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What are natural patterns?

This book is about patterns: stripes on tigers, whorls in your fingerprints, ripples
in sandy deserts, and hexagons you can cook in your own kitchen. More precisely
it will be concerned with fairly regular spatial or spatiotemporal patterns that are
seen in natural systems – deserts, fingertips, animal coats, stars – and in labora-
tory or kitchen experiments. These are structures you can pick out by eye as being
special in some way, typically periodic in space (Figure 1.1), at least locally. The
most common are stripes, squares and hexagons – periodic patterns that tesselate
the plane – and rotating spirals or pulsating targets. Quasipatterns with twelvefold
rotational symmetry (Figure 1.2) never repeat in any direction, but they look regu-
lar at a casual glance, while spiral defect chaos (Figure 1.3) is disordered on a large
scale, but locally its constituent moving spirals and patches of stripes are spatially
periodic.

Similar patterns are seen in wildly different natural contexts: for example, zebra
stripes, desert sand ripples, granular segregation patterns and convection rolls all
look stripy, and they even share the same dislocation defects, where two stripes
merge into one (Figure 1.4). Rotating spirals appear in a dish of reacting chemicals
and in an arrhythmic human heart. Squares crop up in convection and in a layer of
vibrated sand. It turns out to be common for a given pattern to show up in several
different systems, and for many aspects of its behaviour to be independent of the
small details of its environment. This has led to a symmetry-based approach to the
description of pattern formation: from this point of view, patterns are universal,
and we can find out nearly everything we need to know about them using only
their symmetries and those of their surroundings.

This book is intended as an introduction to these symmetry-based techniques
and their relationship with more traditional modelling approaches. Before starting
on the universal, however, I am going to talk a bit about the specific, describ-
ing the archetypal pattern-forming systems: convection, reaction-diffusion and the
Faraday wave experiment.
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2 What are natural patterns?

Fig. 1.1. A periodic super triangle pattern that tesselates the plane. Super triangles
can be seen in Faraday wave experiments – see Sections 1.3 and 6.1 and also
Silber and Proctor (1998) and Kudrolli, Pier and Gollub (1998). Image courtesy
of and c©Mary Silber, Northwestern University, 2003.

Fig. 1.2. Quasipatterns in a Faraday wave experiment. The experimenters chose
a container in the shape of France to show that the quasipattern was not caused by
boundary effects. Reprinted with permission from W. S. Edwards and S. Fauve,
Physical Review E, 47, R788, 1993. c©American Physical Society, 1993.
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1.1 Convection 3

Fig. 1.3. Spiral defect chaos in a Rayleigh–Bénard convection experiment. Image
courtesy of and c©Nonlinear Phenomena Group, LASSP, Cornell University,
August 2004.

Many of the mathematical techniques and ideas I shall touch upon here are
revisited in greater detail in subsequent chapters, so don’t worry if you don’t fol-
low every step on a first reading. It is enough to get a flavour of the applications
to which the theory of pattern formation is relevant. If you are not familiar with
simple bifurcation theory it may help to read through the basic ideas in Chapter 2
before attempting to follow the details of the calculations. Simple vector calcu-
lus is also needed here, and occasionally in the rest of the book. The descrip-
tions of the phenomena themselves, however, require no particular background
knowledge.

Throughout the book I shall use bold italic font for vectors, vvv, but standard italic
font for vector-valued functions, f (t) = vvv, and for matrices, scalars and scalar-
valued functions.

1.1 Convection

A huge proportion of the early work on pattern formation was motivated by
the study of convection, which is the overturning of a fluid that is heated from
below. Heat at the bottom of a container causes the fluid there to expand, become
less dense and more buoyant and so to rise through the colder fluid above. As the
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4 What are natural patterns?

(a) (b)

(c)

(d)

Fig. 1.4. Stripe patterns showing dislocations, where two stripes merge into one:
(a) segregation in a layer of horizontally shaken sugar and hundreds and thousands
(otherwise known as sprinkles or cake decorations); (b) sand ripples in the Sahara
desert; (c) on zebras (courtesy of and c©Ed Webb, 2004), and (d) in a numerical
simulation of the Swift–Hohenberg convection model. Image (a) reprinted with
permission from Mullin, T., Science 295, 1851 (2002). c©AAAS (2002).
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1.1 Convection 5

fluid

cold, falling

hot, rising heat plates

{

Fig. 1.5. The rise and fall of fluid in convection creates patterns, such as the rolls
or stripes shown here. Arrows show the direction of fluid movement. The pattern
looks like stripes when observed from the top.

Fig. 1.6. Convection cells in the photosphere of the Sun (solar granulation). The
dark region is a sunspot. Image courtesy of and c©Dr Tom Berger, Lockheed
Martin Solar and Astrophysics Lab, Palo Alto, California, 2003.

fluid rises away from the heat source, it cools, becoming denser than the fluid
below, and so falls back down to the bottom of the container under the influence
of gravity (Figure 1.5). The cycle then repeats, so the fluid is constantly overturn-
ing. The rising and falling fluid forms spatial patterns, most commonly stripes or
convection rolls (Figure 1.5), though more complicated patterns such as hexagons
and squares are also possible, depending on the details of the physical system and
the fluid properties. Convection is often investigated through carefully designed
laboratory experiments, but the reason it is so important and has been studied so
extensively is that convection occurs naturally in the environment: in the Earth’s
mantle, convection leads to the movement of tectonic plates or ‘continental drift’;
in the oceans it drives circulations such as the Gulf Stream that keeps northwest-
ern Europe so much warmer than its northern latitudes would suggest; in the atmo-
sphere, convection creates thunderclouds and in stars, such as the Sun (Figure 1.6),
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6 What are natural patterns?

convection transports energy efficiently from the core where it is produced to the
surface where it is released.

In the laboratory, the pattern or planform is typically visualised using the shad-
owgraph technique. In this method, a light is shone down onto the convection cell,
which must have a transparent top plate and a reflective bottom plate. The warm
rising fluid has a lower index of refraction than the cold falling fluid, and so the
light is focused towards the cold regions, which appear bright, while the warmer
regions remain dark. The pattern can be seen reflected off the bottom plate. Other
methods of visualisation are possible, as we shall see in the following kitchen
experiment.

1.1.1 How to cook hexagons in your own kitchen

I used to think that apart from stripes, which you can clearly see in fingerprints
and on zebras and so on, natural patterns were actually quite exotic – only to be
found on the surface of the Sun, and in labs where long hours had been spent in
perfecting the experimental set-up. Then I learned how to cook hexagons using
only a frying pan, some cooking oil and a sprinkling of pepper.

Cooked hexagons
Warning: This recipe involves hot oil, which is potentially quite dangerous.
Only competent adult cooks should attempt to cook hexagons. Do not let any
water get into the oil. If the oil starts to smoke, remove the pan from the heat
immediately.

(i) Put a little cooking oil into a flat-bottomed cooking pan. A depth of 0.5–1.00 mm is
adequate. You will be able to see the hexagons more easily if the inside of the bottom
of the pan is a pale colour. Copper-bottomed pans make the best hexagons because
they conduct heat well.

(ii) Mix some very finely ground black pepper or other coloured spice into the oil for visu-
alisation purposes. There should be enough pepper or spice to finely coat the bottom
of the pan.

(iii) Put the pan on a flat even heat source – an old-fashioned oil- or coal-fired stove with
solid flat plates is best. Gas or electric rings will also work, but the hexagons will be
less regular because the heat will be more localised and because the pan is likely to be
tilted a bit.

(iv) Heat very gently. Do not let the oil get very hot. A few seconds’ heating should be
adequate. (Let the hot plate or electric ring heat up first before you put the pan of oil
on it.)

(v) Look sideways at the surface of the oil: you should see hexagon-shaped dimples as
the oil heats up and starts to convect. You should also see pepper or spice swept along
the bottom of the pan into little heaps arranged approximately hexagonally. Once the
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1.1 Convection 7

(a) (b)

Fig. 1.7. Irregular hexagonal patterns in (a) heated cooking oil, and (b) a giraffe’s
coat markings. Cooked hexagon image courtesy of and c©Nick Safford, 2004.

hexagons have formed, the heaps of spice should remain visible if you remove the pan
carefully from the heat. In any case, you should not continue to heat the oil for more
than a few seconds.

(vi) If your hexagons go wrong, take the pan off the heat, cool it down and start again. The
hexagons come out best if the oil is cool to start with, and should be seen within a few
seconds of heating.

Figure 1.7a shows some hexagons cooked using turmeric for visualisation. You
can just about see the cell boundaries around each central blob of turmeric. The
hexagons are pretty irregular, since this is not a highly controlled experiment. In
fact you are likely to see as many pentagons and heptagons as hexagons; giraffe
markings also show irregular hexagonal patterns like these (Figure 1.7b). It is also
typical to see stripes in the heated oil if the pan is not quite horizontal and the oil
is flowing downhill under gravity in places.

1.1.2 Governing equations for Rayleigh–Bénard convection
in the Oberbeck–Boussinesq approximation

In 1916, Lord Rayleigh published a paper analysing convection experiments
carried out by Henri Bénard and published in 1900. In fact Rayleigh’s theory
described convection in a fluid that completely fills the gap between the top and
bottom plates of a closed cell, whereas Bénard’s experiments had used a container
that was open at the top so that the fluid had a free surface. These two situations are
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8 What are natural patterns?

z = 0

z = d

z

x

y

T = T0 + ∆T

T = T0

Fig. 1.8. Diagram of the convection system described by equations (1.2) and
(1.3). The fluid fills the gap between two horizontal plates at z = 0 and d. The
top plate is maintained at a temperature T = T0, while the temperature at the
bottom is heated to a temperature T = T0 + �T , where �T > 0.

actually quite different, because in a filled closed cell buoyancy changes alone are
responsible for convection, whereas if the top is open, temperature-induced vari-
ations in the surface tension can also drive the motion. Convection between two
horizontal plates is known as Rayleigh–Bénard or simply Bénard convection,
while the free surface case is called Bénard–Marangoni convection. In his 1958
paper on surface-tension-driven convection Pearson introduced a dimensionless
number that measures the relative effects of surface tension and viscous forces;
this was later named the Marangoni number after a nineteenth-century Italian
scientist, Carlo Marangoni, who noted that fluid flow is coupled to surface
tension.

This section will set out the equations used to describe Rayleigh–Bénard con-
vection and show that rolls or stripes are an approximate solution close to onset.

Consider a layer of fluid between two plates at z = 0 and d, heated uniformly
from below, with the top plate held at a temperature T = T0 and the bottom
plate at the higher temperature T = T0 + �T , where �T is positive, as shown in
Figure 1.8. We assume that the fluid density, ρ, varies linearly with the tempera-
ture, T , so that

ρ = ρ0[1 − α(T − T0)], (1.1)

where ρ0 is the fluid density at T = T0 and α is the (constant) coefficient of ther-
mal expansion, and we further assume that the density variation is only significant
in the buoyancy force: this is the Oberbeck–Boussinesq approximation. These
assumptions are incorporated into the Navier–Stokes equation for fluid flow, the
heat equation and the continuity equation, to give

ρ0

(
∂u
∂t

+ (u · ∇)u
)

= −∇ p − ρĝz + ρ0ν∇2u, (1.2)

∂T

∂t
+ (u · ∇)T = κ∇2T, (1.3)

∇ · u = 0, (1.4)
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1.1 Convection 9

where u(x, y, z, t) ∈ R
3 is the three-dimensional fluid velocity, T (x, y, z, t) is the

temperature, p(x, y, z, t) is the fluid pressure, g is the (constant) acceleration due
to gravity, ẑ is a unit vector in the upward vertical direction, ν is the kinematic vis-
cosity, a measure of the fluid’s internal resistance to flow, and κ is the thermal dif-
fusivity that measures the rate of heat conduction through the fluid (see the discus-
sion of diffusion in the following section). Under the Boussinesq approximation,
both ν and κ are assumed constant. Details of the derivation of the Navier–Stokes,
continuity and heat advection-diffusion equations can be found in any good text-
book on fluid dynamics – you might like to try Acheson (1990) if you’re interested
in finding out more; we will simply accept them as our starting point.

If the heating is not strong enough, the fluid does not convect, but simply con-
ducts heat across the layer. The conduction solution is given by

u = 0, (1.5)

T = Tc(z) ≡ T0 + �T
(

1 − z

d

)
, (1.6)

p = pc(z) ≡ p0 −
∫ z

0
ρ(Tc(z))g dz, (1.7)

= p0 − gρ0z
[
1 − α�T

(
1 − z

2d

)]
, (1.8)

where p0 is the pressure at the bottom of the layer, z = 0, and the pressure, pc(z), is
the hydrostatic pressure of fluid in the conducting layer. (The hydrostatic pressure
at a height z is the pressure due to the weight of fluid above z.)

When the fluid starts to convect, there will be departures from this conduction
solution: to study these, we write p = pc(z) + p̂ and T = Tc(z) + θ . We also cast
the equations into dimensionless form using the substitutions

(x, y, z) = d (̃x, ỹ, z̃), (1.9)

t = d2

κ
t̃, (1.10)

u = κ

d
ũ, (1.11)

θ = νκ

gαd3
θ̃ , (1.12)

p̂ = ρ0νκ

d2
p̃. (1.13)

The combination of these two sets of substitutions gives

1

σ

(
∂u
∂t

+ (u · ∇)u
)

= −∇ p + θ ẑ + ∇2u, (1.14)

∂θ

∂t
+ (u · ∇)θ − Ruz = ∇2θ, (1.15)
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10 What are natural patterns?

where the tildes (̃ ) have been dropped immediately to simplify the notation, where
uz is the z-component of u and where σ = ν/κ is the Prandtl number that mea-
sures the relative effects of viscous and thermal diffusion, and

R = αgd3�T

κν
(1.16)

is the Rayleigh number – the nondimensionalised version of the temperature dif-
ference between the top and bottom plates.

We now eliminate the pressure by taking the curl of equation (1.14) to get the
vorticity equation

1

σ

(
∂ω

∂t
+ (u · ∇)ω − ω · ∇u

)
= ∇θ × ẑ + ∇2ω, (1.17)

where ω = ∇ × u is the fluid vorticity.
To examine the stability of the conduction solution to convection we linearise

equations (1.15) and (1.17) around u = ω = 0, θ = 0 giving

1

σ

∂ω

∂t
= ∇θ × ẑ + ∇2ω, (1.18)

∂θ

∂t
− Ruz = ∇2θ. (1.19)

Now acting on equation (1.18) with ẑ · ∇× gives

1

σ

∂

∂t
∇2uz = ∇2

hθ + ∇4uz, (1.20)

where ∇h = (∂/∂x, ∂/∂y, 0) is the horizontal gradient operator.
We now need to solve equations (1.19) and (1.20) subject to suitable bound-

ary conditions. The top and bottom plates are held at fixed temperatures, so the
temperature perturbation θ must be zero there:

θ = 0, at z = 0, 1. (1.21)

Mathematically, the simplest velocity boundary conditions to use are the so-called
stress-free boundary conditions,

uz = ∂2uz

∂z2
= 0, at z = 0, 1, (1.22)

that Rayleigh (1916) used in his calculation. We also assume that the convection
cell is infinite in horizontal extent so that we do not have to consider any lateral
boundary conditions. The solution can now be written as a superposition of Fourier
eigenmodes

u(n)
z (x, y, z, t) = un sin nπ z eikh ·xh+st + c.c., (1.23)

θ(n)(x, y, z, t) = θn sin nπ z eikh ·xh+st + c.c., (1.24)
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