
Figure 1.16 shows weightsW1 andW2 attached to the ends of a string which passes over two smooth
pegs A and B at the same height and 0.5m apart. A third weightW3 is suspended from a point C on
the string between A and B.
(a) If W1 = 3N,W2 = 4N andW3 = 5N, find the horizontal and vertical distancesa andd of C

from A when the weights are in equilibrium.
(b) If W1 = 10N, the angle between CB and the vertical is 30◦ and∠ACB = 90◦ when the weights

are in equilibrium, find the weightsW2 andW3.

EXERCISE 16
Two smooth spheres, each of weightW and radiusr , are placed in the bottom of a vertical cylinder
of radius 3r/2. Find the magnitudes of the forcesRa, Rb, Rc andRp which act on the spheres as
indicated in Figure 1.17.

EXERCISE 17
Four identical smooth spheres, each of weightW and radiusr , are placed in the bottom of a hollow
vertical circular cylinder of inner radius 2r . Two spheres rest on the bottom and the other two settle
as low as possible above the bottom two. Find all the forces acting on the spheres. Because of the
symmetry, only one of the top and one of the bottom spheres need be considered.

Figure 1.16. Three weights on a string.

Figure 1.17. Two spheres in a hollow cylinder.
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1.12 Answers to exercises

1. There are infinitely many possible answers to Exercise 1. The following are a couple of examples.
If you hang a wet and heavy piece of clothing on a clothes-line, the weight of the clothing exerts

a downward force on the line, which is opposed by an increased tension in the line. The latter is
observed in a downward sag of the line from its unloaded position.
If you stand on weighing scales in your bathroom, your own weight exerts a downward force via

your feet which is opposed by an upward force from the scales. The latter is observed both by the
feeling of pressure on your feet and by the measurement of your weight as indicated by the scales.

2. There will be many different answers to Exercise 2. Here are a couple of examples from my own
experience.
When I came out of the housethis morning, I was carrying a brief-case. The weight of the case

exerted a downward force via the handle on the fingers of my hand. The latter exerted an equal and
opposite force on the handle of the brief-case.
Later, as I was driving my car at a steady speed, I had to exert a constant force on the accelerator

pedal to keep it in a certain position. This force was transmitted to the pedal through the sole of
my shoe. At the same time, the pedal was exerting an equal and opposite force on the sole of my
shoe.

3. The distance in the inverse square law is measured from the centre of each body. LetW be the weight
of a body andr be its distance from the centre of the earth. Also, let the Greek letterδ (delta) mean
‘change in’ so thatδW is change in weight andδr is change in distance from the centre of the earth.
Usingk as a constant of proportionality, by the inverse square law,W = k/r 2.
If the weight reduces byδW when the body is raised from sea level to an altitude ofδr , then

W − δW = k/(r + δr )2. Dividing this byW gives:

1− δW

W
= 1− 0.01= 0.99= r 2

(r + δr )2
= 1

(1+ δr
r )

2
.

Hence, 1+ δr
r = 1/

√
0.99 and δr = ( 1√

0.99 − 1)r . If r = 6370 km, altitude δr =
6370( 1√

0.99 − 1)= 32.09 km.

4. It follows from Exercise 3 thatδWW = 1− 1
(1+ δr

r )2
. With δr = 3 and r = 6370, δW

W = 0.00094=
0.094%.

5. The weight of the aeroplane acts vertically downwards, so the force may be represented by an arrow
pointing downwards (Figure 1.18a). The thrust of the engines is a force in the direction in which the
aeroplane is travelling (Figure 1.18b). The force from the air on the aeroplane has two components:
lift upwards and drag backwards, so the two together may be represented by an upward arrow sloping
backwards (Figure 1.18c).

LDTW

Figure 1.18. Forces on an aeroplane.
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LD

T

W

Figure 1.19. Forces shown acting on an aeroplane.

R
T

W

Figure 1.20. A smooth sphere held by a string on an inclined plane.

RA

RB

W

Figure 1.21. Forces acting on a ladder.

6. The weight vectorW must act downwards through the centre of gravity somewhere in the middle of
the aeroplane. The thrust vectorT is level with the engines which are assumed in Figure 1.19 to be in
pods under the wings. The lift/drag vectorLD must act through the point of intersection ofT andW
in order to avoid any turning effect.

7. The weightW acts through the centre of the sphere and so does the reactionR from the inclined
plane, since the sphere is smooth and therefore the reaction is perpendicular to the plane. The tension
T in the string must also apply a force acting through the centre of the sphere and hence may be
represented as shown in Figure1.20. Notice that, by the principle of transmissibility, we can draw in
R andT as forces acting at the centre C even though the points of application are actually A and B,
respectively.

8. The weightW acts vertically downwards through the centre C of the ladder. Assuming that there are
frictional components of reaction, the lines of action of the corresponding total reactionsRA andRB

will be inclined in the manner shown in Figure 1.21. Notice, this time, that the forces act through a
point outside the body, i.e. outside the ladder. We shall see later that this does not affect the usefulness
of this procedure even though we can no longer appeal to the principle of transmissibility.
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F

F

F F

F
F

Figure 1.22. A rod acted on by two coplanar forces.

F FF F

Figure 1.23. A rod in equilibriumunder the action of two forces.

1

1

1

1

1

Figure 1.24. Testing the parallelogram law.

9. If the forces are equal and opposite and perpendicular to the rod (Figure 1.22a), the forces would start
to rotate the rod. If the force at end A is as before, but that at end B is along its length (Figure 1.22b),
the rod would start to both rotate and translate. If the forces both act in the same direction (Figure
1.22c), the rod would start to translate in that direction.
Obviously, there are many more possible examples but moving on to those which result in equilib-

rium, we remember that for this to exist, the two forces must not only be equal in magnitude but also
opposite in direction and collinear. For the latter to be true, both forces must act along the length of
the rod. Then to be opposite in direction as well, they must either both pull outwards (Figure 1.23a)
or both push inwards (Figure 1.23b).

10. Draw three straight lines from a point P1 in exactly the directions of the bands PA, PB and PC shown
in Figure 1.9. Mark off distances from P1 proportional to the band extensions and therefore to their
tensions. Denote these distancemarks A1, B1 and C1, respectively, as shown in Figure 1.24. Complete
the parallelogram on the sidesP1A1 andP1C1, and denote the fourth corner D1. If the parallelogram
law for the resultant of two forces holds, the diagonalP1D1 should be collinear with and of equal
length toP1B1.
Note that the parallelogram law may also be tested by completing a parallelogram on the sides

P1A1 andP1B1 or onP1B1 andP1C1.
11. Referring to Figure 1.25,F1x = F1 cosθ1 = 1/2. F1y = F1 sinθ1 = √

3/2. F2x = F2 cosθ2 =
2
√
3/2= √

3. F2y = F2 sinθ2 = 2/2= 1.
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F1 R

F2

Figure 1.25. ResultantR of two forcesF1 andF2 acting at a point.

F1 F3

F2

Figure 1.26. Triangle of forces.

ThusRx = F1x + F2x = 1

2
+ √

3= 1+ 2
√
3

2
and Ry = F1y + F2y =

√
3

2
+ 1=

√
3+ 2

2
R2 = R2

x + R2
y = 5+ 2

√
3, R = 2.91N

tanφ = Ry/Rx =
√
3+ 2

1+ 2
√
3
, φ = 39.9◦.

12. (a) Calculate the Cartesian components ofF1, F2 andF3 as follows.F1x = √
6 cos 45◦ = √

6/
√
2=√

3, F2x = − (1+ √
3), F3x = 2 cos(−60◦) = 1, F1y = √

6 sin 45◦ = √
6/

√
2= √

3, F2y =0, F3y =
2 sin(−60◦) = 2(−√

3/2)= −√
3. Then thex- andy-components of the resultant are:

Rx = F1x + F2x + F3x = √
3− (1+ √

3)+ 1= 0 and

Ry = F1y + F2y + F3y = √
3+ 0− √

3= 0.

Hence, the resultantR = 0 and the forcesF1, F2 andF3 are in equilibrium.
(b) Draw the vectors corresponding toF1, F2 andF3 end-on-end as shown in Figure 1.26. Since

they form the sides of a triangle, the forces must be in equilibrium. Note that the order in which the
vectors are joined does not matter provided that all point the same way around the triangle, i.e. all
clockwise or all anti-clockwise.
(c) Referring to Figure 1.27: F1

sin 120◦ =
√
6

sin 120◦ = 2.828, F2
sin 105◦ = 1+√

3
sin 105◦ = 2.828 and F3

sin 135◦ =
2

sin 135◦ = 2.828. The forces are in equilibrium since the magnitude of each is proportional to the sine
of the angle between the other two.

13. (a)F1x =2 cos 150◦ =2(−√
3/2)= − √

3, F2x = √
6 cos 45◦ = √

6/
√
2= √

3, F3x =2 cos(−60◦)=
2/2= 1, F4x = √

2 cos(−135◦) = √
2(−1/

√
2)= −1. Therefore,Rx = F1x + F2x + F3x + F4x =

−√
3+ √

3+ 1− 1= 0.
F1y =2 sin 150◦ =2/2=1, F2y = √

6 sin 45◦ = √
6/

√
2= √

3, F3y =2 sin(−60◦) = 2(−√
3/2)=

−√
3, F4y = √

2 sin(−135◦) = √
2(−1/

√
2)= −1.Therefore,Ry = F1y + F2y + F3y + F4y = 1+√

3− √
3− 1= 0.

Since bothRx andRy are zero, the resultantR is zero and therefore the four forcesF1, F2, F3 and
F4 are in equilibrium.
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F1

F3

F2

°
°

°

Figure 1.27. Three forces acting at a point.

F1 F4

F3

F2

Figure 1.28. Tetragon of forces.

ax

ay

az

a

P

O

Figure 1.29. Vectora in three-dimensional space.

(b) Draw the vectors corresponding toF1, F2, F3 andF4 end-on-end as shown in Figure 1.28. Since
they complete the sides of a tetragon (four-sided polygon), by the polygon of forces, the forces must
be in equilibrium.

14. Before answering the specific problem, let us consider the properties of a vectoraas shown supposedly
in three-dimensional space in Figure 1.29. This has been simplified by localizing the vectora at the
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W2

W3

W1

°

Figure 1.30. Triangles of tension forces acting at C.

origin of the three-dimensional Cartesian coordinate system. If Pis the projection of the end ofa
onto thex, y plane, by Pythagoras’ theorem,a2 = OP2 + a2z = a2x + a2y + a2z . In other words, the
square of the length of a vector equals the sum of the squares of itsx-, y- andz-components. Also,
ax = a cosθx, ay = a cosθy andaz = a cosθz, whereθx, θy andθz are the angles which the vectora
makes with the positivex-, y- andz-axes, respectively.
Returning to the specific problem, the resultantR of the three forcesF1, F2 andF3 will have x-, y-

andz-components as follows:

Rx = F1x + F2x + F3x = 1+ 2− 2= 2

Ry = F1y + F2y + F3y = −2+ 1− 1= −2

Rz = F1z + F2z + F3z = −1− 1+ 1= −1.

Therefore,R = (2, −2, −1).
R2 = R2

x + R2
y + R2

z = 4+ 4+ 1= 9. Hence,R = 3N.

Rx = Rcosθx, θx = cos−1(2/3)= 48.2◦

Ry = Rcosθy, θy = cos−1(−2/3)= 131.8◦

Rz = Rcosθz, θz = cos−1(−1/3)= 109.5◦.

15. (a) The three tensions acting at C are in equilibrium so they must obey the triangle of forces as
shown in Figure 1.30a.W3 is vertically downwards and since 32 + 42 = 52, the angle between the
W1 andW2 tensions is a right-angle. Comparing Figure 1.16 with Figure 1.30a,∠BAC = α and
∠ABC = β. Therefore, the triangle of forces is similar to�ABC which in turn is similar to�ACD.
Since AB = 0.5m, AC = 0.5(4/5)= 0.4m. Then,a = (4/5)AC = 0.32m andd = (3/5)AC =
0.24m.
(b) In this case, the triangle of forces is as shown in Figure 1.30b. Remembering that a 30◦ right-

angled triangle has sides of length proportional to 1 :
√
3 : 2, we see thatW3 = (2/1)W1 = 20N and

W2 = (
√
3/1)W1 = 10

√
3N.

16. The diameter of the cylinder is 3r and the diameter of each sphere is 2r. Thus the length of the line
joining the centres of the spheres is 2r and the horizontal displacement between the centres isr , as
shown in Figure 1.31a. Consequently, the line of centresmakes an angle of 30◦ with the vertical, since
sin 30◦ = 1/2.
We can now draw the triangle of forces for the three forces acting on the upper sphere, as in Figure

1.31b. From this we see thatRb = W tan 30◦ = W/
√
3. Also,Rp = W sec 30◦ = 2W/

√
3.
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Rb

Rp

W

°°

Figure 1.31. Triangle of forces acting on upper sphere.

Ra

Rc

Rp

W

°

Figure 1.32. Tetragon of forces acting on lower sphere.

Figure 1.33. Top view of the four spheres in the cylinder.

Next we draw the polygon of forces for the four forces acting on the lower sphere (see Figure 1.32).
From this, we see thatRa = Rp sin 30◦ = 2W/2

√
3= W/

√
3. Also,Rc = W + Rp cos 30◦ = W +

2√
3W

√
3
2 = 2W.

17. Figure 1.33 shows the top view of the four spheres in the cylinder. Consider one of the top spheres
and draw inx- andy-axes as shown with the origin at the centre of the sphere. Thez-axis will be at
right-angles vertically upwards. The points of contact with the bottom spheres will be on the lines of
centres below the points A andB. The top view diagram (Figure 1.33)shows thatAO = BO = r/

√
2.

If P is the point of contact below A, we see from Figure 1.34 of the APO triangle in they, zplane
that PO and therefore the direction of the reaction force at P is at 45◦ to the vertical, PO being the
sphere radiusr.



23 1.12 Answers to exercises

°

Figure 1.34. Triangle APO in the verticaly, z plane.

Figure 1.35. Horizontalx- andy-axes with origin at centre of left lower sphere.

We now deduce that the reaction force from P in the direction of O can be written in terms of its
Cartesian components asRp = (0, −R/

√
2, R/

√
2), whereR is its magnitude. We now have another

reaction force at the point of contact Q below B given byRq = (−R/
√
2,0, R/

√
2).

Since the top two spheres try to move down and out, we can assume that there will be no reaction
force between the two. However, there will be one from the wall of the cylinder directedtowards
O which can be written asRc = (Rc/

√
2, Rc/

√
2,0), whereRc is the magnitude and itsx- and y-

components are at 45◦ to the direction ofRc. Finally, the weight of thesphere can be written as the
forceW = (0,0, −W).
Hence, the sphere is kept in equilibrium by the four forcesRp, Rq, Rc andW all acting through its

centre O. For equilibrium, the sum of thex- components must be zero, the sum of they-components
must be zero and the sum of thez-components must be zero. Thus, 0− R/

√
2+ Rc/

√
2+ 0= 0 and

−R/
√
2+ 0+ Rc/

√
2+ 0= 0, eachofwhich implies thatR = Rc, andR/

√
2+ R/

√
2+ 0− W =

0, i.e.R = W/
√
2.

Now consider the bottom two spheres. The top two try to push them apart, so we can assume that
there is no reactive force between the bottom two spheres. Again, because of symmetry, we only need
to study one of the spheres. Let us take the oneon the left and draw inx- andy-axes with origin at
the centre as shown in Figure 1.35. Thez-axis will again be vertically upwards. The point D is the
point of contact with the cylinder and a reactive force will act on the sphere at D towards its centre.
This force may be written asRd = (Rd/

√
2, Rd/

√
2,0). The points of contact with the upper spheres

are above M and N in Figure 1.35 and the corresponding downward sloping forces acting on our
bottom sphere can be written asRm = (0, −R/

√
2, −R/

√
2) andRn = (−R/

√
2,0, −R/

√
2). We

have already shown thatR = W/
√
2, soR/

√
2= W/2.

Besides these three forces,wehave theweight of the sphereW = (0,0, −W) andanupward reaction
force through the base of the sphere given byRb = (0,0, Rb).
There are thus five forces acting on the sphere through its centre. For equilibrium we can in

turn equate to zero the sum of thex-components, the sum of they-components and the sum of the
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z-components. Hence,Rd/
√
2+ 0− W/2+ 0+ 0= 0 andRd/

√
2− W/2+ 0+ 0+ 0= 0, each

of which givesRd = W/
√
2, and 0− W/2− W/2− W + Rb = 0, i.e.Rb = 2W.

To summarize the results: (1) the force between each top sphere and the cylinder isW/
√
2; (2) the

forces at the points of contact between upper and lower spheres are each equal toW/
√
2; (3) the force

between each bottom sphere and the cylinder isW/
√
2; (4) the force between each bottom sphere

and the base of the cylinder is 2W.




