
Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

The motivation for this book came from years of observing computer

science students at universities as well as professional programmers work-

ing in software development. I had come to the conclusion that there

seemed to be a gap in their understanding of programming. They usu-

ally understood the syntax of the programming language they were using

and had a reasonable grasp of such topics as algorithms and data struc-

tures. However, a program is not executed in a vacuum; it is executed in

computer memory. This simple fact exerts a powerful influence on the

actual behavior of the program – or, expressed more precisely, a subtle

yet powerful influence on the semantics of the particular programming

language. I had observed that many students and programmers did not

fully understand how memory affected the behavior of the C and C++ pro-

grams they were designing. This book is an attempt to fill this gap and

provide students and programmers alike with a text that is focused on

this topic.

In a typical computer science curriculum, it is expected that students

take courses in computer architecture, operating systems, compilers, and

principles of programming languages – courses that should provide them

with a “model” of how memory matters in the behavior of programs.

1

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

MEMORY AS A PROGRAMMING CONCEPT

However, not all students end up taking all these courses, and even if

they do, they may not take them in the right order. Often the courses are

presented in a disjointed way, making it difficult for students to forge a

unified view of how memory affects the execution of programs. Addition-

ally, not all programmers are graduates of university or college programs

that feature a typical computer science curriculum. Whatever the reasons,

there seems to be a significant number of computer science students and

professional programmers who lack a full understanding of the intricate

relationship between programs and memory. In this book we will try to

pull together the various pieces of knowledge related to the topic from all

the fields involved (operating systems, computer architecture, compilers,

principles of programming languages, and C and C++ programming) into

a coherent picture. This should free the reader from searching various

texts for relevant information. However, in no way should this book be

viewed as a programming text, for it assumes that the reader has at least

an intermediate level of programming skills in C or C++ and hence sim-

ple programming concepts are not explained. Nor should this book be

viewed as an advanced C/C++ programming text, for it leaves too many

topics – the ones not directly related to memory – uncovered (e.g., virtual

methods and dynamic binding in C++). Moreover, it should not be seen

as an operating system book, for it does not delve into the general issues

of the discipline and only refers to facts that are relevant to C and C++

programmers.

Unfortunately, there seems to be no curriculum at any university or

college covering this topic on its own. As a result, students usually end

up with three or four disjointed views: programming syntax and (an in-

complete) C/C++ semantics; algorithms and data structures, with their

emphasis on the mathematical treatment of the subject; operating sys-

tems; and possibly compilers. Although my ambition is to fill the gaps

among these various views – at least from the perspective of C/C++ pro-

gramming – I hope that the book proves to be a valuable supplement to

any of the topics mentioned.

My own experience with software development in the real world shows

that an overwhelming number of computer program bugs and problems

are related to memory in some way. This is not so surprising, since there

are in fact few ways to “crash” a program and most involve memory. For

instance, a common problem in C/C++ is accessing an array item with

an index that is out of range (see Chapter 6). A program with such a sim-

ple bug can exhibit totally erratic behavior during different executions,

2

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

behavior that ranges from perfect to incorrect, to crashing at the exe-

cution of an unrelated instruction with an unrelated message from the

operating system, to crashing at the execution of the offending instruc-

tion with a message from the operating system that signals an invalid

memory access.

With the advent of object oriented programming and the design and

development of more complex software systems, a peculiar problem has

started to manifest itself more frequently: so-called memory leaks (see

Chapter 10). In simple terms, this is a failure to design adequate house-

cleaning facilities for a program, with the result that unneeded earlier

allocated memory is not deallocated. Such undeallocated and ultimately

unused memory keeps accumulating to the point of paralyzing the exe-

cution of the program or the performance of the whole computer system.

It sounds almost mystical when a programmer’s explanation of why the

system performs so badly is “we are dealing with memory leaks”, as if

it were some kind of deficiency of the memory. A more concrete (and

accurate) explanation would be “we did not design the system properly,

so the unneeded but undeallocated memory accumulates to the point of

severely degrading the performance of the system”. The troubles that I

have witnessed in detecting and rectifying memory leaks strongly indi-

cate that many students and programmers lack a fundamental appreci-

ation of the role and function of memory in programming and program

behavior.

We are not really interested in technical, physical, or engineering char-

acteristics of memory as such (how it is organized, what the machine

word is, how the access is organized, how it is implemented on the phys-

ical level, etc.); rather, we are interested in memory as a concept and

the role it plays in programming and behavior of C/C++ programs. After

finishing this book, the reader should – in addition to recognizing super-

ficial differences in syntax and use – be able to understand (for example)

the deeper differences between the “compile-time index range checking”

philosophy used in C/C++ and the “run-time index range checking” phi-

losophy used in Pascal (Chapter 6) or between the “recursive procedure

calls” philosophy used in C/C++ and the “nonrecursive procedure calls”

philosophy used in FORTRAN (Chapter 5). As another example, the reader

of this book should come to appreciate why Java requires garbage collec-

tion whereas C/C++ does not (and in general cannot); why C/C++ can-

not be interpreted in a manner similar to Java; and why Java does not

(and cannot) have pointers whereas C/C++ does (Chapter 3) – because

3

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

MEMORY AS A PROGRAMMING CONCEPT

all these aspects are related in some way to memory and its use. The

reader should understand the issues concerning memory during object

construction and destruction (Chapter 8); learn how to compact or serial-

ize linked data structures so they can be recorded to a disk or transmitted

across a network (Chapter 9); and learn how to design programs that allow

monitoring of memory allocation/deallocation to detect memory leaks

(Chapter 10). The reader will also be exposed to important concepts not

exclusively related to C/C++, concepts that are usually covered in cour-

ses on operating systems but included here by virtue of being related to

memory: for example, concepts of process and thread and interprocess

communication (Chapter 11) facilitated by memory (shared memory seg-

ments, pipes, messages). Of course, as always, our interest will be on the

memory issues concerning both the processes and the threads.

The book is divided into eleven chapters. Chapter 2 deals with the

process of compilation, linking, and loading in order to explain how the

behavior of programs can be discussed and examined as if they were exe-

cuting in the source form, how the static and the dynamic parts of mem-

ory are assigned to a program, and how the abstract address space of the

program is mapped to the physical memory. Most of the topics in Chap-

ter 2 are drawn from the field of the principles of operating systems. We

cover the topics without referring to any particular operating system or

any low-level technical details. Otherwise, the text would become cum-

bersome and difficult to read and would distract the reader from focusing

on memory and its role in C/C++ programming. However, knowledge of

the topics covered in Chapter 2 is essential to almost all discussions of the

role of memory in the subsequent chapters.

Chapter 3 deals with variables as memory segments (data containers)

and the related notions of addresses and pointers, with a particular em-

phasis on various interpretations of the contents of memory segments and

possible memory access errors. In Chapter 4, dynamic memory alloca-

tion and deallocation are discussed and illustrated using the C allocators

malloc(), calloc(), and realloc() and the C deallocator free(). In Chap-

ter 5, function calls are explained with a detailed look at activation frames,

the system stack, and the related notion of recursion. In Chapter 6, one-

dimensional arrays and strings, both static and dynamic, are discussed.

Chapter 7 extends that discussion to multi-dimensional arrays.

Chapter 8 examines in detail the construction and destruction of C++

objects together with the C++ allocators (the operators new and new[])

and the C++ deallocators (the operators delete and delete[]) in their

4

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

global and class-specific forms. The focus of the chapter is not the object

orientation of C++ classes but rather the aspects of object creation and

destruction related to memory. Similarly, in Chapter 9 we discuss linked

data structures but not from the usual point of view (i.e., their definition,

behavior, implementation, and applications); instead, our point of view

is related to memory (i.e., how to move linked data structures in memory,

to or from a disk, or across a communication channel). Chapter 10 is de-

voted to a classification of the most frequent problems leading to memory

leaks and their detection and remedy for both C and C++ programs.

We started our discussion with operating system topics related to pro-

grams – compilation, linking, and loading – in Chapter 2, and in Chapter11

we finish our book by again discussing operating system topics related

to programs in execution: processes and threads, and how they relate to

memory. Of course, this chapter must be more operating system–specific,

so some notions (e.g., the system callfork()and the sample code) are spe-

cific to UNIX.

Finally, in the appendices we present some complete code and discuss

it briefly. In Appendix A we describe the Hanoi towers puzzle and provide

a simple C program solving it (for completeness, as the puzzle is men-

tioned in Chapter 5 in relation to recursion). In Appendix B we present

a simple C++ program on which we illustrate object tracing: how to keep

track of objects and of when and where they were allocated (this includes

localization tracing as well). We go through various combinations of turn-

ing the features on and off. In Appendix C, a similar C++ program is used

and object tracing, localization tracing, and memory allocation tracing

are all demonstrated. Appendix B and Appendix C both illustrate debug-

ging of memory leaks as discussed in Chapter 10. Finally, Appendix D

contains process-safe and thread-safe UNIX logging functions (used in

examples throughout the book) that serve to illustrate some of the topics

related to processes and threads discussed in Chapter 11.

Every chapter includes a Review section that contains a brief and con-

densed description of the topics covered, followed by an Exercises section

that tests whether the reader has fully grasped the issues discussed. This

is followed by a References section, pointing the reader to sources for ex-

amining the issues in more depth. All special terms used in the book are

defined and/or explained in the Glossary, which follows Appendix D.

I have tried to limit the sample computer code to the minimum needed

to comprehend the issues being illustrated, leaving out any code not rele-

vant to the topic under discussion. Hence some of the fragments of code

5

www.cambridge.org/9780521817202
www.cambridge.org


Cambridge University Press
978-0-521-81720-2 — Memory as a Programming Concept in C and C++
Frantisek Franek 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

MEMORY AS A PROGRAMMING CONCEPT

within a given chapter are not complete, though all were tested within

larger programs for their correctness.

I wish you, dear reader, happy reading, and I hope that if somebody

asks you about it later you can reply: “if my memory serves, it was a rather

useful book”.

6

www.cambridge.org/9780521817202
www.cambridge.org

