

Introduction to Strings and Branes

Supersymmetry, strings and branes are believed to be essential ingredients in a single unified consistent theory of physics. This book gives a detailed, step-by-step introduction to the theoretical foundations required for research in strings and branes.

After a study of the different formulations of the bosonic and supersymmetric point particles, the classical and quantum bosonic and supersymmetric string theories are presented. This book contains accounts of brane dynamics including D-branes and the M5-brane as well as the duality symmetries of string theory. Several different accounts of interacting strings are presented; these include the sum over world-sheets approach and the original S-matrix approach. More advanced topics include string field theory and Kac–Moody symmetries of string theory.

The book contains pedagogical accounts of conformal quantum field theory, supergravity theories, Clifford algebras and spinors, and Lie algebras. It is essential reading for graduate students and researchers wanting to learn strings and branes.

Peter West is a Professor at King's College London and a Fellow of the Royal Society. He is a pioneer in the development of supersymmetry and its application to strings and branes.

Introduction to Strings and Branes

PETER WEST

King's College London

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521817479

© P. West 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-81747-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	page xi
1	The point particle	1
1.1	The bosonic point particle	1
1.1.1	The classical point particle and its Dirac quantisation	1
1.1.2	The BRST quantization of the point particle	5
1.2	The super point particle	8
1.2.1	The spinning particle	9
1.2.2	The Brink–Schwarz superparticle	17
1.2.3	Superspace formulation of the point particle	21
1.3	The twistor approach to the massless point particle	24
1.3.1	Twistors in four and three dimensions	25
1.3.2	The twistor point particle actions	29
2	The classical bosonic string	36
2.1	The dynamics	36
2.1.1	The closed string	42
2.1.2	The open string	46
2.2	The energy-momentum and angular momentum of the string	49
2.3	A classical solution of the open string	50
3	The quantum bosonic string	52
3.1	The old covariant method	54
3.1.1	The open string	55
3.1.2	The closed string	62
3.2	The BRST approach	64
3.2.1	The BRST action	64
3.2.2	The world-sheet energy-momentum tensor and BRST charge	72
3.2.3	The physical state condition	77
4	The light-cone approach	81
	The classical string in the light-cone	81
	The quantum string in the light-cone	89
	Lorentz symmetry	92
4.4	Light-cone string field theory	99

V

vi Contents

5	Clifford algebras and spinors	100
5.1	Clifford algebras	100
5.2	Clifford algebras in even dimensions	101
5.3	Spinors in even dimensions	106
5.4	Clifford algebras in odd dimensions	111
5.5	Central charges	114
5.6	Clifford algebras in space-times of arbitrary signature	116
6	The classical superstring	120
6.1	The Neveu–Schwarz–Ramond (NS–R) formulation	121
6.1.1	The open superstring	125
6.1.2	The closed superstring	130
6.2	The Green–Schwarz formulation	133
7	The quantum superstring	143
7.1	The old covariant approach to the open superstring	144
7.1.1	The NS sector	146
7.1.2	The R sector	148
7.2	The GSO projector for the open string	150
7.3	The old covariant approach to the closed superstring	153
8	Conformal symmetry and two-dimensional field theory	160
8.1	Conformal transformations	161
8.1.1	Conformal transformations in D dimensions	161
8.1.2	Conformal transformations in two dimensions	163
8.2	Conformally invariant two-dimensional field theories	171
8.2.1	Conformally invariant two-dimensional classical theories	171
8.2.2	Conformal Ward identities	173
8.3	Constraints due to global conformal transformations	181
8.4	Transformations of the energy-momentum tensor	184
8.5	Operator product expansions	187
8.6	Commutators	189
8.7	Descendants	192
8.8	States, modes and primary fields	196
8.9	Representations of the Virasoro algebra and minimal models	199
9	Conformal symmetry and string theory	210
9.1	Free field theories	210
9.1.1	The free scalar	210
9.1.2	The free fermion	219
9.2	First order systems	222
9.3	Application to string theory	227
9.3.1	Mapping the string to the Riemann sphere	227
9.3.2	Construction of string theories	232
9.4	The free field representation of the minimal models	235

vii Contents

10	String compactification and the heterotic string	240
10.1	Compactification on a circle	240
10.2	Torus compactification	247
10.3	Compactification in the presence of background fields	253
10.4	Description of the moduli space	257
10.5	Heterotic compactification	261
10.6	The heterotic string	264
11	The physical states and the no-ghost theorem	272
11.1	The no-ghost theorem	272
11.2	The zero-norm physical states	281
11.3	The physical state projector	285
11.4	The cohomology of Q	287
12	Gauge covariant string theory	293
12.1	The problem	294
12.2	The solution	300
12.3	Derivation of the solution	306
12.4	The gauge covariant closed string	310
12.5	The gauge covariant superstring	315
13	Supergravity theories in four, ten and eleven dimensions	320
13.1	Four ways to construct supergravity theories	321
13.1.1	The Noether method	323
13.1.2	The on-shell superspace method	331
13.1.3	Gauging of space-time groups	339
13.1.4	Dimensional reduction	342
13.2	Non-linear realisations	346
13.3	Eleven-dimensional supergravity	361
13.4	The IIA supergravity theory	366
13.5	The IIB supergravity theory	374
13.5.1	The algebra and field content	375
13.5.2	The equations of motion	378
13.5.3	The $SL(2, \mathbf{R})$ version	380
13.6	Symmetries of the maximal supergravity theories in dimensions less than ten	383
13.7	Type I supergravity and supersymmetric Yang-Mills theories in ten dimensions	390
13.8	Solutions of the supergravity theories	392
13.8.1	Solutions in a generic theory	392
13.8.2	Brane solutions in eleven-dimensional supergravity	408
13.8.3	Brane solutions in the ten-dimensional maximal supergravity theories	411
13.8.4	Brane charges and the preservation of supersymmetry	413
14	Brane dynamics	420
	Bosonic branes	420
14.2	Types of superbranes	424
14.3	Simple superbranes	430

viii Contents

14.4	D-branes	434
14.5	Branes in M theory	435
14.6	Solutions of the 5-brane of M theory	444
14.6.1	The 3-brane	445
14.6.2	The self-dual string	448
14.7	Five-brane dynamics and the low energy effective action of the $N=2$	
	Yang–Mills theory	452
15	D-branes	460
15.1	Bosonic D-branes	461
15.2	Super D-branes in the NS–R formulation	469
15.3	D-branes in the Green–Schwarz formulation	475
	String theory and Lie algebras	485
16.1	Finite dimensional and affine Lie algebras	485
	A review of finite-dimensional Lie algebras and lattices	485
	Representations of finite dimensional semi-simple Lie algebras	502
	Affine Lie algebras	509
	Kac–Moody algebras	512
	Lorentzian algebras	516
16.4	Very extended and over-extended Lie algebras	519
	Weights and inverse Cartan matrix of E_n	524
16.6	Low level analysis of Lorentzian Kac–Moody algebras	526
16.6.1	The adjoint representation	526
16.6.2	All representations	528
16.7	The Kac–Moody algebra E_{11}	532
16.7.1	E_{11} at low levels	532
16.7.2	The l_1 representation of E_{11}	536
16.7.3	The Cartan involution invariant subalgebra of a Kac-Moody algebra	539
16.8	String vertex operators and Lie algebras	541
	Symmetries of string theory	550
	T duality	550
17.2	Electromagnetic duality	556
17.3	S and U duality	569
17.4	M theory	573
	E theory	581
	The eleven-dimensional theory	581
17.5.2	The IIA and IIB theories	586
	The common origin of the eleven-dimensional, IIA and IIB theories	595
17.5.4	Theories in less than ten dimensions	598
17.5.5	Duality symmetries and conditions	601
17.5.6	Brane charges, the l_1 representation and generalised space-time	605
17.5.7	Weyl transformations of E_{11} and the non-linear realisation of its Cartan sub-algebra	609

ix Contents

18	String interactions	612
18.1	Duality, factorisation and the origins of string theory	612
18.2	The path integral approach	633
18.3	The group theoretic approach	647
18.4	Interacting open string field theory	657
18.4.1	Light-cone string field theory	657
18.4.2	Mapping the interacting string	662
18.4.3	A brief discussion of interacting gauge covariant string field theory	664
Append	ix A The Dirac and BRST methods of quantisation	666
A.1	The Dirac method	666
A.2	The BRST method	668
Append	ix B Two-dimensional light-cone and spinor conventions	673
B.1	Light-cone coordinates	673
B.2	Spinor conventions	674
Append	ix C The relationship between S^2 and the Riemann sphere	676
Append	ix D Some properties of the classical Lie algebras	679
D.1	The algebras A_{n-1}	679
D.2	The algebras D_n	680
D.3	The algebra E_6	681
D.4	The algebra E_7	681
D.5	The algebra E_8	682
D.6	The algebras B_n	682
D.7	The algebras C_n	683
	Chapter quote acknowledgements	684
	References	685
	Index	706

Preface

If we have told lies you have told half lies. A man who tells lies merely hides the truth, but a man who tells half truths has forgotten where he put it.

The British consul to Laurence of Arabia before he arrived with the Arab army in Damascus.

In the late 1960s a small group of theorists concluded that quantum field theory could not provide a suitable description for the main problem of the time, that is, to account for hadronic physics. As a result, they began a quest to find an S-matrix that had certain preordained properties. The search culminated in the discovery of such an S-matrix for four, and then any number of, spin-0 particles. By using physical principles and mathematical consistency it was found that these S-matrix elements were part of a larger theory that possessed an infinite number of particles. Remarkably, the early pioneers found the scattering amplitudes for any number, and any type, of these particles; they even found these results at any loop order. It was subsequently realised that this was the theory of string scattering and that the theory was more suited to describe fundamental, rather than hadronic, physics.

Supersymmetry was unearthed from the world-sheet action for the ten-dimensional string and also found by independent quantum field theory considerations in Russia. Supersymmetry is entwined with string theory, but it is an independent subject. Hopefully, it will be found at the Large Hadron Collider at CERN, but even if it is, this is unlikely to be direct evidence for string theory. Supersymmetry and string theory are believed to be essential ingredients in a unified consistent theory of all physics. It was thought initially that this theory would just be the theory of ten-dimensional strings, but we now realise that it must also include branes on an equal footing. We are quite far from having a systematic understanding of the quantum properties of branes and what the underlying theory is remains unclear. Indeed, even the concepts on which it is based may be quite different to those we know now. Ironically when string theory was first discovered it was not called string theory, but the dual model, as researchers were unaware of its stringy origins, where as nowadays all discoveries on fundamental physics involving supersymmetry and supergravity are also packaged up in the term string theory. As the subject has developed sometimes string theory, and sometimes supersymmetry, has provided the dominant insights, but it remains to be seen what the mix of ideas will be in the final theory. In this book I have tried to reflect this.

The aim of this book is to provide a systematic and, hopefully, pedagogical account of the essential topics in the subject known as string theory. Almost all of the computations are carried out explicitly. The book also contains some more advanced topics; these have been selected on the basis that I know something about them and I have a wish to explain them. There are also some pedagogical chapters such as those on Clifford algebras and Lie

хi

xii Preface

algebras that students should know and which could well play an even more important role in future developments. There are several very important topics that are missing: Calabi—Yau compactifications, string based black hole entropy computations and the AdS—CFT duality. However, these are rapidly developing and perhaps not yet ready for a systematic, or complete, treatment. There is also a long chapter on supergravity theories reflecting the important role they have played in the subject; this includes the methods used to construct them, their symmetries and the properties of these theories in ten and eleven dimensions. Many aspects of supersymmetric theories which are not discussed in this book can be found in my book *Introduction to Supersymmetry and Supergravity* [1.11].

This book has evolved over more than 25 years and some of the calculations were performed many years ago. Although almost certainly correct when first derived they may have developed transcription errors since then. As such, if you find a factor of 2, or a minus sign out, or some other defect in the occasional place you could be correct. Hopefully, these can be corrected in a second edition.

I have tried to reference the original papers in order to give the reader a better guide to the literature and in particular access to some of the best accounts of the material presented. I have studied quite a number of the papers that I had not read before, but I may well have missed some references. For this I apologise, and I hope to put such mistakes right in the future.

The reader who wants to get to grips with the basics of string theory in the quickest possible time could take the following path: first sections 1.1–1.2.3, then chapters 2, 3, 4, 5, 7, then sections 8.1–8.3, followed by the chapters 9 and 10, then sections 13.3–13.8.4, chapter 14, and finally sections 18.1 and 18.2.

I wish to thank Paul Cook for designing the cover and Pascal Anastasopoulos for drawing and helping to construct the figures. I also wish to thank Andreas Braun, Lars Brink, Lisa Carbone, Paul Cook, Finn Guaby, Arthur Greenspoon, Joanna Knapp, Neil Lambert, Sakura Shafer-Nameki, Duncan Steele and Arkardy Tseytlin for help with proof reading sections and references. My thanks also goes to the staff and students of the Department of Mathematics, King's College London and the Technical University of Vienna for many useful comments on my lectures which were taken from this book.