Parallel Scientific Computing
in C++ and MPI

A Seamless Approach to Parallel Algorithms and Their Implementation

GEORGE EM KARNIADAKIS ROBERT M. KIRBY Il

CAMBRIDGE
&) UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typefaces Stone Serif 9/12 pt., Franklin Gothic Cond, and Futura Cond. Obl. System BIEX 2¢
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Karniadakis, George.

Parallel scientific computing in C++ and MPI : a seamless approach to parallel
algorithms and their implementation / George Em Karniadakis and Robert M. Kirby II.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-81754-4 — ISBN 0-521-52080-0 (pb.)
1. Parallel processing (Electronic computer) 2. C++ (Computer program language)
3. Data transmission systems. I. Kirby, Robert M., 1975- 1I. Title.

QA76.58 K37 2003
004'.35 — dc21 2002034805

ISBN 0 521 81754 4 hardback
ISBN 0 521 52080 0 paperback

[TB]

Contents

Preface and Acknowledgments

1 SCIENTIFIC COMPUTING AND SIMULATION SCIENCE

1.1
1.2
1.3
1.4
1.5
1.6

What Is Simulation?

A Seamless Approach Path

The Concept of Programming Language
Why Use C++ and What Is MPI?

What About OpenMP?

Algorithms and Top Ten List

2 BASIC CONCEPTS AND TOOLS

2.1
2.2
2.3
2.4

Introduction to C++

Mathematical and Computational Concepts
Parallel Computing

Homework Problems

3 APPROXIMATION

3.1
3.2
3.3
3.4
3.5

Polynomial Representation

Fourier Series Representation

Wavelet Series Representation

Back to Parallel Computing: Send and Receive
Homework Problems

4 ROOTS AND INTEGRALS

4.1
4.2
4.3
4.4

Root-Finding Methods

Numerical Integration Methods

Back to Parallel Computing: Reduction
Homework Problems

5 EXPLICIT DISCRETIZATIONS

5.1
5.2
5.3

Explicit Space Discretizations
Explicit Time Discretizations
Homework Problems

page ix

—_

R 00 NN = W=

10

10
34
61
80

84

84
146
163
178
182

188

188
219
243
249

255

255
290
304

Vi

CONTENTS

10

IMPLICIT DISCRETIZATIONS

6.1 Implicit Space Discretizations
6.2 Implicit Time Discretizations
6.3 Homework Problems

RELAXATION: DISCRETIZATION AND SOLVERS

7.1 Discrete Models of Unsteady Diffusion
7.2 Iterative Solvers
7.3 Homework Problems

PROPAGATION: NUMERICAL DIFFUSION AND DISPERSION

8.1 Advection Equation

8.2 Advection-Diffusion Equation

8.3 MPI: Nonblocking Communications
8.4 Homework Problems

FAST LINEAR SOLVERS

9.1 Gaussian Elimination

9.2 Cholesky Factorization

9.3 QR Factorization and Householder Transformation
9.4 Preconditioned Conjugate Gradient Method - PCGM
9.5 Nonsymmetric Systems

9.6 Which Solver to Choose?

9.7 Available Software for Fast Solvers

9.8 Homework Problems

FAST EIGENSOLVERS

10.1 Local Eigensolvers

10.2 Householder Deflation

10.3 Global Eigensolvers

10.4 Generalized Eigenproblems

10.5 Arnoldi Method: Nonsymmetric Eigenproblems
10.6 Available Software for Eigensolvers

10.7 Homework Problems

C++ BASICS

A.1 Compilation Guide
A.2 C++ Basic Data Types
A.3 C++ Libraries

A.4 Operator Precedence
A5 C++and BLAS

309

309
337
344

347

347
368
408

412

412
437
448
451

455

455
492
493
504
517
530
532
532

538

538
545
552
567
568
569
570

575

575
575
576
578
578

CONTENTS

vii

B MPI BASICS

B.1 Compilation Guide
B.2 MPI Commands

Bibliography
Index

581
581
582

607
611

Scientific Computing and Simulation Science

1.1 WHAT IS SIMULATION?

Science and engineering have undergone a major transformation at the research level
as well as at the development and technology level. The modern scientist and engineer
spend more and more time in front of a laptop, a workstation, or a parallel supercom-
puter and less and less time in the physical laboratory or in the workshop. The virtual
wind tunnel and the virtual biology laboratory are not a thing of the future; they are
here! The old approach of “cut and try” has been replaced by “simulate and analyze” in
several key technological areas such as aerospace applications, synthesis of new materi-
als, design of new drugs, and chip processing and microfabrication. The new discipline
of nanotechnology will be based primarily on large-scale computations and numerical
experiments. The methods of scientific analysis and engineering design are changing
continuously, affecting both our approach to the phenomena that we study as well as
the range of applications that we address. Whereas there is an abundance of software
available to be used as almost a “black box,” working in new application areas requires
good knowledge of fundamentals and mastering of effective new tools.

In the classical scientific approach, the physical system is first simplified and setin a
form that suggests what type of phenomena and processes may be important and, corre-
spondingly, what experiments are to be conducted. In the absence of any known type
of governing equations, dimensional inter dependence between physical parameters
can guide laboratory experiments in identifying key parametric studies. The database
produced in the laboratory is then used to construct a simplified “engineering” model
that, after field-test validation, will be used in other areas of research, product develop-
ment, and design and possibly lead to new technological applications. This approach
has been used almost invariably in every scientific discipline, from engineering and
physics to chemistry and biology.

The simulation approach follows a parallel path but with some significant differ-
ences. First, the phase of the physical model analysis is more elaborate: The physical
system is cast in a form governed by a set of partial differential equations, which repre-
sent continuum approximations to microscopic models. Such approximations are not
possible for all systems, and sometimes the microscopic model should be used directly.
Second, the laboratory experiment is replaced by simulation, that is, by a numerical
experiment based on a discrete model. Such a model may represent a discrete approx-
imation of the continuum partial differential equations, or it may simply represent a
statistical representation of the microscopic model. Finite difference approximations

SCIENTIFIC COMPUTING AND SIMULATION SCIENCE

on a grid are examples of the first case, and Monte Carlo methods are examples of the
second case. In either case, these algorithms have to be converted to software using an
appropriate computer language, debugged, and run on a workstation or a parallel super-
computer. The output is usually a large number of files of a few megabytes to hundreds
of gigabytes, being especially large for simulations of time-dependent phenomena. To
be useful, this numerical database needs to be put into graphical form using various
visualization tools, which may not always be suited for the particular application con-
sidered. Visualization can be especially useful during simulations where interactivity is
required as the grid may be changing or the number of molecules may be increasing.

The simulation approach has already been followed by the majority of researchers
across disciplines in the past few decades. The question is whether this is a new sci-
ence and how one could formally obtain such skills. Moreover, does this constitute
fundamental new knowledge or is it a “mechanical procedure,” an ordinary skill that a
chemist, a biologist, or an engineer will acquire easily as part of “training on the job”
without specific formal education? It seems that the time has arrived where we need to
reconsider boundaries between disciplines and reformulate the education of the future
simulation scientist, an interdisciplinary scientist.

Let us reexamine some of the requirements following the various steps in the simu-
lation approach. The first task is to select the right representation of the physical system
by making consistent assumptions to derive the governing equations and the associated
boundary conditions. The conservation laws should be satisfied; the entropy condition
should not be violated; the uncertainty principle should be honored. The second task
is to develop the right algorithmic procedure to discretize the continuum model or
represent the dynamics of the atomistic model. The choices are many, but which algo-
rithm is the most accurate one, or the simplest one, or the most efficient one? These
algorithms do not belong to a discipline! Finite elements, first developed by the fa-
mous mathematician Richard Courant and rediscovered by civil engineers, have found
their way into every engineering discipline as well as into physics, geology, and other
fields. Molecular dynamics simulations are practiced by chemists, biologists, material
scientists, and others. The third task is to compute efficiently in the ever-changing
world of supercomputing. How efficient the computation is translates to how realistic
of a problem is solved and therefore how useful the results can be to applications. The
fourth task is to assess the accuracy of the results in cases where no direct confirmation
from physical experiments is possible, such as in nanotechnology or in biosystems or
in astrophysics. Reliability of the predicted numerical answer is an important issue in
the simulation approach because some of the answers may lead to new physics or false
physics contained in the discrete model or induced by the algorithm but not derived
from the physical problem. Finally, visualizing the simulated phenomenon, in most
cases in three-dimensional space and in time, by employing proper computer graphics
(a separate specialty on its own) completes the full simulation cycle. The rest of the
steps followed are similar to those of the classical scientific approach.

In classical science we are dealing with matter and therefore atoms, but in simula-
tion we are dealing with information and therefore bits; so it is atoms versus bits. We
should, therefore, recognize the simulation scientist as a separate scientist, the same
way we recognized just a few decades ago the computer scientist as different than the

1.2 A SEAMLESS APPROACH PATH

electrical engineer or the applied mathematician. The new
scientist is certainly not a computer scientist, although he or
she should be computer literate in both software and hard-
ware. The simulation scientist, is not a physicist, although
a sound physics background is needed. Nor is he or she an
applied mathematician, although expertise in mathematical
analysis and approximation theory is needed.

With the rapid and simultaneous advances in software
and computer technology, especially commodity comput-
ing and the so-called soupercomputing, every scientist and
engineer will have on his or her desk an advanced simula-
tion kit of tools consisting of a software library and multi-
processor computers that will make analysis, product devel-
opment, and design more optimal and cost effective. But
what the future scientists and engineers will need, first and foremost, is a solid inter-
disciplinary education.

Scientific computing is the heart of simulation science, and this is the subject of
this book. The emphasis is on a balance between classical and modern elements of
numerical mathematics and of computer science, but we have selected the topics based
on broad modeling concepts encountered in physico-chemical and biological sciences,
or even economics (see Figure 1.1).

Numerical
Mathematics

Modeling

1.2 A SEAMLESS APPROACH PATH

Our aim in writing this book has been to provide the student, the future simulation
scientist, with a seamless approach to numerical algorithms, modern programming
techniques, and parallel computing. Often times such concepts and tools are taught
serially across different courses and different textbooks, and hence the interconnec-
tion between them is not immediately apparent. The necessity of integrating concepts
and tools usually comes after such courses are concluded, for example, during a first
job or a thesis project, thus forcing the student to synthesize what is perceived to be
three independent subfields into one to produce a solution. Although this process is
undoubtly valuable, it is time consuming and in many cases it may not lead to an effec-
tive combination of concepts and tools. Moreover, from the pedagogical point of view,
the integrated seamless approach can stimulate the student simultaneously through
the eyes of multiple disciplines, thus leading to enhanced understanding of subjects in
scientific computing.

As discussed in the previous section, in the scientific simulation approach there
are several successive stages that lead from

1. the real-world problem to its mathematical formulation,

2. the mathematical description to the computer implementation and solution,
and

3. the numerical solution to visualization and analysis.

Computer

Science

Scientific
Computing

Figure 1.1: Definition
of scientific computing
as the intersection of
numerical mathe-
matics, computer
science, and modeling.

SCIENTIFIC COMPUTING AND SIMULATION SCIENCE

Figure 1.2: (a) Simul-
taneous integration of
concepts in contrast
with (b) the classical
serial integration.

(@ (b)

In this book, we concentrate on stage 2, which includes not only the mathematics
of numerical linear algebra and discretization but also the implementation of these
concepts in C++ and MPI.

There are currently several excellent textbooks and monographs on these topics,
but these lack the type of integration that we propose. For example, the book by Golub
and Ortega [45] introduces pedagogically all the basic parallel concepts, but a gap re-
mains between the parallel formulation and its implementation. Similarly, the books by
Trefethen and Bau [88] and Demmel [26] provide rigor and great insight into numerical
linear algebra algorithms, but they do not provide sufficient material on discretization
and implementation. Popular books in C++ (e.g., by Stroustrup [86]) and MPI (e.g., by
Pacheco [73]) are references that teach programming using disconnected algorithmic
examples, which is useful for acquiring general programming skills but not for parallel
scientific computing. Our book treats numerics, parallelism, and programming equally
and simultaneously by placing the reader at a vantage point between the three areas,
as shown in the schematic of Figure 1.2a, and in contrast with the classical approach
of connecting the three subjects serially, as illustrated in Figure 1.2b.

1.3 THE CONCEPT OF PROGRAMMING LANGUAGE

In studying computer languages, we want to study a new way of interacting with the
computer. Most people are familiar with the use of software purchased online or from
your local computer store; such software ranges from word processors and spreadsheets
to interactive games. But have you ever wondered how these things are created? How do
you actually “write” software? Throughout this book we will be teaching through both
lecture and example how to create computer software that solves scientific problems.
Our purpose is not to teach you how to write computer games and the like, but the
knowledge gained here can be used to devise your own software endeavors.

It has been stated by some that the computer is a pretty dumb device, in that it
only understands two things — on and off. Like sending Morse code over a telegraph
wire with signals of dots and dashes, the computer uses sequences of zeros and ones as
its language. The zeros and ones may seem inefficient, but it is not just the data used,

1.3 THE CONCEPT OF PROGRAMMING LANGUAGE

but the rules applied to the data that make the computer powerful. This concept, in
theory, is no different than human language. If we were to set before you a collection
of symbols, say a, b, ¢, d,...z, and indicate to you that you can use these to express
even the most complex thoughts and emotions of the human mind and heart, you
would think we were crazy. Just twenty-six little symbols? How can this be? We know,
however, that it is not merely the symbols that are important but the rules used to
combine the symbols. If you adhere to the rules defined by the English language, then
books like this can be written using merely combinations of the twenty-six characters!
How is this similar to the computer? The computer is a complex device for executing
instructions. These instructions are articulated by using our two-base characters, O and
1, along with a collection of rules for combining them together. This brings us to our
first axiom:

AXIOM I: Computers are machines that execute instructions. If someone is not telling the com-
puter what to do, it does nothing.

Most people have had some experience with computers, and immediately they will
read this statement and say: “Hey, [have had my computer do all kinds of things that
I didn’t want!” Ah, but read the axiom carefully. The key to this axiom is the use of
the term someone. The one thing to keep in mind is that some human, or collection of
humans, developed software to tell the computer what to do. At a relatively low level,
this would be the people who wrote the operating system used by the computer. At a
higher level, this would be the people who developed the word processor or game that
you were using. In both cases, however, someone determined how the computer would
act and react to your input. We want you, after reading this book and understanding the
concepts herein, to be able to be in the driver’s seat. This leads us to our second axiom:

AXIOM 11: Computer programming languages allow humans a simplified means of giving the
computer instructions.

We tell you that we want you to be in the driver’s seat, and you tell us “I don’t want
to learn how to communicate in zeros and ones. Learning English was hard enough!”
You can imagine how slowly the computer age would have progressed if every program-
ming class consisted of the following lecture scheme. Imagine the first day of class. On
the first day, the instructor tells you that you will be learning the two basic components
of the computer language today: 0 and 1. The instructor may force you to say zero and
one a few times and then to write zero and one many times on a piece of paper for
practice, but then, what else would there be to learn concerning your character set?
Class dismissed. Then, for the rest of the semester, you would spend your time learning
how to combine zeros and ones to get the computer to do what you want. Your first
assignment might be to add two numbers a and b and to store the result in c (i.e., ¢ =
a + b). You end up with something that looks like the following:

01011001010001000111010101000100
01011001011100100010100101000011
00111010101000100111010100100101
01011101010101010101010000111101

SCIENTIFIC COMPUTING AND SIMULATION SCIENCE

Figure 1.3: Programm-
ing languages provide
us a means of bridging
the gap between the
computer and the
human.

Visual
—c Asselmbly Ijalva | Q:Jicleasic
— ~— T T —T

Low C/C++ Fortran Visual C++ High ‘ ‘

Computer Specificity) ’)) Easiness Human

This seems like a longwinded way of saying
c=a+b,

but this is what the computer understands, so this is how we must communicate with it.
However, humans do not communicate in this fashion. Human language and thought
use a higher abstraction than this. How can we make a bridge for this gap? We bridge
this gap via programming languages (see Figure 1.3).

The first programming language we will mention is assembly. The unique property
of assembly is that for each instruction, there is a one-to-one correspondence between a
command in assembly and a computer-understandable command (in zeros and ones).
For instance, instead of writing

01011001010001000111010101000100

as a command, you could write “load a $1.” This tells the computer to load the con-
tents of the memory location denoted by “a” into register $1 in the computer’s CPU
(central processing unit). This is much better than before. Obviously, this sequence of
commands is much easier for the human to understand. This was a good start, but
assembly is still considered a “low-level language.” By low level we mean that one
instruction in assembly is equal to one computer instruction. But as we said earlier,
we want to be able to think on a higher level. Hence, “higher level” languages were
introduced. Higher level languages are those in which one instruction in the higher
level language equals one or more computer-level instructions. We want a computer

language where we can say “c = a + b”; this would be equivalent to saying

load a $1
load b $2
add $1 $2 $3
save $3 c

One high-level instruction was equivalent to four lower level instructions (here
written in pseudo-assembly so that you can follow what is going on). This is preferable
for many reasons. First, we as humans would like to spend our time thinking about
how to solve the problem, not just trying to remember (and write) all the assembly
code! Second, by writing in a higher level language, we can write code that can work
on multiple computers, because the translation of the higher level code can be done
by a compiler into the assembly code of the processor on which we are running.

1.4 WHY USE C++ AND WHAT IS MPI?

Asyouread through this book and do the exercises found herein, always be mindful
that our goal is to utilize the computer for accomplishing scientific tasks encountered
in simulation science. At a high level, there is a science or engineering problem to solve,
and we want to use the computer as a tool for solving the problem. The means by which
we will use the computer is through the writing and execution of programs written
using the computing language C++ and the parallel message passing libraries of MPI.

1.4 WHY USE C++ AND WHAT IS MPI?

The algorithms we present in the book can certainly be implemented in other lan-
guages (e.g., FORTRAN or Java) as well as using other communication libraries, such as
PVM (parallel virtual machine). However, we commit to a specific language and par-
allel library to provide the student with the immediate ability to experiment with the
concepts presented. To this end, we have chosen C++ as our programming language
for a multitude of reasons. First, it provides an object-oriented infrastructure that ac-
commodates a natural breakdown of the problem into a collection of data structures
and operations on those structures. Second, the use of C++ transcends many disciplines
beyond engineering, where traditionally FORTRAN has been the prevailing language.
Third, C++ is a language naturally compatible with the basic algorithmic concepts of

e partitioning,

« recursive function calling,

¢ dynamic memory allocation, and
 encapsulation.

Similarly, we commit to MPI (message passing interface) as a message passing library
because it accommodates a natural and simple partitioning of the problem, it provides
portability and efficiency, and it has received wide acceptance by academia and
industry.

The simultaneous integration we propose in this book will be accomplished by
carefully presenting related concepts from all three subareas. Moving from one chapter
to the next requires different dosages of new material in algorithms and tools. This
is explained graphically in Figure 1.4, which shows that although new algorithms are
introduced at an approximately constant rate, the in-
troduction of new C++ and MPI material vary inversely.
We begin with an emphasis on the basics of the lan-
guage, which allows the student to immediately work Ct
on the simple algorithms introduced initially; as the Algorithms
book progresses and the computational complexity of
algorithms increases the use of parallel constructs and
libraries is emphasized.

More specifically, to help facilitate the student’s im-
mersion into object-oriented thinking, we provide a li-

Figure 1.4: Progress-
ion of new material
throughout the book in
the three areas shown
in Figure 1.2.

brary of classes and functions for use throughout the
book. The classes contained in this library are used from Chapter 1

Chapter 10

SCIENTIFIC COMPUTING AND SIMULATION SCIENCE

Software

©

Suite

the very beginning of the book as a natural, user-defined extension of C++. As the book
progresses, the underlying logic and programming implementation of these classes are
explained, bringing the student to a deeper understanding of the development of C++
classes. We will denote all classes used within the book and not inherent to C++ with
the letters SC, such as the classes SCVector and SCMatrix.

The SC notation is used to clearly distinguish between C++ defined and user-defined
data types and also to accentuate the utility of user-defined types within the C++ pro-
gramming language. As students become more familiar and confident in their ability
to devise and use data types, we encourage them to use these facilities provided by the
language for more effective programming and problem solving. All the codes of this
book and many more examples are included in the software suite, which is distributed
with this book.

1.5 WHAT ABOUT OpenMP?

Because of the recent proliferation of distributed shared-memory (DSM) machines in
the scientific computing community, there is much interest in how best to appropriately
utilize both the distributed and the shared-memory partitioning of these systems. MPI
provides an efficient means of parallel communication among a distributed collection
of machines; however, not all MPI implementations take advantage of shared memory
when it is available between processors (the basic premise being that two processors,
which share common memory, can communicate with each other faster through the
use of the shared medium than through other communication means).

OpenMP (open multi processing) was introduced to provide a means of imple-
menting shared-memory parallelism in FORTRAN and C/C++ programs. Specifically,
OpenMP specifies a set of environment variables, compiler directives, and library rou-
tines to be used for shared-memory parallelization. OpenMP was specifically designed
to exploit certain characteristics of shared-memory architectures such as the ability to
directly access memory throughout the system with low latency and very fast shared-
memory locks. To learn more about OpenMP, visit www.openmp . org.

A new parallel programming paradigm is emerging in which both the MPI and
OpenMP are used for parallelization. In a distributed shared-memory architecture,
OpenMP would be used for intranode communication (i.e., between a collection of
processors that share the same memory subsystem) and MPI would be used for inter-
node communication (i.e., between distinct distributed collections of processors). The
combination of these two parallelization methodologies may provide the most effective
means of fully exploiting modern DSM systems.

1.6 ALGORITHMS AND TOP TEN LIST

The Greeks and Romans invented many scientific and engineering algorithms, but
it is believed that the term “algorithm” stems from the name of the ninth-century
Arab mathematician al-Khwarizmi, who wrote the book al-jabr wa’l muqabalach, which

1.6 ALGORITHMS AND TOP TEN LIST

eventually evolved into today’s high school algebra textbooks. He was perhaps the first
to stress systematic procedures for solving mathematical problems. Since then, some
truly ingenious algorithms have been invented, but the algorithms that have formed
the foundations of scientific computing as a separate discipline were developed in the
second part of the twentieth century. Dongarra and Sullivan put together a list of the top
ten algorithms of the twentieth century [33]. According to these authors, the following
algorithms (listed in chronological order) had the greatest influence on science and
engineering in the past:

1. 1946: The Monte Carlo method for modeling probabilistic phenomena.

2. 1947: The Simplex method for linear optimization problems.

3. 1950: The Krylov subspace iteration method for fast linear solvers and eigen-
solvers.

4. 1951: The Householder matrix decomposition to express a matrix as a product
of simpler matrices.

5. 1957: The FORTRAN compiler that liberated scientists and engineers from
programming in assembly.

6. 1959-1961: The QR algorithm to compute many eigenvalues.

7. 1962: The Quicksort algorithm to put things in numerical or alphabetical order
fast.

8. 1965: The fast Fourier transform to reduce operation count in Fourier series
representation.

9. 1977: The integer relation detection algorithm, which is useful for bifurcations
and in quantum field theory.

10. 1987: The fast multipole algorithm for N-body problems.

Although there is some debate as to the relative importance of these algorithms
or the absence of other important methods in the list (e.g., finite differences and finite
elements), this selection by Dongarra and Sullivan reflects some of the thrusts in sci-
entific computing in the past. The appearance of the FORTRAN compiler, for example,
represents the historic transition from assembly language to higher level languages, as
discussed earlier. In fact, the first FORTRAN compiler was written in 23,500 assembly
language instructions! FORTRAN has been used extensively in the past, especially in
the engineering community, but most of the recent scientific computing software has
been rewritten in C++ (e.g., the Numerical Recipes [75]).

In this book we will cover in detail the algorithms 3, 4, 6, and 8 from the afore-
mentioned mentioned list, including many more recent versions, which provide more
robustness with respect to round-off errors and efficiency in the context of parallel
computing. We will also present discretizations of ordinary and partial differential
equations using several finite difference formulations.

Many new algorithms will probably be invented in the twenty-first century — hope-
fully some of them from the readers of this book! As Dongarra and Sullivan noted, “This
century will not be very restful for us, but is not going to be dull either!”

