From the stripes of a zebra and the spots on a leopard’s back to the ripples on a sandy beach or desert dune, regular patterns arise in nature everywhere. The appearance and evolution of these phenomena have been a focus of recent research activity across several disciplines.

This book provides an introduction to the range of mathematical theory and methods used to analyse and explain these often intricate and beautiful patterns. Bringing together several different approaches, from group theoretic methods to envelope equations and the theory of patterns in large-aspect-ratio systems, the book provides insight behind the selection of one pattern over another.

Suitable as an upper-undergraduate textbook for mathematics students or as a fascinating, engaging, and fully illustrated resource for readers in physics and biology, Dr Hoyle’s book, using a nonpartisan approach, unifies a multiplicity of techniques used by active researchers in this growing field.

Rebecca Hoyle is a Senior Lecturer in Mathematics at the University of Surrey.
Contents

Preface ix

1 What are natural patterns?
 1.1 Convection 3
 1.2 Reaction-diffusion systems 12
 1.3 Faraday waves 20
 1.4 Outline of the rest of the book 22

2 A bit of bifurcation theory 23
 2.1 Flows, stationary points and periodic orbits 23
 2.2 Local bifurcations from stationary points 30
 2.3 Normal forms for bifurcations 38
 2.4 Codimension-one bifurcations 38

3 A bit of group theory 52
 3.1 Groups 52
 3.2 Subgroups, quotient groups and conjugacy 57
 3.3 Mappings of groups 61
 3.4 Products of groups 64
 3.5 Lie groups 67
 3.6 Representations of groups 68
 3.7 Characters 77
 3.8 Isotypic decomposition 82

4 Bifurcations with symmetry 85
 4.1 Ordinary differential equations with spatial symmetry 85
 4.2 The equivariant branching lemma 93
 4.3 Bifurcations in a box 97
 4.4 Hopf bifurcations with symmetry 116
 4.5 Heteroclinic cycles 122
 4.6 Appendix: Proofs 131
Contents

10.3 Amplitude grain boundaries 337
10.4 Domain boundaries between different patterns in systems with a free energy 342
10.5 Energetic considerations for rolls in finite domains 349
10.6 Spirals 353
10.7 Spirals in oscillatory and excitable systems 354
10.8 Drifting and meandering spirals 362
10.9 Spiral defect chaos 375

11 Large-aspect-ratio systems and the Cross–Newell equation 380
11.1 Fully nonlinear patterns in large-aspect-ratio boxes 381
11.2 Stationary solutions of the Cross–Newell equation 388
11.3 Defect solutions of the Cross–Newell equation 390
11.4 Models with variational structure 400
11.5 Systems with mean drift 404

References 408
Index 417
Preface

Regular patterns are found in abundance in nature, from the spots on a leopard’s back to the ripples on a sandy beach or desert dune. There has been a flurry of recent research activity seeking to explain their appearance and evolution, and the selection of one pattern over another has turned out to be an inherently nonlinear phenomenon. My aim in writing this book has been to provide an introduction to the range of methods used to analyse natural patterns, at a level suitable for final year undergraduates and beginning graduate students in UK universities.

The book brings together several different approaches used in describing pattern formation, from group theoretic methods to envelope equations and the theory of patterns in large-aspect-ratio systems. The emphasis is on using symmetries to describe universal classes of pattern rather than restricting attention to physical systems with well-known governing equations, though connections with particular systems are also explored. I have taken a wholeheartedly nonpartisan approach, unifying for perhaps the first time in a textbook a multiplicity of methods used by active researchers in the field.

It was David Crighton who originally suggested I should write this book. I had been lecturing a Cambridge Part III course on pattern formation, and David mentioned in passing that it might be a nice idea to turn my lecture notes into a book. Of course I had no idea what I was letting myself in for, but David was always persuasive and inspirational so naturally I said yes. Several years of sweat and toil later I have finally produced the book, though it bears little resemblance to my Part III course, which is probably just as well. I am only sad that David is no longer here to see the result: he inspired and encouraged so many people, particularly those at the beginning of their careers, and he is sorely missed. Like so many others, I owe him a great debt.

Mike Proctor, my Ph.D. supervisor, first introduced me to pattern formation. Later, it was Mike who gave me the opportunity to lecture the course that led to this book. I am very grateful to him for all his support and encouragement over
Preface

the years. I particularly enjoy and admire the great enthusiasm with which he approaches any problem, whether it be a tricky calculation or just a matter of finding the right pub.

My heartfelt thanks go to Jon Dawes, Paul Matthews, Mike Proctor, James Robinson and Alastair Rucklidge, who between them read and commented on the manuscript. Their help has made writing this book a much less lonely task, and greatly improved the final draft.

Much of the book was completed while I was on sabbatical in Cambridge, where Mike Proctor and Nigel Weiss were my hosts. I would like to express my thanks to Nigel for his regular reminders to stop working and go home at night.

I would also like to thank the following people who contributed pictures, encouragement or useful comments along the way: Tom Berger, Eberhard Bodenschatz, Steve Cox, Benoit Dionne, Blas Echebarria, Gerhard Ertl, Stephan Fauve, Jay Fineberg, Oliver Harlen (who showed me how to cook hexagons), Dana Mackey, Paul Matthews, Angus McCarther, Ian Melbourne, Tom Mullin, Sarah Pollicott, Hermann Riecke, Alastair Rucklidge, Björn Sandstede, Mary Silber, Annette Taylor, Steve Tobias, Dawn Tse, Laurette Tuckerman, Ed Webb and the editorial team at CUP.

Finally, I am grateful to Nick for cheering me up when it all seemed overwhelming, for his endless patience while his spare room and kitchen table were buried in bits of paper, and for cooking the hexagons with turmeric and then frying them up with potatoes afterwards – delicious!

Guildford, July 2005