
Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press

CONTENTS

Acknowledgments
page ix

1
Introduction

page 1

2
From Source File to Executable File

page 7

Transformation of a source file to a load (executable) module. Why
we can and do discuss source programs and their behavior as if they
were executing somewhere in memory in their source form. Concepts
of static memory allocation, dynamic memory allocation, program
address space, and program system stack.

3
Variables and Objects; Pointers and Addresses

page 21

Variables as “data containers” with names. Values as data – simple (in-
nate or elementary) data, structures, and objects. Referencing variables

v

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press

CONTENTS

through pointers. Unnamed “data containers” and their referencing
through pointers. The dual role of pointers as address holders and bi-
nary code “interpreters”. Various interpretations of the contents of a
piece of memory. Pointer arithmetic. Why C/C++ cannot be interpreted
in a platform-free manner like Java can. Why C/C++ cannot have a
garbage collector.

4
Dynamic Allocation and Deallocation of Memory

page 45

Fundamentals of dynamic allocation and deallocation of memory: free
store (system heap); per-process memory manager; C memory allocators
malloc(), calloc(), and realloc(); and C deallocator free(). How to
handle memory allocation/deallocation errors.

5
Functions and Function Calls

page 59

System stack, activation frame, activation frame as the storage for local
auto objects and for function arguments. Passing arguments by value
as opposed to by reference. Calling sequence. Recursion and its relation
to activation frames and the system stack. The price of recursion.

6
One-Dimensional Arrays and Strings

page 81

Static one-dimensional arrays and their representation as pointers.
Array indexing as indirection. Why an array index range check cannot
be performed in C/C++. The price of run-time array index range check-
ing; the “compile-time checking” versus “run-time checking” philoso-
phies. Passing static one-dimensional arrays as function arguments.
Definition versus declaration of one-dimensional arrays. Dynamic one-
dimensional arrays. Strings as static or dynamic one-dimensional char
arrays terminated with NULL. How to add a custom-made run-time
index range checker in C++.

7
Multi-Dimensional Arrays

page 97

Static multi-dimensional arrays and their representation. Row-major
storage format and the access formula. Passing multi-dimensional
arrays as function arguments. Dynamic multi-dimensional arrays.

vi

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press

CONTENTS

8
Classes and Objects

page 106

Basic ideas of object orientation; the concepts of classes and objects.
Operators new, new[], delete, and delete[], and related issues. Con-
structors and destructors.

9
Linked Data Structures

page 132

Fundamentals, advantages, and disadvantages of linked data struc-
tures. Moving a linked data structure in memory, or to/from a disk, or
transmitting it across a communication channel – techniques of com-
paction and serialization. Memory allocation from a specific arena.

10
Memory Leaks and Their Debugging

page 159

Classification of the causes of memory leaks. Tracing memory leaks
in C programs using location reporting and allocation/deallocation
information-gathering versions of the C allocators and deallocators.
Tracing memory leaks in C++ programs: overloading the operators new
and delete and the problems it causes. Techniques for location tracing.
Counting objects in C++. Smart pointers as a remedy for memory leaks
caused by the undetermined ownership problem.

11
Programs in Execution: Processes and Threads

page 187

Environment and environment variables, command-line arguments
and command-line argument structure. A process and its main at-
tributes – user space and process image. Spawning a new process (UNIX
fork() system call ) from the memory point of view. Principles of inter-
process communication; SystemV shared memory segments and “shared
memory leaks”. Threads and lightweight processes; advantages and dis-
advantages of threads over processes. The need to protect the “common”
data in threads. Memory leaks caused by careless multithreading.

A
Hanoi Towers Puzzle

page 210

vii

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press

CONTENTS

B
Tracing Objects in C++

page 216

C
Tracing Objects and Memory in C++

page 227

D
Thread-Safe and Process-Safe Reporting

and Logging Functions
page 234

Glossary
page 239

Index
page 255

viii

www.cambridge.org/9780521817202
www.cambridge.org

