Practical Magnetotellurics

The magnetotelluric (MT) method is a technique for probing the electrical conductivity structure of the Earth to depths of up to 600 km. Although less well known than seismology, MT is increasingly used both in applied geophysics and in basic research. This is the first book on the subject to go into detail on practical aspects of applying the MT technique.

Beginning with the basic principles of electromagnetic induction in the Earth, this introduction to magnetotellurics aims to guide students and researchers in geophysics and other areas of Earth science through the practical aspects of the MT method: from planning a field campaign, through data processing and modelling, to tectonic and geodynamic interpretation. The book contains an extensive, up-to-date reference list, which will be of use to both newcomers to MT and more experienced practitioners of the method. MT is presented as a young and vibrant area of geophysical research with an exciting potential that is yet to be fully realised.

The book will be of use to graduate-level students and researchers who are embarking on a research project involving MT, to lecturers preparing courses on MT and to geoscientists involved in multidisciplinary research projects who wish to incorporate MT results into their interpretations.

FIONA SIMPSON has held the position of assistant professor of experimental geophysics and geodynamics at Göttingen University where she teaches courses on pure and applied geophysics, and rheology of the Earth, since 2002. Dr Simpson has conducted MT fieldwork in Africa, Australia, Europe and New Zealand, and her research interests in addition to MT include deformation processes in the lithosphere and in the sub-lithospheric mantle.

KARSTEN BAHR has been a professor of geophysics at Göttingen University since 1996, and teaches courses on plate tectonics and exploration geophysics, electromagnetic depth sounding, mixing laws, and introduction to geo- and astrophysics. Professor Bahr's research interests in addition to MT include percolation theory and conduction mechanisms. He has been an editor of *Geophysical Journal International* since 1997.

Practical Magnetotellurics

Fiona Simpson and **Karsten Bahr** Georg – August – Universität, Göttingen

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© F. Simpson and K. Bahr 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

Typeset in Times New Roman Family 10/13pt. System Advent 3B2 [PND]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Simpson, Fiona, 1969–
Practical magnetotellurics / Fiona Simpson and Karsten Bahr.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 817277 (hardback)
1. Magnetotelluric prospecting. I. Bahr, Karsten, 1956– II. Title.
TN269.S5332 2005

622′.153–dc22

ISBN 0 521 81727 7 hardback

The publisher has used its best endeavours to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

There are two possible outcomes: If the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery.

Enrico Fermi

Contents

Preface p Symbols		<i>bage</i> xi xii
1	Introduction	1
1.1	Magnetotellurics as a passive electromagnetic exploration method and its relation to active electromagnetic and geoelectric methods	n 1
1.2	Problems for which EM studies are useful: a first overview of conduction mechanisms	-
1.3	An historical perspective	10
1.4	MTnet	14
1.5	Books that cover other aspects of EM	14
2	Basic theoretical concepts	15
2.1	Assumptions of the MT method	16
2.2	Time invariance as a consequence of the plane wave assumption	16
	Why EM speaks volumes: MT as a vector field method The concepts of transfer function and penetration	18
	depth	21
2.5	Induction in a layered half-space: the concept of apparent resistivity and phase	it 23
2.6	Induction at a discontinuity: a simple two-dimensional (2-D) world and the concept of E - and B -polarisation	28
2.7	Adjustment length	31
	Induction arrows	32
2.9	The impedance tensor and a preview of	24
	three-dimensionality	34
3	Planning a field campaign	37
3.1	Target depths and choosing the right sensors and equipment	37
3.2	Target area and spatial aliasing	47

vii

viii	Co	ntents	
	3.3	Arrays versus profiles: further considerations of	
		dimensionality	48
	3.4	Resolving power and the duration of a campaign	49
	3.5	Sources of noise external to the Earth and a preview of	
		processing schemes	50
	3.6	Economic considerations	53
	3.7	Suggested checklist of field items	54
	3.8	A step-by-step guide to installing an MT station	54
	4	From time series to transfer functions:	
		data processing	58
	4.1	Fourier transformation, calibration and the spectral matrix	59
	4.2	Least square, remote reference and robust estimation of	
		transfer functions	65
	4.3	'Upwards' and 'downwards' biased estimates	71
	4.4	Displaying the data and other deceptions	74
	4.5	Through data interpolation to pseudosections	76
	4.6	Pseudosections versus Cartesian graphs	78
	5	Dimensionality and distortion	79
	5.1	The discontinuity revisited: the concept of static shift	80
	5.2	Rotating the impedance tensor	81
	5.3	A parade of general models and their misfit measures	83
	5.4	Problems with decoupling E- and B-polarisations:	
		farewell to the 2-D world	98
	5.5	Decomposition as an hypothesis test: avoiding	
		the black-box syndrome	101
	5.6	How many strike directions are there?	102
	5.7	The concepts of anisotropy, skew bumps, and	
		strike decoupling	106
	5.8	Static shift, the long and the short of it: 'correcting' or modelling?	111
	5.9	Current channelling and the concept of magnetic	
		distortion	115
	6	Numerical forward modelling	117
	61	Why forward modelling, and which scheme?	117
		Practical numerical modelling: gridding rules, boundary	
	0.2	conditions, and misfits revisited	119
	63	From computed electric and magnetic fields to	
	0.0	transfer functions	125
	64	Avoiding common mistakes	126
			•

CAMBRIDGE

Cambridge University Press 0521817277 - Practical Magnetotellurics Fiona Simpson and Karsten Bahr Frontmatter <u>More information</u>

	Cor	tents	ix
7	Inversion of MT data	130	
7.1	Forward, Monte Carlo and inverse modelling	101	
7.2	schemes D^+ optimisation modelling versus least-structure philosophy, or a treatise on the difference between the	131	
	mathematical and the physical viewpoint	133	
7.3	Artefacts of inversion	137	
7.4	Introducing a priori information	142	
7.5	Forward modelling versus inversion	142	
7.6	Avoiding common mistakes	143	
8	The general link to other geosciences: conduction		
	mechanisms	146	
	Laboratory measurements under in-situ conditions	147	
8.2	How field measurements and laboratory measurements		
	can or cannot be combined	152	
8.3	Multi-phase systems and mixing laws: interdependence		
	of mixing ratios and connectivity	155	
8.4	Bulk conductivity versus direction-dependent	150	
0 5	conductivity	159	
0.5	Scaling, random resistor networks and extreme heterogeneity	161	
	extreme neterogeneity	101	
9	The special link to other geosciences	165	
9.1	EM and seismics	166	
	EM and seismology	167	
	EM and geodynamics	170	
	The oceanic mantle: ocean-bottom and island studies	172	
	Oceanographic applications	176	
9.6	Industrial applications and environmental studies	177	
10	Other EM induction techniques	181	
10.1	Magnetometer arrays and magnetovariational		
	studies	182	
10.2	2 Equivalence relations revisited in spherical co-ordinates:		
	introduction to induction by the daily magnetic variation		
	and the <i>Z/H</i> technique	183	
10.3	3 The horizontal gradient technique and		
	inhomogeneous sources at high- and low-latitudes	188	
	Vertical gradient techniques	190	
10.5	5 Active induction techniques	191	

CAMBRIDGE

Cambridge University Press 0521817277 - Practical Magnetotellurics Fiona Simpson and Karsten Bahr Frontmatter <u>More information</u>

х

Contents

Appendix 1 Theorems from vector calculus	193
Appendix 2 The transfer function in the	
wavenumber-frequency domain and	
equivalence transfer functions	195
Appendix 3 Probability distributions	199
The normal (Gaussian) distribution	199
Samples	200
The chi-squared (χ^2) distribution function	201
The Fisher F-distribution	201
Appendix 4 Linear regression	203
Bivariate regression	205
Appendix 5 Fourier analysis	208
Appendix 6 Power and cross spectra	212
Glossary	214
References	229
Index	246

Preface

This book was written for students and researchers in geophysics, geology, and other Earth sciences, who wish to apply or understand the magnetotelluric (MT) method. It is intended to be an introduction to the subject, rather than an exhaustive treatise. At the same time, we do not shirk raising controversial issues, or questions for which there are no easy answers, as we do not wish to give the impression that all of the interesting problems have been solved. MT is very much a dynamic, evolving science.

We acknowledge a bias towards long-period MT studies of the deep crust and mantle. Just as one cannot drink the water from the bottom of a glass until one has drunk the water from the top (unless one has a drinking straw), electromagnetic waves cannot penetrate the deep crust or mantle without being influenced by overlying crustal structures. Hence, longer-period electromagnetic waves, which penetrate deeper into the Earth than shorter-period waves, will necessarily image a higher level of complexity than shorter-period waves. The student who has understood long-period MT sounding should, therefore, have no problem applying their knowledge to audiomagnetotellurics (AMT) and shallow crustal studies.

We have organised the chapters according to the sequence of steps most likely to be encountered by a student embarking on an MT project: from theory to field campaign, to data processing and modelling, through to tectonic and geodynamic interpretation. Some mathematical tools and derivatives are included in the Appendices.

All subjects of a scientific or technical nature have a tendency to spawn jargon, and MT is no exception. Words or phrases that may be deemed jargon are highlighted in italics, and are explained in a Glossary.

No man (or woman) is an island. We extend special thanks to Rainer Hennings who helped with illustrations.

Symbols

Symbols for which no units are given refer to dimensionless parameters. Note that this list does not include symbols used in the Appendices. We have endeavoured to use the symbols most commonly assigned to common parameters. Occasionally, this results in a symbol having more than one meaning. Where ambiguity occurs, the chapter in which a symbol has a different meaning than the meaning that occurs more frequently in the book is noted in parentheses.

A	local anisotropy operator
$\frac{\underline{A}}{\overline{A}}, B, C, E$	impedance commutators $[V^2 A^{-2}]$
B	magnetic field, magnetic induction
	Tesla (T) = V s m ⁻²
B_x, B_v, B_z	components of B in Cartesian co-ordinates [T]
$B_r, B_{\vartheta}, B_{\lambda}$	components of B in spherical co-ordinates [T]
С	Schmucker–Weidelt transfer function [km]
<u>C</u>	local scatterer distortion tensor (Chapter 5)
$\overline{c_{11}}, c_{12}, c_{21}, c_{22}$	elements of <u>C</u>
d	distance [km]
D	electric displacement $[C m^{-2} = A s m^{-2}]$
$D_{1,}D_{2},S_{1},S_{2}$	modified impedances $[VA^{-1}]$
d <i>t</i>	sampling interval [s]
Ε	electric field [Vm ⁻¹]
E_x, E_y	components of E in Cartesian components
	$\left[\mathrm{Vm}^{-1} ight]$
\tilde{E}	electric east-west component in the frequency
	domain [Vm ⁻¹]
f	frequency [Hz]
g_{g^i, g^e}	scalar galvanic factor (Chapter 5)
g^{i}, g^{e}	spherical harmonic expansion coefficients
	(internal and external parts) [T]
g_{ik}	spectral window weight (Chapter 4)
h	surface-layer thickness [km]

xii

CAMBRIDGE

Cambridge University Press 0521817277 - Practical Magnetotellurics Fiona Simpson and Karsten Bahr Frontmatter <u>More information</u>

Symbols

xiii

TT	, · · , · [A -1]
Н	magnetic intensity [A m ⁻¹]
Ι	current [A]
<u>j</u>	current density $[Am^{-2}]$
k	wavenumber $[m^{-1}]$
Κ	capacitance $\begin{bmatrix} \dot{\mathbf{F}} = \dot{\mathbf{A}} \mathbf{s} \mathbf{V}^{-1} \end{bmatrix}$
1	layer thickness [km]
M _R	model roughness
Ñ	electric north–south component in the fre-
11	
	quency domain $[V m^{-1}]$
p pm(a)	skin depth, penetration depth [km]
$P_n^m(\vartheta)$	associated Legendre polynomials
q	inverse homogenous half-space model transfer function [km ⁻¹]
0	magnetic field distortion tensor $[AV^{-1}]$
$\frac{Q}{\overline{R}}$	resistance $\left[\Omega = V A^{-1}\right]$
$r, artheta, \lambda$	spherical co-ordinates
S	sensitivity [mVnT ⁻¹]
S_1, S_2, D_1, D_2	modified impedances $[V A^{-1}]$
	local shear operator (Chapter 5)
$\frac{\underline{S}}{t}$	time [s]
r T	period [s]
	local twist operator (Chapter 5)
$\frac{\underline{T}}{\overline{T}_{x,T_y}}$	
I_{x}, I_{y}	induction arrow components
U	scalar potential of B (Chapter 1) $[Vs m^{-1}]$
U	general field vector (Chapter 6)
U	voltage (Chapters 3 and 8) [V]
ν	velocity $[m s^{-1}]$
w(f)	frequency-dependent convolution function
	describing sensor sensitivity (Chapter 4)
Wi	weight of the <i>i</i> th frequency in a robust proces-
	sing scheme
W	perturbation matrix (Chapter 10)
$\frac{\underline{W}}{x, y, z}$	Cartesian co-ordinates (<i>z</i> positive downwards)
$\tilde{X}, \tilde{Y}, \tilde{Z}$	magnetic north, east and vertical components in
A, I, Z	the frequency domain $[A m^{-1}]$
Ζ	depth [km]
Z	impedance $[V A^{-1}]$
Z_n	impedance of the <i>n</i> th layer of a layered-Earth
	model $[VA^{-1}]$
<u>Z</u>	impedance tensor [VA ⁻¹]
$\overline{Z}_{xx}, Z_{xy}, Z_{yx}, Z_{yy}$	elements of \underline{Z} [VÅ ⁻¹]
$Z^{\mathrm{V}}, Z^{\mathrm{D}}$	upwards, downwards biased estimate of the
	impedance $[VA^{-1}]$
	– L J

xiv	Symbols	
	α	rotation angle [°]
	α	smoothing constant in the non-dimensional weight function (Equation 7.7) used to parameterise model roughness in 2-D <i>RRI</i> <i>inversion</i> (Chapter 7)
	β	probability
	$\underline{\beta}_{\alpha}$	rotation matrix
	$\frac{\underline{\beta}}{\underline{\alpha}}_{\chi^2}$	Groom–Bailey misfit measure of the 2-D model with local scatterer
	γ	electrical connectivity
	δ	phase difference between the elements in one column of $\underline{\underline{Z}}[^{\circ}]$
	δE	electric noise (Chapter 4) $[V m^{-1}]$
	$\delta\phi$	phase difference between the principal polari- sations of $\underline{Z}[^{\circ}]$ (Chapter 5)
	$\varepsilon, \varepsilon_0$	electrical permittivity, electrical permittivity of free space $[A s V^{-1} m^{-1} = F m^{-1}]$
	ε^2	model misfit measure
	ε^2	residuum (Chapters 3, 4)
	$\eta_{ m f}$	electric charge density (Chapter 2) $\left[C m^{-3} = A s m^{-3}\right]$
	η	misfit measure for the 2-D model with local scatterer (phase-sensitive skew)
	η	constant in the non-dimensional weight func- tion (Equation 7.7) used to parameterise model roughness in 2-D <i>RRI inversion</i> (Chapter 7)
	η	porosity (Chapter 8)
	ϑ, λ, r	spherical co-ordinates
	κ	2-D model misfit measure (Swift skew)
	λ	wavelength [m]
	μ, μ_0	magnetic permeability, magnetic permeability of free space $[Vs A^{-1} m^{-1} = H m^{-1}]$
	μ	misfit measure of the layered-Earth model with local scatterer (Chapter 5)
	ν	number of degrees of freedom
	ρ	resistivity $\left[\Omega m = V m A^{-1}\right]$
	$ ho_{\mathrm{a}}$	apparent resistivity $\left[\Omega m = V m A^{-1}\right]$
	σ	conductivity $[Sm^{-1} = AV^{-1}m^{-1}]$
	σ	variance (Chapters 4 and 5)
	Σ	layered-Earth misfit measure
	au	conductance $[S = AV^{-1}]$

Symbols

xv

au	relaxation time (Chapter 8, Section 8.1)
ϕ	magnetotelluric phase [°]
ϕ	volume fraction of the conductive phase in two-
	phase media (Chapter 8)
ω	angular frequency $[s^{-1}]$
ψ	coherence