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Error-correcting Codes

Ruud Pellikaan and Xin-Wen Wu

The idea of redundant information is a well-known phenomenon in read-

ing a newspaper. Misspellings usually go unnoticed for a casual reader,

while the meaning is still grasped. In Semitic languages such as Hebrew,

and even older in the hieroglyphics in the tombs of the pharaohs of

Egypt, only the consonants are written while the vowels are left out so

that we do not know for sure how to pronounce these words nowadays.

The letter “e” is the most frequent occurring symbol in the English lan-

guage, and leaving out all these letters would still give in almost all cases

an understandable text to the expense of greater attention of the reader.

The science of deleting redundant information in a clever way such

that it can be stored in less memory or space and still can be expanded

to the original message is called data compression or source coding. It is

not the topic of this book. So we can compress data, but an error made

in a compressed text would give a different message that is most of the

time utterly meaningless.

The idea in error-correcting codes is the converse. One adds redun-

dant information in such a way that it is possible to detect or even

correct errors after transmission. In radio contacts between pilots and

radar controls the letters in the alphabet are spoken phonetically as

“Alpha, Bravo, Charlie, ...” but “Adams, Boston, Chicago, ...” is more

commonly used for spelling in a telephone conversation. The addition

of a parity check symbol enables one to detect an error, such as on the

former punch cards that were fed into a computer, in the ISBN code

for books, the European Article Numbering (EAN) and the Universal

Product Code (UPC) for articles. Error-correcting codes are common
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2 Error-correcting Codes

in numerous modern applications where data are required to be stored,

processed and transmitted in a reliable manner, such as in audiovisual

media, quick response (QR) codes, fault-tolerant computer systems and

deep space telecommunication, to name but a few.

In this chapter, we present an introduction to error-correcting codes

focusing on the most commonly used codes, namely, block codes and

linear codes, including fundamental concepts and procedures for code

construction, encoding and decoding.

1.1 Block Codes

Legend goes that Hamming was so frustrated the computer halted every

time it detected an error after he handed in a stack of punch cards, he

thought about a way the computer would be able not only to detect the

error but also to correct it automatically. He came up with his nowadays

famous code named after him. Whereas the theory of Hamming is about

the actual construction, the encoding and decoding of codes and uses

tools from combinatorics and algebra, the approach of Shannon leads

to information theory and his theorems tell us what is and what is not

possible in a probabilistic sense.

According to Shannon we have a message m in a certain alphabet

and of a certain length, we encode m to c by expanding the length

of the message and adding redundant information. One can define the

information rate R that measures the slowing down of the transmission

of the data. The encoded message c is sent over a noisy channel such

that the symbols are changed, according to certain probabilities that are

characteristic of the channel. The received word r is decoded to m′. See

Figure 1.1. Now given the characteristics of the channel one can define

the capacity C of the channel and it has the property that for every

R < C it is possible to find an encoding and decoding scheme such that

the error probability that m′ �= m is arbitrarily small. For R > C such

Figure 1.1 Block diagram of a communication system
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1.1 Block Codes 3

a scheme is not possible. The capacity is explicitly known as a function

of the characteristic probability for quite a number of channels.

The notion of a channel must be taken in a broad sense. Not only the

transmission of data via satellite or telephone but also the storage of

information on a hard disk of a computer or a compact disc for music

and film can be modelled by a channel.

The theorem of Shannon tells us the existence of certain encoding and

decoding schemes and one can even say that they exist in abundance and

that almost all schemes satisfy the required conditions, but it does not

tell us how to construct a specific scheme efficiently. The information

theoretic part of error-correcting codes is considered in this book only

so far as to motivate the construction of coding and decoding algorithms.

The situation for the best codes in terms of the maximal number of

errors that one can correct for a given information rate and code length

is not so clear. Several existence and nonexistence theorems are known,

but the exact bound is in fact still an open problem.

1.1.1 Repetition, Product and Hamming Codes

Adding a parity check such that the number of ones is even, is a well-

known way to detect one error. But this does not correct the error.

Example 1.1.1 Replacing every symbol by a threefold repetition gives

the possibility of correcting one error in every 3-tuple of symbols in a

received word by a majority vote. The price one has to pay is that the

transmission is three times slower. We say that the information rate is

1/3. We see here the two conflicting demands of error-correction: to cor-

rect as many errors as possible and to transmit as fast as possible. Notice

furthermore that in case two errors are introduced by transmission the

majority decoding rule will introduce a decoding error in this example.

Example 1.1.2 An improvement is the following product construc-

tion. Suppose we want to transmit a binary message (m1,m2,m3,m4)

of length 4 by adding 5 redundant bits (r1, r2, r3, r4, r5). Put these 9 bits

in a 3 × 3 array as shown below. The redundant bits are defined by the

following conditions. The sum of the number of ones in every row and

in every column should be even.

m1 m2 r1

m3 m4 r2

r3 r4 r5
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4 Error-correcting Codes

It is clear that r1, r2, r3 and r4 are well defined by these rules. The

condition on the last row and on the last column are equivalent, given

the rules for the first two rows and columns. Hence r5 is also well defined.

Suppose that the message is m = (1, 1, 0, 1). Then the redundant part

is r = (0, 1, 1, 0, 1) and c = (1, 1, 0, 1, 0, 1, 1, 0, 1) is transmitted.

If by the transmission 3 bits are erased, that means that the receiver

knows the positions of the erasures but not its values, then the receiver

can fill in the blanks. Suppose that y = (1,−, 0,−, 0,−, 1, 0, 1) is the

received word.

1 0 ←

0

1 0 1

↑

The number of ones in every row and column should be even, so the

receiver fills a 1 at the blank in the first row and the last column, and

consequently a 1 in the middle.

If in the transmission of the word of 9 bits, one symbol is flipped from 0

to 1 or vice versa, then the receiver will notice this, and is able to correct

it. Since if the error occurred in row i and column j, then the receiver will

detect an odd parity in this row and this column and an even parity in

the remaining rows and columns. Suppose that y = (1, 1, 0, 1, 0, 0, 1, 0, 1)

is the received word.

1 1 0

0 1 0 ←

1 0 1

↑

Then the receiver detects an error in row 2 and column 3 and will change

the corresponding symbol.

So this product code can also correct one error as the repetition code

but its information rate is improved from 1/3 to 4/9.

This decoding scheme is incomplete in the sense that in some cases it is

not decided what to do and the scheme will fail to determine a candidate

for the transmitted word. That is called a decoding failure. Sometimes

two errors can be corrected. If the first error is in row i and column j,

and the second in row i′ and column j′ with i′ > i and j′ �= j, then the

receiver will detect odd parities in rows i and i′ and in columns j and

j′. There are two error patterns of two errors with this behavior. That
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1.1 Block Codes 5

is errors at the positions (i, j) and (i′, j′) or at the two pairs (i, j′) and

(i′, j). If the receiver decides to change the first two pairs if j′ > j and the

second two pairs if j′ < j, then it will recover the transmitted word half

of the time this pattern of two errors takes place. If for instance the word

c = (1, 1, 0, 1, 0, 1, 1, 0, 1) is transmitted and y = (1, 0, 0, 1, 0, 0, 1, 0, 1) is

received, then the above decoding scheme will change it correctly in c.

But if y′ = (1, 1, 0, 0, 1, 1, 1, 0, 1) is received, then the scheme will change

it in the codeword c′ = (1, 0, 0, 0, 1, 0, 1, 0, 1) and we have a decoding

error.

1 0 0 ←

0 1 0 ←

1 0 1

↑ ↑

1 1 1 ←

0 0 1 ←

1 0 1

↑ ↑

If two errors take place in the same row, then the receiver will see an

even parity in all rows and odd parities in the columns j and j′. We can

expand the decoding rule to change the bits at the positions (1, j) and

(1, j′). Likewise we will change the bits in positions (i, 1) and (i′, 1) if

the columns give even parity and the rows i and i′ have an odd parity.

This decoding scheme will correct all patterns with one error correctly,

and sometimes the patterns with two errors. But it is still incomplete,

since the received word (1, 1, 0, 1, 1, 0, 0, 1, 0) has an odd parity in every

row and in every column and the scheme fails to decode.

One could extend the decoding rule to get a complete decoding in

such a way that every received word is decoded to a nearest codeword.

This nearest codeword is not always unique.

In case the transmission is by means of certain electromagnetic pulses

or waves one has to consider modulation and demodulation. The message

consists of letters of a finite alphabet, say consisting of zeros and ones,

and these are modulated, transmitted as waves, received and demodu-

lated in zeros and ones. In the demodulation part one has to make a hard

decision between a zero or a one. But usually there is a probability that

the signal represents a zero. The hard decision together with this prob-

ability is called a soft decision. One can make use of this information

in the decoding algorithm. One considers the list of all nearest code-

words, and one chooses the codeword in this list that has the highest

probability.

Example 1.1.3 An improvement of the repetition code of rate 1/3 and

the product code of rate 4/9 is given by Hamming. Suppose we have a
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6 Error-correcting Codes

message (m1,m2,m3,m4) of 4 bits. Put them in the middle of the fol-

lowing Venn diagram of three intersecting circles as given in Figure 1.2.

Complete the three empty areas of the circles according to the rule that

the number of ones in every circle is even. In this way we get 3 redundant

bits (r1, r2, r3) that we add to the message and which we transmit over

the channel.

Figure 1.2 Venn diagram of the Hamming code

In every block of 7 bits the receiver can correct one error. Since the parity

in every circle should be even. So if the parity is even we declare the circle

correct, if the parity is odd we declare the circle incorrect. The error is

in the incorrect circles and in the complement of the correct circles. We

see that every pattern of at most one error can be corrected in this

way. For instance, if m = (1, 1, 0, 1) is the message, then r = (0, 0, 1) is

the redundant information added and c = (1, 1, 0, 1, 0, 0, 1) the codeword

sent. If after transmission one symbol is flipped and y = (1, 0, 0, 1, 0, 0, 1)

is the received word as given in Figure 1.3, then we conclude that the

error is in the left and upper circle, but not in the right one.

Figure 1.3 Venn diagram of a received word for the Hamming code

And we conclude that the error is at m2. But in case of two errors and

for instance the word y′ = (1, 0, 0, 1, 1, 0, 1) is received, then the receiver

would assume that the error occurred in the upper circle and not in
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1.1 Block Codes 7

the two lower circles, and would therefore conclude that the transmitted

codeword was (1, 0, 0, 1, 1, 0, 0). Hence the decoding scheme creates an

extra error.

The redundant information r can be obtained from the message m by

means of three linear equations or parity checks modulo two

⎧

⎨

⎩

r1 = m2 + m3 + m4

r2 = m1 + m3 + m4

r3 = m1 + m2 + m4.

Let c = (m, r) be the codeword. Then c is a codeword if and only if

HcT = 0, where

H =

⎛

⎝

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

⎞

⎠ .

The information rate is improved from 1/3 for the repetition code and

4/9 for the product code to 4/7 for the Hamming code.

1.1.2 Codes and Hamming Distance

In general the alphabets of the message word and the encoded word

might be distinct. Furthermore the length of both the message word

and the encoded word might vary such as in a convolutional code. We

restrict ourselves to [n, k] block codes that is the message words have

a fixed length of k symbols and the encoded words have a fixed length

of n symbols both from the same alphabet Q. For the purpose of error

control, before transmission, we add redundant symbols to the message

in a clever way.

Definition 1.1.4 Let Q be a set of q symbols called the alphabet. Let

Qn be the set of all n-tuples x = (x1, . . . , xn), with entries xi ∈ Q. A

block code C of length n over Q is a nonempty subset of Qn. The elements

of C are called codewords. If C contains M codewords, then M is called

the size of the code. We call a code with length n and size M an (n,M)

code. If M = qk, then C is called an [n, k] code. For an (n,M) code

defined over Q, the value n − logq(M) is called the redundancy. The

information rate is defined as R = logq(M)/n.

Example 1.1.5 The repetition code has length 3 and 2 codewords,

so its information rate is 1/3. The product code has length 9 and 24
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8 Error-correcting Codes

codewords, hence its rate is 4/9. The Hamming code has length 7 and

24 codewords, therefore its rate is 4/7.

Example 1.1.6 Let C be the binary block code of length n consisting

of all words with exactly two ones. This is an (n, n(n − 1)/2) code. In

this example the number of codewords is not a power of the size of the

alphabet.

Definition 1.1.7 Let C be an [n, k] block code over Q. An encoder of

C is a one-to-one map

E : Qk −→ Qn

such that C = E(Qk). Let c ∈ C be a codeword. Then there exists a

unique m ∈ Qk with c = E(m). This m is called the message or source

word of c.

In order to measure the difference between two distinct words and to

evaluate the error-correcting capability of the code, we need to introduce

an appropriate metric to Qn. A natural metric used in Coding Theory

is the Hamming distance.

Definition 1.1.8 For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn, the

Hamming distance d(x,y) is defined as the number of places where they

differ:

d(x,y) = |{i | xi �= yi}|.

Proposition 1.1.9 The Hamming distance is a well-defined metric on

Qn, that means that the following properties hold for all x,y, z ∈ Qn:

(1) d(x, y) ≥ 0, and equality holds if and only if x = y;

(2) d(x, y) = d(y,x) (symmetry);

(3) d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality).

The triangle inequality is shown in Figure 1.4.

Figure 1.4 Triangle inequality
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1.1 Block Codes 9

Proof. Properties (1) and (2) are trivial from the definition. We leave

(3) to the reader as an exercise. ⋄

Definition 1.1.10 The minimum distance of a code C ⊆ Qn is

defined as

d = d(C) = min{ d(x,y) | x,y ∈ C, x �= y }

if C consists of more than one element, and is by definition n + 1 if C

consists of one word. We denote by (n,M, d) the parameters of a code

C with length n, size M and minimum distance d.

The main problem of error-correcting codes from “Hamming’s point

of view” is to construct for given length and number of codewords a

code with the largest possible minimum distance, and to find efficient

encoding and decoding algorithms for such a code.

Example 1.1.11 The triple repetition code consists of two codewords:

(0, 0, 0) and (1, 1, 1), so its minimum distance is 3. The product and

Hamming code both correct one error. So the minimum distance is at

least 3, by the triangle inequality. The product code has minimum dis-

tance 4 and the Hamming code has minimum distance 3. Notice that all

three codes have the property that x + y is again a codeword if x and

y are codewords.

Definition 1.1.12 Let x ∈ Qn. The ball of radius r around x, denoted

by Br(x), is defined by Br(x) = { y ∈ Qn | d(x,y) ≤ r }. The sphere

of radius r around x is denoted by Sr(x) and defined by Sr(x) = { y ∈

Qn | d(x,y) = r }.

Figure 1.5 shows the ball in the Euclidean plane. This is misleading in

some respects, but gives an indication of what we should have in mind.

Figure 1.6 shows Q2, where the alphabet Q consists of 5 elements. The

ball B0(x) consists of the points in the circle, B1(x) is depicted by the

points inside the cross and B2(x) consists of all 25 dots.

Proposition 1.1.13 Let Q be an alphabet of q elements and x ∈ Qn.

Then

|Si(x)| =

(

n

i

)

(q − 1)i and |Br(x)| =

r
∑

i=0

(

n

i

)

(q − 1)i.

Proof. Let y ∈ Si(x). Let I be the subset of {1, . . . , n} consisting of

all positions j such that yj �= xj . Then the number of elements of I is
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10 Error-correcting Codes

Figure 1.5 Ball of radius
√

2 in the Euclidean plane

Figure 1.6 Balls of radius 0 and 1 in the Hamming metric

equal to i. And (q − 1)i is the number of words y ∈ Si(x) that have the

same fixed I. The number of possibilities to choose the subset I with a

fixed number of elements i is equal to
(

n

i

)

. This shows the formula for

the number of elements of Si(x).

Furthermore Br(x) is the disjoint union of the subsets Si(x) for i =

0, . . . , r. This proves the statement about the number of elements of

Br(x). ⋄

Exercises

1.1.1 Consider the code of length 8 that is obtained by deleting the last

entry r5 from the product code of Example 1.1.2. Show that this code

corrects one error.

1.1.2 Let C be the code of all n×n binary arrays that have an even num-

ber of ones in every row and column. What is the number of codewords

of C? What is the minimum distance of C? Show that every pattern of

three erasures can be corrected.

1.1.3 Let Q = {1, 2, . . . , n}. Let C be the code in Qn of all (c1, c2, . . . , cn)

such that {c1, c2, . . . , cn} = Q. What is the number of codewords of C?

What is the minimum distance of C? Show that for every received word

with one error there are exactly two nearest codewords.
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