
Differential Equations

Linear, Nonlinear, Ordinary, Partial

When mathematical modelling is used to describe physical, biological or chemical phe-

nomena, one of the most common results of the modelling process is a system of ordinary

or partial differential equations. Finding and interpreting the solutions of these differential

equations is therefore a central part of applied mathematics, and a thorough understand-

ing of differential equations is essential for any applied mathematician. The aim of this

book is to develop the required skills on the part of the reader.

The authors focus on the business of constructing solutions analytically and interpret-

ing their meaning, although they do use rigorous analysis where needed. The reader is

assumed to have some basic knowledge of linear, constant coefficient ordinary differential

equations, real analysis and linear algebra. The book will thus appeal to undergraduates

in mathematics, but would also be of use to physicists and engineers. MATLAB is used

extensively to illustrate the material. There are many worked examples based on in-

teresting real-world problems. A large selection of exercises is provided, including several

lengthier projects, some of which involve the use of MATLAB. The coverage is broad, rang-

ing from basic second-order ODEs including the method of Frobenius, Sturm-Liouville the-

ory, Fourier and Laplace transforms, and existence and uniqueness, through to techniques

for nonlinear differential equations including phase plane methods, bifurcation theory and

chaos, asymptotic methods, and control theory. This broad coverage, the authors’ clear

presentation and the fact that the book has been thoroughly class-tested will increase its

appeal to undergraduates at each stage of their studies.
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Preface

When mathematical modelling is used to describe physical, biological or chemical
phenomena, one of the most common results is either a differential equation or
a system of differential equations, together with appropriate boundary and initial
conditions. These differential equations may be ordinary or partial, and finding
and interpreting their solution is at the heart of applied mathematics. A thorough
introduction to differential equations is therefore a necessary part of the education
of any applied mathematician, and this book is aimed at building up skills in this
area. For similar reasons, the book should also be of use to mathematically-inclined
physicists and engineers.

Although the importance of studying differential equations is not generally in
question, exactly how the theory of differential equations should be taught, and
what aspects should be emphasized, is more controversial. In our experience, text-
books on differential equations usually fall into one of two categories. Firstly, there
is the type of textbook that emphasizes the importance of abstract mathematical
results, proving each of its theorems with full mathematical rigour. Such textbooks
are usually aimed at graduate students, and are inappropriate for the average un-
dergraduate. Secondly, there is the type of textbook that shows the student how
to construct solutions of differential equations, with particular emphasis on algo-
rithmic methods. These textbooks often tackle only linear equations, and have no
pretension to mathematical rigour. However, they are usually well-stocked with
interesting examples, and often include sections on numerical solution methods.

In this textbook, we steer a course between these two extremes, starting at the
level of preparedness of a typical, but well-motivated, second year undergraduate
at a British university. As such, the book begins in an unsophisticated style with
the clear objective of obtaining quantitative results for a particular linear ordi-
nary differential equation. The text is, however, written in a progressive manner,
with the aim of developing a deeper understanding of ordinary and partial differ-
ential equations, including conditions for the existence and uniqueness of solutions,
solutions by group theoretical and asymptotic methods, the basic ideas of con-
trol theory, and nonlinear systems, including bifurcation theory and chaos. The
emphasis of the book is on analytical and asymptotic solution methods. However,
where appropriate, we have supplemented the text by including numerical solutions
and graphs produced using MATLAB†, version 6. We assume some knowledge of

† MATLAB is a registered trademark of The MathWorks, Inc.
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x PREFACE

MATLAB (summarized in Appendix 7), but explain any nontrivial aspects as they
arise. Where mathematical rigour is required, we have presented the appropriate
analysis, on the basis that the student has taken first courses in analysis and linear
algebra. We have, however, avoided any functional analysis. Most of the material
in the book has been taught by us in courses for undergraduates at the University
of Birmingham. This has given us some insight into what students find difficult,
and, as a consequence, what needs to be emphasized and re-iterated.

The book is divided into two parts. In the first of these, we tackle linear differ-
ential equations. The first three chapters are concerned with variable coefficient,
linear, second order ordinary differential equations, emphasizing the methods of
reduction of order and variation of parameters, and series solution by the method
of Frobenius. In particular, we discuss Legendre functions (Chapter 2) and Bessel
functions (Chapter 3) in detail, and motivate this by giving examples of how they
arise in real modelling problems. These examples lead to partial differential equa-
tions, and we use separation of variables to obtain Legendre’s and Bessel’s equa-
tions. In Chapter 4, the emphasis is on boundary value problems, and we show
how these differ from initial value problems. We introduce Sturm–Liouville theory
in this chapter, and prove various results on eigenvalue problems. The next two
chapters of the first part of the book are concerned with Fourier series, and Fourier
and Laplace transforms. We discuss in detail the convergence of Fourier series, since
the analysis involved is far more straightforward than that associated with other
basis functions. Our approach to Fourier transforms involves a short introduction
to the theory of generalized functions. The advantage of this approach is that a
discussion of what types of function possess a Fourier transform is straightforward,
since all generalized functions possess a Fourier transform. We show how Fourier
transforms can be used to construct the free space Green’s function for both ordi-
nary and partial differential equations. We also use Fourier transforms to derive
the solutions of the Dirichlet and Neumann problems for Laplace’s equation. Our
discussion of the Laplace transform includes an outline proof of the inversion the-
orem, and several examples of physical problems, for example involving diffusion,
that can be solved by this method. In Chapter 7 we discuss the classification of
linear, second order partial differential equations, emphasizing the reasons why the
canonical examples of elliptic, parabolic and hyperbolic equations, namely Laplace’s
equation, the diffusion equation and the wave equation, have the properties that
they do. We also consider complex variable methods for solving Laplace’s equation,
emphasizing their application to problems in fluid mechanics.

The second part of the book is concerned with nonlinear problems and more
advanced techniques. Although we have used a lot of the material in Chapters 9
and 14 (phase plane techniques and control theory) in a course for second year
undergraduates, the bulk of the material here is aimed at third year students. We
begin in Chapter 8 with a brief introduction to the rigorous analysis of ordinary
differential equations. Here the emphasis is on existence, uniqueness and com-
parison theorems. In Chapter 9 we introduce the phase plane and its associated
techniques. This is the first of three chapters (the others being Chapters 13 and 15)
that form an introduction to the theory of nonlinear ordinary differential equations,
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PREFACE xi

often known as dynamical systems. In Chapter 10, we show how the ideas of group
theory can be used to find exact solutions of ordinary and partial differential equa-
tions. In Chapters 11 and 12 we discuss the theory and practice of asymptotic
analysis. After discussing the basic ideas at the beginning of Chapter 11, we move
on to study the three most important techniques for the asymptotic evaluation of
integrals: Laplace’s method, the method of stationary phase and the method of
steepest descents. Chapter 12 is devoted to the asymptotic solution of differential
equations, and we introduce the method of matched asymptotic expansions, and
the associated idea of asymptotic matching, the method of multiple scales, includ-
ing Kuzmak’s method for analysing the slow damping of nonlinear oscillators, and
the WKB expansion. We illustrate each of these methods with a wide variety of
examples, for both nonlinear ordinary differential equations and partial differential
equations. In Chapter 13 we cover the centre manifold theorem, Lyapunov func-
tions and an introduction to bifurcation theory. Chapter 14 is about time-optimal
control theory in the phase plane, and includes a discussion of the controllability
matrix and the time-optimal maximum principle for second order linear systems of
ordinary differential equations. Chapter 15 is on chaotic systems, and, after some
illustrative examples, emphasizes the theory of homoclinic tangles and Mel’nikov
theory.

There is a set of exercises at the end of each chapter. Harder exercises are
marked with a star, and many chapters include a project, which is rather longer
than the average exercise, and whose solution involves searches in the library or on
the Internet, and deeper study. Bona fide teachers and instructors can obtain full
worked solutions to many of the exercises by emailing solutions@cambridge.org.

In order to follow many of the ideas and calculations that we describe in this
book, and to fully appreciate the more advanced material, the reader may need
to acquire (or refresh) some basic skills. These are covered in the appendices,
and fall into six basic areas: linear algebra, continuity and differentiability, power
series, sequences and series of functions, ordinary differential equations and complex
variables.

We would like to thank our friends and colleagues, Adam Burbidge (Nestlé Re-
search Centre, Lausanne), Norrie Everitt (Birmingham), Chris Good (Birming-
ham), Ray Jones (Birmingham), John King (Nottingham), Dave Needham (Read-
ing), Nigel Scott (East Anglia) and Warren Smith (Birmingham), who read and
commented on one or more chapters of the book before it was published. Any
nonsense remaining is, of course, our fault and not theirs.

ACK, JB and SRO, Birmingham 2002
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