Biological Complexity and Integrative Pluralism

This fine collection of essays by a leading philosopher of science presents a defense of integrative pluralism as the best description for the complexity of scientific inquiry today. The tendency of some scientists to unify science by reducing all theories to a few fundamental laws of the most basic particles that populate our universe is ill-suited to the biological sciences, which study multicomponent, multilevel, evolved complex systems. This integrative pluralism is the best way to understand the different and complex processes – historical and interactive – that generate biological phenomena.

This book will be of interest to students and professionals in the philosophy of science.

Sandra D. Mitchell is Professor in the Department of History and Philosophy of Science at the University of Pittsburgh.
CAMBRIDGE STUDIES IN PHILOSOPHY AND BIOLOGY

General Editor
Michael Ruse  Florida State University

Advisory Board
Michael Donoghue  Yale University
Jean Gayon  University of Paris
Jonathan Hodge  University of Leeds
Jane Maienschein  Arizona State University
Jesús Mosterin  Instituto de Filosofía (Spanish Research Council)
Elliott Sober  University of Wisconsin

Published Titles
Alfred I. Tauber  The Immune Self: Theory or Metaphor?
Elliott Sober  From a Biological Point of View
Robert Brandon  Concepts and Methods in Evolutionary Biology
Peter Godfrey-Smith  Complexity and the Function of Mind in Nature
William A. Rottschaefer  The Biology and Psychology of Moral Agency
Sahotra Sarkar  Genetics and Reductionism
Jean Gayon  Darwinism’s Struggle for Survival
Jane Maienschein and Michael Ruse (eds.)  Biology and the Foundation of Ethics
Jack Wilson  Biological Individuality
Richard Creath and Jane Maienschein (eds.)  Biology and Epistemology
Alexander Rosenberg  Darwinism in Philosophy, Social Science and Policy
Peter Beurton, Raphael Falk, and Hans-Jörg Rheinberger (eds.)  The Concept of the Gene in Development and Evolution
David Hull  Science and Selection
James G. Lennox  Aristotle’s Philosophy of Biology
Marc Ereshefsky  The Poverty of the Linnaean Hierarchy
Kim Sterelny  The Evolution of Agency and Other Essays
William S. Cooper  The Evolution of Reason
Peter McLaughlin  What Functions Explain
Bryan G. Norton  Searching for Sustainability

© Cambridge University Press  www.cambridge.org
Biological Complexity and Integrative Pluralism

SANDRA D. MITCHELL

University of Pittsburgh
Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org

© Sandra D. Mitchell 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typeface Times Roman 10.25/13 pt. System LATEX

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Mitchell, Sandra D., 1951–
Biological complexity and integrative pluralism / Sandra D. Mitchell. p. cm. – (Cambridge studies in philosophy and biology) Includes bibliographical references (p. ).
1. Biological systems. I. Title. II. Series. QH331 .M49 2003 570–dc21 2002038843

ISBN 0 521 81753 6 hardback
ISBN 0 521 52079 7 paperback

© Cambridge University Press
www.cambridge.org
For Joel Murray Smith, my inspiration
## Contents

*List of Tables and Figures*  
*Preface and Acknowledgments*

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Constitutive Complexity</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Compositional Complexity and the Superorganism Metaphor</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Dynamic Complexity</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>The Evolution of Division of Labor</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Evolved Diversity</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Competing Units of Selection? A Case of Symbiosis</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>The Units of Behavior in Evolutionary Explanations</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>On Biological Functions</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>Laws</td>
<td>115</td>
</tr>
<tr>
<td>5.1</td>
<td>Pragmatic Laws</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Dimensions of Scientific Law</td>
<td>126</td>
</tr>
<tr>
<td>5.3</td>
<td>Contingent Generalizations: Lessons from Biology</td>
<td>147</td>
</tr>
<tr>
<td>5.4</td>
<td>Ceteris Paribus: An Inadequate Representation for Biological Contingency</td>
<td>161</td>
</tr>
<tr>
<td>6</td>
<td>Pluralism or Disunity</td>
<td>179</td>
</tr>
<tr>
<td>6.1</td>
<td>Critics of Unity of Science</td>
<td>180</td>
</tr>
</tbody>
</table>
Contents

6.2 On Pluralism and Competition in Evolutionary Explanations 194
6.3 Integrative Pluralism 208

References 219
Index 239
List of Tables and Figures

TABLES

2.1 Horizontal transfer page 19
3.1 All $2^2 = 16$ Boolean functions for binary elements with $K = 2$ inputs 42
5.1 Natural necessity mirrors logical necessity 132
6.1 Sherman’s levels of analysis 201
6.2 Where conflict occurs 214

FIGURES

1.1 Argument structure of the book 4
3.1 Directed arrow graph for the case $K = N - 1$ 42
3.2 A switching network can be transformed to represent a network of honeybees 43
3.3 Comparison of simulations using simultaneous, sequential, and random data access sampling of individual network elements 45
3.4 Average number of samples required for networks to achieve steady states for uniform and two-point threshold distributions with different ranges 48
3.5 Regulation of stimulus level by model networks containing 100 elements with thresholds drawn at random 49
3.6 Results of simulations of model networks for the case of two thresholds and three possible states for each element 51
3.7 Distribution of the number of individuals active (on for either of the two tasks) for the two models, independent and dependent assignment of thresholds, from case 5 52
List of Tables and Figures

4.1 Steps to adaptation 73
4.2 Causal paths from genes to behavior 81
5.1 Continuum of contingency 136
5.2 Multiple continua of contingency 146
5.3 Division of labor in social insects: multilevel, multicomponent, complex system 157
6.1 Causal models are idealizations 215
This collection of essays defends integrative pluralism as the best description of the relationship of scientific theories, models, and explanations of complex biological phenomena. Complexity is endemic in biology, but it is constituted by various features of multicomponent, multilevel, evolved systems. The types of scientific representations and the very methods we use to study biological systems must reflect both that complexity and variety. Developing models of single causal components, such as the effects of genetic variation, or of single-level interactions, such as the operation of selection on individuals, give valuable, if partial, accounts. These explanations need to be integrated in order to understand what historical, proximal, and interactive processes generate the array of biological phenomena we observe.

Clearly, the way the world is dictates what we can say about it. The way our representations are structured also plays a significant role in the scientific accounts we develop. Theories and models are idealized, partial descriptions, couched in the conceptual frameworks of the day, framed in a language that carries meanings from the broader social context. The suggestion that our current best theories of the nature of nature exactly capture the world in all its details is hubris. The idealized and partial character of our representations suggest that there will never be a single account that can do all the work of describing and explaining complex phenomena. Different degrees of abstraction, attention to different components of a system, are appropriate to our varying pragmatic goals and conceptual and computational abilities. In short, both the ontology and the representation of complex systems recommend adopting a stance of integrative pluralism.

I have developed the ideas and arguments in this book over a period of fifteen years. There are many people who have had important influences on the way I think about these issues. Naturally, my early teachers in philosophy of science – Jim Bogen, Imre Lakatos, and Peter Machamer – get some of the
Preface and Acknowledgments

blame. In addition, Nancy Cartwright has been both friend and mentor. The philosophical work of John Dupré, Elliott Sober, and Bill Wimsatt have also been stimulating.

My deepest thanks must go to Rob Page. We met in the 1980s at the Ohio State University where he was in the Department of Entomology. Rob has enormous enthusiasm for his science, astuteness in his research, and a desire to get it right. He has opened the door for me to get an inside look at biology at its best, and I have learned a great deal from him. Indeed, Rob is coauthor of Chapter 3, section 3.1, “The Evolution of Division of Labor,” and also of “Idiosyncratic Paradigms and the Revival of the Superorganism,” one of the papers on which Chapter 2, section 2.1, is based. The other scientists whose ideas have been important to my approach are Steve Gould and Stuart Kauffman.

I am grateful for the support and challenge provided by my colleagues and students at the University of Pittsburgh and previously at the University of California. In addition, the years I spent at the Center for Interdisciplinary Research in Bielefeld, Germany, and at the Wissenschaftskolleg in Berlin provided intellectual opportunities for which I am grateful. The Santa Fe Institute has also been a place for new ideas and new collaborations.

I thank Megan Delehanty, Dennis Pozega, and Melissa Wurster for help in the production of the book, and Michael Ruse for suggesting it in the first place.

I have dedicated this book to Joel Smith, my husband, my friend, and the best critic and supporter one could wish for.

ACKNOWLEDGMENTS

The research for the ideas in this book was funded by the National Science Foundation, Program in Science and Technology Studies, the Santa Fe Institute, the Center for Interdisciplinary Studies in Bielefeld, the Wissenschaftskolleg in Berlin, and grants from the University of California.

The introductions to each of the chapters have not been previously published. Also new for this volume is the first section of Chapter 1 and Chapter 6, section 6.1, “Critics of Unity of Science.” There are two sections that are the result of merging two previously published articles. Chapter 2, section 2.1, “Compositional Complexity and the Superorganism Metaphor,” is from Sandra Mitchell, “The Superorganism Metaphor: Then and Now,” in S. Maassen, E. Mendelsohn, and P. Weingart, eds., Biology as Society, Society as Biology: Metaphors, Yearbook in the Sociology of Science
Preface and Acknowledgments
