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1

Introduction

We begin by covering background material in three areas. First, we need to establish
the formalism and definitions for the imaginary signals we will be shining on our
imaginary detectors. Second, we will describe general detector characteristics so we
can judge the merits of the various types as they are discussed. Third, because solid
state – and to some extent superconducting – physics will be so pervasive in our
discussions, we include a very brief primer on those subjects.

1.1 Radiometry

There are some general aspects of electromagnetic radiation that need to be defined
before we discuss how it is detected. Most of the time we will treat light as photons
of energy; wave aspects will be important only for heterodyne receivers (involving
detection through interference of the signal with a local source of power at nearly
the same frequency). A photon has an energy of

Eph = hν = hc/λ, (1.1)

whereh (= 6.626× 10−34 J s) is Planck’s constant,ν andλ are, respectively, the
frequency (in hertz) and wavelength (in meters) of the electromagnetic wave, and
c (= 2.998× 108 m s−1) is the speed of light. In the following discussion, we define
a number of expressions for the power output of photon sources. Conversion from
power to photons per second can be achieved by dividing by the desired form of
equation (1.1).

1



2 1 Introduction

Figure 1.1. Geometry for
computing radiance.

To compute the emission of an object, consider a projected area of a surface
elementdAonto a plane perpendicular to the direction of observation. As shown in
Figure 1.1, it isdAcosθ , whereθ is the angle between the direction of observation
and the outward normal todA. The spectral radiance per frequency interval,Lν , is
the power (in watts) leaving a unit projected area of the surface of the source (in
square meters) into a unit solid angle (in steradians) and unit frequency interval (in
hertz= 1/seconds).Lν has units of Wm−2 Hz−1 ster−1. The spectral radiance per
wavelength interval,Lλ, has units of Wm−3 ster−1. The radiance,L, is the spectral
radiance integrated over all frequencies or wavelengths; it has units of Wm−2 ster−1.
The radiant exitance,M, is the integral of the radiance over the solid angle,�, and
it is a measure of the total power emitted per unit surface area in units of Wm−2.

We will deal only with Lambertian sources; the defining characteristic of such
a source is that its radiance is constant regardless of the direction from which it
is viewed. Blackbodies and “graybodies” are examples. A graybody is defined to
emit as a blackbody but at the efficiency of its emissivity,ε (ranging from 0 to 1);
a blackbody by definition hasε = 1. The emission of a Lambertian source goes as
the cosine of the angle between the direction of the radiation and the normal to the
source surface. From the definition of projected area in the preceding paragraph, it
can be seen that this emission pattern exactly compensates for the foreshortening of
the surface as it is tilted away from being perpendicular to the line of sight. That is,
for the elementdA, the projected surface area and the emission decrease by the same
cosine factor. Thus, if the entire source has the same temperature and emissivity,
every unit area of its projected surface in the plane perpendicular to the observer’s
line of sight appears to be of the same brightness, independent of its actual angle
to the line of sight. Keeping in mind this cosine dependence, and the definition of
radiant exitance, the radiance and radiant exitance are related as

M =
∫

L cosθd� = 2πL

π/2∫
0

sinθ cosθdθ = πL. (1.2)
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The flux emitted by the source,
, is the radiant exitance times the total surface area
of the source, that is, the power emitted by the entire source. For example, for a
spherical source of radiusR,


 = 4πR2M = 4π2R2L. (1.3)

Although there are other types of Lambertian sources, we will consider only
sources that have spectra resembling those of blackbodies, for which

Lν = ε[2hν3/(c/n)2]

ehν/kT − 1
, (1.4)

whereε is the emissivity of the source andT its temperature, n is the refractive
index of the medium into which the source radiates, andk (= 1.38× 10−23 J K−1)
is the Boltzmann constant. According to Kirchhoff’s law, the portion of the energy
absorbed, the absorptivity, and the emissivity are equal for any source. In wavelength
units, the spectral radiance is

Lλ = ε[2h(c/n)2]

λ5(ehc/λkT − 1)
. (1.5)

It can be easily shown from equations (1.4) and (1.5) that the spectral radiances are
related as follows:

Lλ =
( c

λ2

)
Lν =

(ν

λ

)
Lν . (1.6)

According to the Stefan–Boltzmann law, the radiant exitance for a blackbody
becomes:

M = π

∞∫
0

Lν dν = 2πk4T4

c2h3

∞∫
0

x3

ex − 1
dx = 2π5k4

15c2h3
T4 = σT4, (1.7)

whereσ (= 5.67× 10−8 Wm−2 K−4) is the Stefan–Boltzmann constant.
For Lambertian sources, theoptical system feedingadetectorwill receiveaportion

of the source power that is determined by a number of geometric factors as illustrated
in Figure 1.2. The systemwill accept radiation fromonly a limited range of directions
determined by the geometry of the optical system as a whole and known as the “field
of view”. The area of the source that is effective in producing a signal is determined
by the field of view and the distance between the optical system and the source
(or by the size of the source if it all lies within the field of view). This area will
emit radiation with some angular dependence. Only the radiation that is emitted in
directions where it is intercepted by the optical system can be detected. The range
of directions accepted is determined by the solid angle,�, that the entrance aperture
of the optical system subtends as viewed from the source. Assume that none of the
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Figure 1.2. Geometry for computing power received by a detector system.

emitted power is absorbedor scattered before it reaches the optical system. Thepower
this system receives is then the radiance in its direction multiplied by (1) the source
area within the system field of view times (2) the solid angle subtended by the optical
system as viewed from the source.

Although a general treatment must allow for the field of view to include only
a portion of the source, in many cases of interest the entire source lies within
the field of view, so the full projected area of the source is used. For a spherical
source of radiusR, this area isπR2. The solid angle subtended by the detector
system is

� = a
r 2

, (1.8)

wherea is the area of the entrance aperture of the system (strictly speaking,a is the
projected area; we have assumed the system is pointing directly at the source) andr
is its distance from the source. For a circular aperture,

� = 4πsin2(θ/2), (1.9)

whereθ is the half-angle of the right-circular cone whose base is the detector system
entrance aperture, and whose vertex lies on a point on the surface of the source;r is
the height of this cone.

It is particularly useful when the angular diameter of the source is small compared
with the field of view of the detector system to consider the irradiance,E. It is
the power in watts per square meter received at a unit surface element at some
distance from the source. For the case described in the preceding paragraph, the
irradiance is obtained by first multiplying the radiant exitance by the total surface
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area of the source,A, to get the flux,AπL. The flux is then divided by the area of a
sphere of radiusr centered on the source to give

E = AL
4r 2

, (1.10)

wherer is the distance of the source from the irradiated surface element on the sphere.
The spectral irradiance,Eν orEλ, is the irradiance per unit frequency or wavelength
interval. It is also sometimes called the flux density, and is a very commonly used
description of the power received from a source. It can be obtained from equation
(1.10) by substitutingLν or Lλ for L.

The radiometric quantities discussed above are summarized in Table 1.1. Equa-
tions are provided for illustration only; in some cases, these examples apply only to
specific circumstances. The terminology and symbolism vary substantially from one
discipline to another; for example, the last two columns of the table translate some
of the commonly used radiometric terms into astronomical nomenclature.

Only a portion of the power received by the optical system is passed on to the
detector. The system will have inefficiencies due to both absorption and scattering
of energy in its elements, and because of optical aberrations and diffraction. These
effects can be combined into a system transmittance term. In addition, the range of
frequencies or wavelengths to which the system is sensitive (the spectral bandwidth
of the system) is usually restricted by a combination of characteristics of the detector,
filters, and other elements of the system as well as by any spectral dependence of
the transmittance of the optical path from the source to the entrance aperture. A
rigorous accounting of the spectral response requires that the spectral radiance of
the source be multiplied by the spectral transmittances of all the spectrally active
elements in the optical path to the detector, and by the detector spectral response.
The resulting function must be integrated over frequency or wavelength to determine
the total power effective in generating a signal.

In many cases, the spectral response is intentionally restricted to a narrow range
of wavelengths by placing a bandpass optical filter in the beam. It is then useful to
define the effective wavelength of the system as

λ0 =

∞∫
0

λ T (λ)dλ

∞∫
0

T (λ)dλ

, (1.11)

whereT (λ) is the spectral transmittance of the system, that is, the fraction of incident
light transmitted as a function ofwavelength.Often the spectral variations of the other
transmittance terms can be ignored over the restricted spectral range of the filter. The



Table 1.1Definitions of radiometric quantities

Alternate Alternate
Symbol Name Definition Units Equation name symbol

Lν Spectral Power leaving unit projected Wm−2 Hz−1 ster−1 (1.4) Specific I ν

radiance surface area into unit solid angle intensity
(frequency units) and unit frequency interval (frequency units)

Lλ Spectral Power leaving unit projected Wm−3 ster−1 (1.5) Specific I λ

radiance surface area into unit solid angle intensity
(wavelength units) and unit wavelength interval (wavelength units)

L Radiance Spectral radiance integrated Wm−2 ster−1 L = ∫
Lνdν Intensity or I

over frequency or wavelength specific intensity
M Radiant Power emitted per unit Wm−2 M = ∫

L(θ )d�

exitance surface area

 Flux Total power emitted by W 
 = ∫

MdA Luminosity L
source of areaA

E Irradiance Power received at unit Wm−2 E = ∫
MdA

surface element; equation (4πr 2)
applies well removed
from the source at distancer

Eν , Eλ Spectral Power received at unit Wm−2 Hz−1, Flux density Sν , Sλ

irradiance surface element per unit Wm−3

frequency or wavelength
interval



1.1 Radiometry 7

Figure 1.3.
Transmittance function
T(λ) of a filter. The
FWHM �λ and the
effective wavelengthλ0

are indicated.

bandpass of the filter,�λ, can be taken to be the full width at halfmaximum (FWHM)
of its transmittance function (see Figure 1.3). If the filter cuts on and off sharply, its
transmittance can be approximated as the average value over the range�λ:

TF =

∫
�λ

T (λ)dλ

�λ
. (1.12)

If �λ/λ0 ≤ 0.2 and the filter cuts on and off sharply, the power effective in generating
a signal can usually be estimated in a simplifiedmanner. The behavior of the bandpass
filter can be approximated by taking the spectral radiance atλ0 (in wavelength units)
and multiplying it by�λ and the average filter transmittance over the range�λ.
The result is multiplied by the various geometric and transmittance terms already
discussed for the remainder of the system. However, ifλ0 is substantially shorter than
the peak wavelength of the blackbody curve (that is, one is operating in the Wien
regionof theblackbody)or if there is sharpspectral structurewithin thepassband, then
this approximation can lead to significant errors, particularly if�λ/λ0 is relatively
large.

Continuing with the approximation just discussed, we can derive a useful expres-
sion for estimating the power falling on the detector:

Pd ≈ Aproj aTP(λ0)TO(λ0)TF Lλ(λ0)�λ

r 2
. (1.13)

HereAproj is the area of the source projected onto the plane perpendicular to the line
of sight from the source to the optical receiver.TP, TO, andTF are the transmittances,
respectively, of the optical path from the source to the receiver, of the receiver optics
(excluding the bandpass filter), and of the bandpass filter. The area of the receiver
entrance aperture isa, and the distance of the receiver from the source isr. An
analogous expression holds in frequency units. The major underlying assumptions
for equation (1.13) are that: (a) the field of view of the receiver includes the entire
source; (b) the source is a Lambertian emitter; and (c) the spectral response of the
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detector is limited by a filter with a narrow or moderate bandpass that is sharply
defined.

1.2 Detector types

Nearly all detectors act as transducers that receive photons and produce an electrical
response that can be amplified and converted into a form intelligible to suitably
conditioned human beings. There are three basic ways that detectors carry out this
function:

(a) Photon detectorsrespond directly to individual photons. An absorbed photon
releases one or more bound charge carriersin the detector that may
(1) modulate the electric current in the material; (2) move directly to an
output amplifier; or (3) lead to a chemical change. Photon detectorsare used
throughout the X-ray, ultraviolet, visible, and infrared spectral regions.
Examples that we will discuss are photoconductors (Chapters 2 and 3),
photodiodes (Chapter 4), photoemissive detectors (Chapter 7), and
photographic plates (Chapter 8).

(b) Thermal detectorsabsorb photons and thermalize their energy. In most cases,
this energy changes the electrical properties of the detector material, resulting
in a modulation of the electrical current passing through it. Thermal detectors
have a very broad and nonspecific spectral response, but they areparticularly
important at infrared and submillimeter wavelengths, and as X-ray detectors.
Bolometers and other thermal detectors will be discussed in Chapter 9.

(c) Coherent receiversrespond to the electric field strength of the signal and can
preserve phase information about the incoming photons. They operate by
interference of the electric field of the incident photon with the electric field
from a coherent local oscillator. These devices are primarily used in the radio
and submillimeter regions and are sometimes useful in the infrared. Coherent
receivers for the infrared are discussed in Chapter 10, and those for the
submillimeter are discussed in Chapter 11.

1.3 Performance characteristics

Good detectors preserve a large proportion of the information contained in the in-
coming stream of photons. A variety of parameters are relevant to this goal:

(a) Spectral response– the total wavelength or frequency range over which
photons can be detected with reasonable efficiency.

(b) Spectral bandwidth– the wavelength or frequency range over which photons
are detected at any one time; some detectors can operate in one or more bands
placed within a broader range of spectral response.
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(c) Linearity– the degree to which the output signal is proportional to the
number of incoming photons that was received to produce the signal.

(d) Dynamic range– the maximum variation in signal over which the detector
output represents the photon flux without losing significant amounts of
information.

(e) Quantum efficiency– the fraction of the incoming photon stream that is
converted into signal.

(f ) Noise– the uncertainty in the output signal. Ideally, the noise consists only of
statistical fluctuations due to the finite number of photons producing the
signal.

(g) Imaging properties– the number of detectors (“pixels”) in an array
determines in principle how many picture elements the detector can record
simultaneously. Because signal may blend from one detector to adjacent ones,
the resolution that can be realized may be less,however, than indicated just
by the pixel count.

(h) Time response– the minimum interval of time over which the detector can
distinguish changes in the photon arrival rate.

The first two items in this listing should be clear fromour discussion of radiometry,
and the next two are more or less self-explanatory. However, the remaining entries
include subtleties that call for more discussion.

1.3.1 Quantum efficiency

To be detected, photons must be absorbed. The absorption coefficient in the detector
material is indicated asa(λ) and conventionally has units of cm−1. The absorption
length is just the inverse of the absorption coefficient. The absorption of a flux of
photons,ϕ, passing through a differential thickness elementdl is expressed by

dϕ

dl
= −a(λ)ϕ, (1.14)

with the solution for the remaining flux at depthl being

ϕ = ϕ0 e
−a(λ)l , (1.15)

whereϕ0 is the flux entering the detector. The quantum efficiency,η, is the flux
absorbed in the detector divided by the total flux incident on its surface. There are
two components: (1) the portion of photons that enter the detector that are absorbed
within it; and (2) the portion of photons incident on the detector that actually enter
it. The portion of the flux absorbed within the detector divided by the flux that enters
it is

ηab = ϕ0 − ϕ0 e−a(λ)d1

ϕ0
= 1− e−a(λ)d1, (1.16)
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whered1 is the thickness of the detector. The quantityηab is known as the absorption
factor. Photons are lost by reflection from the surface before they enter the detector
volume, leading to a reduction in quantum efficiency belowηab. Minimal reflection
occurs for photons striking at normal incidence:

R = (n− 1)2 + (a(λ)λ/4π )2

(n+ 1)2 + (a(λ)λ/4π )2
, (1.17)

where the reflectivity,R, is the fraction of the incident flux of photons that is reflected,
n is the refractive index of the material (= c/(the speed of light in the material)),
a(λ) is the absorption coefficient at wavelengthλ, and we have assumed that the
photon is incident from air or vacuum, which have a refractive index of n≈ 1. In
most circumstances of interest for detectors, the absorption coefficients are small
enough that the terms involving them can be ignored. Reflection from the back of
the detector can result in absorption of photons that would otherwise escape. If we
ignore this potential gain, the net quantum efficiency is

η = (1− R) ηab. (1.18)

For example, for a detector operating at a wavelength of 0.83µm that is 20µm thick
and made of material with n= 3.5 anda(0.83µm) = 1000 cm−1, η = (1− 0.31)×
(1− 0.13)= 0.60.

1.3.2 Noise and signal to noise

The following discussion derives the inherent ratio of signal,S, to noise,N, in the
incoming photon stream and then compares it with what can be achieved in the
detector as a function of the quantum efficiency. Ignoring minor corrections having
to do with the quantum nature of photons, it can be assumed that the input photon
flux follows Poisson statistics,

P(m) = e−nnm

m!
, (1.19)

whereP(m) is the probability of detectingmphotons in a given time interval, andn
is the average number of photons detected in this time interval if a large number of
detection experiments is conducted. The root-mean-square noiseNrms in a number
of independent events each with expected noiseN is the square root of the mean,n,

Nrms = 〈N2〉1/2 = n1/2. (1.20)

The errors in the detected number of photons in two experiments can usually be
taken to be independent, and hence they add quadratically. That is, the noise in two
measurements,n1 andn2, is

Nrms = 〈N2〉1/2 = [(
n1/21

)2 + (
n1/22

)2]1/2 = (n1 + n2)
1/2 . (1.21)
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From the above discussion, the signal-to-noise ratio for Poisson-distributed events
is n/n1/2, or

S/N = n1/2. (1.22)

This result can be taken to be a measure of the information content of the incoming
photon stream as well as a measure of the confidence that a real signal has been
detected.[1] †

Fromthestandpointof thedetector, photons thatarenotabsorbedcannot contribute
to either signal or noise; they might as well not exist. Consequently, forn photons
incident on the detector, equation (1.22) shows that the signal-to-noise ratio goes as
ηn/(ηn)1/2, or(

S

N

)
d

= (ηn)1/2 (1.23)

in the ideal case where both signal and noise are determined only by the photon
statistics.

The quantum efficiency defined in equation (1.18) refers only to the fraction
of incoming photons converted into a signal in the first stage of detector action.
Ideally, the signal-to-noise ratio attained in a measurement is controlled entirely
by the number of photons absorbed in the first stage. However, additional steps
in the detection process can degrade the information present in the photon stream
absorbed by the detector, either by losing signal or by adding noise. The detective
quantum efficiency (DQE) describes this degradation succinctly. We takenequiv to be
the number of photons that would be required with a perfect detector (100%quantum
efficiency, no further degradation) to produce an output equivalent in signal to noise
to that produced with the real detector fromnin received photons. We define

DQE= nequiv
nin

= (S/N)2out
(S/N)2in

. (1.24)

Converting to signal to noise, (S/N)out is the observed signal-to-noise ratio, while
(S/N)in is the potential signal-to-noise ratio of the incoming photon stream, as given
by equation (1.22). By substituting equations (1.22) and (1.23) into equation (1.24),
it is easily shown that theDQE is just the quantum efficiency defined in equation
(1.18) if there is no subsequent degradation of the signal to noise.

1.3.3 Imaging properties

The resolution of an array of detectors can be most simply measured by exposing
it to a pattern of alternating white and black lines and determining the minimum
spacing of line pairs that can be distinguished. The eye can identify such a pattern
if the light–dark variation is 4% or greater. The resolution of the detector array is

† Superscript numbers refer to Notes at end of chapter
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expressed in line pairs per millimeter corresponding to the highest density of lines
that produces a pattern at this threshold.

Although it is relatively easy to measure resolution in this way for the detector
array alone, a resolution in line pairs per millimeter is difficult to combine with
resolution estimates for other components in an optical system used with it. For
example, how would one derive the net resolution for a camera with a lens and
photographic film whose resolutions are both given in line pairs per millimeter? A
second shortcoming is that the performance in different situations can be poorly
represented by the line pairs per millimeter specification. For example, one might
have two lenses, one of which puts 20% of the light into a sharply defined image core
and spreads the remaining 80% widely, whereas the second puts all the light into
a slightly less well-defined core. These systems might achieve identical resolutions
in line pairs per millimeter (which requires only 4% modulation), yet they would
perform quite differently in other situations.

Amore general concept is the modulation transfer function, orMTF. Imagine that
the detector array is exposed to a sinusoidal input signal of periodP and amplitude
F(x),

F(x) = a0 + a1 sin(2π f x), (1.25)

wheref = 1/P is the spatial frequency,x is the distance along one axis of the array,
a0 is the mean height (above zero) of the pattern, anda1 is its amplitude. These
terms are indicated in Figure 1.4(a). The modulation of this signal is defined as

Min = Fmax− Fmin

Fmax+ Fmin
= a1

a0
, (1.26)

whereFmax andFmin are the maximum and minimum values ofF(x). Assuming that
the resulting image output from the detector is also sinusoidal (which may be only
approximately true due to nonlinearities), it can be represented by

G(x) = b0 + b1( f ) sin(2π f x), (1.27)

wherex andf are the same as in equation (1.25), andb0 andb1( f ) are analogous to
a0 anda1. Because of the limited response of the array to high spatial frequencies,
the signal amplitude,b1, is a function off. The modulation in the image will be

Mout = b1( f )

b0
≤ Min. (1.28)

The modulation transfer factor is

MT = Mout

Min
. (1.29)

A separate value of theMTwill apply at each spatial frequency; Figure 1.4(a) illus-
trates an input signal that contains a range of spatial frequencies, and Figure 1.4(b)
shows a corresponding output in which the modulation decreases with increasing
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Figure 1.4. Illustration of variation of modulation with spatial frequency.
(a) Sinusoidal input signal of constant amplitude but varying spatial frequency.
(b) How an imaging detector system might respond to this signal.

spatial frequency. This frequency dependence of theMT is expressed in the mod-
ulation transfer function (MTF). Figure 1.5 shows theMTF corresponding to the
response of Figure 1.4(b).

In principle, theMTF provides a virtually complete specification of the imaging
properties of a detector array. However, one must be aware that theMTFmay vary
over the face of the array and may have color dependence. It also cannot represent
nonlinear effects such as saturation on bright objects. In addition, theMTF omits
time-dependent imaging properties, such as latent images that may persist after the
image of a bright source has been put on the array and removed.

Computationally, theMTF can be determined by taking the absolute value of
the Fourier transform,F(u), of the image of a perfect point source. This image is
called the point spread function. Fourier transformation is the general mathematical
technique used to determine the frequency components of a functionf (x) (see, for
example, Presset al., 1986; Bracewell, 2000).F(u) is defined as

F(u) =
∞∫

−∞
f (x)ej2πuxdx, (1.30)
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Figure 1.5. The
modulation transfer
function (MTF) for the
response illustrated in
Figure 1.4(b).

with inverse

f (x) =
∞∫

−∞
F(u)e− j2πxudu, (1.31)

wherej is the (imaginary) square root of−1.TheFourier transformcanbegeneralized
in a straightforward way to two dimensions, but for the sake of simplicity we will
not do so here. The absolute value of the transform is

|F(u)| = [F(u)F∗(u)]1/2, (1.32)

whereF∗(u) is the complex conjugate ofF(u); it is obtained by reversing the sign of
all imaginary terms inF(u).

If f (x) represents the point spread function,|F(u)|/|F(0)| is theMTF with u
the spatial frequency. This formulation holds because a sharp impulse, represented
mathematically by aδ function, contains all frequencies equally (that is, its Fourier
transformC

∫
δ(x)e(− j,2πux) dx = C, a constant). Hence the Fourier transform of the

image formed from an input sharp impulse (the image is the point spread function)
gives the spatial frequency response of the detector.

TheMTF is normalized to unity at spatial frequency 0 by this definition. As
emphasized in Figure 1.5, the response at zero frequency cannot bemeasured directly
but must be extrapolated from higher frequencies.
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Table 1.2Fourier Transforms

f (x) F(u)

F(x) f (−u)
aF(x) aF(u)
f (ax) (1/|a|)F(u/a)
f (x) + g(x) F(u) + G(u)
1 δ(u)c

e−πx2 e−πu2

e−|x| 2/(1+ (2πu)2)
e−x, x> 0 (1− j 2πu)/(1+ (2πu)2)
sech(πx) sech(πu)
|x|−1/2 |u|−1/2

sgn(x)a −j/(πu)
e−|x| sgn(x) −j 4πu/(1+ (2πu)2)
�(x)b sin(πu)/πu

asgn(x) = −1 for x< 0 and= 1 for x≥ 0.
b�(x) = 1 for |x| < 1/2 and= 0 otherwise.
cδ(u) = 0 for u = 0,

∫
δ(u) du= 1; that is,δ(u) is a

spike atu= 0.

Only a relatively small number of functions have Fourier transforms thatare easy
to manipulate. Table 1.2 contains a short compilation of some of these cases. With
the use of computers, however, Fourier transformation is a powerful and very general
technique.

The image of an entire linear optical system is the convolution of the images
from each element. By the “convolution theorem”, itsMTF can be determined by
multiplying together theMTFs of its constituent elements, and the resulting image
is determined by inverse transforming theMTF. The multiplication occurs on a fre-
quency by frequency basis, that is, if the first system hasMTF1( f ) and the second
MTF2( f ), the combined system hasMTF( f ) = MTF1( f ) MTF2( f ). The overall res-
olution capability of complex optical systems can be more easily determined in this
way than by brute force image convolution.

1.3.5 Frequency response

The response speed of a detector can be described very generally by specifying the
dependence of its output on the frequency of an imaginary photon signal that varies
sinusoidally in time. This concept is analogous to the modulation transfer function
described just above with regard to imaging; in this case it is called the electrical
frequency response of the detector.
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A variety of factors limit the frequency response. Many of them, however, can
be described by an exponential time response, such as that of a resistor/capacitor
electrical circuit. To be specific in the following, we will assume that the response is
given by theRC time constant of such a circuit, although we will find other uses for
the identical formalism later. If the capacitor is in parallel with the resistance, charge
deposited on the capacitance bleeds off through the resistance with an exponential
time constant

τRC = RC. (1.33)

Sometimes a “rise time” or “fall time” is specified rather than the exponential time
constant. The rise or fall time is the interval required for the output to change from
10% to 90% of its final value or vice versa (measured relative to the initial value).
For an exponential response, this time is 2.20τRC.

Let a voltage impulse be deposited on the capacitor,

vin(t) = v0δ(t), (1.34)

wherev0 is a constant andδ(t) is the delta function (defined in the footnote to
Table 1.2).We can observe this event intwoways. First, wemight observe the voltage
across the resistance and capacitance directly, for example with an oscilloscope. It
will have the form

vout(t) =
[

0, t < 0
v0

τRC
e−t/τRC, t ≥ 0. (1.35)

The same event can be analyzed in terms of the effect of the circuit on the input
frequencies rather than on the time dependence of the voltage. To do so, we convert
the input and output voltages to frequency spectra by taking their Fourier transforms.
The delta function contains all frequencies at equal strength, that is, from Table 1.2,

Vin( f ) = v0

∞∫
−∞

δ(t)e− j2π f t dt = v0. (1.36)

Since the frequency spectrum of the input is flat (Vin( f ) = constant), any deviations
from a flat spectrum in the output must arise from the action of the circuit. That is,
the output spectrum gives the frequency response of the circuit directly. Again from
Table 1.2, it is

Vout( f ) =
∞∫

−∞
vout(t)e

− j2π f t dt = v0

[
1− j2π f τRC
1+ (2π f τRC)2

]
. (1.37)

The imaginary part ofVout( f ) represents phase shifts that can occur in the circuit.
For a simple discussion, we can ignore the phase and describe the strength of the
signal only in terms of the frequency dependence of its amplitude. The amplitude
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Figure 1.6. Frequency
response of anRCcircuit.
The cutoff frequency is also
indicated.

can be determined by taking the absolute value ofVout( f ):

|Vout( f )| = (VoutV
∗
out)

1/2 = v0

[1 + (2π f τRC)2]
1/2 , (1.38)

whereV∗
out is the complex conjugate ofVout. This function is plotted in Figure 1.6.

As with theMTF, the effects of different circuit elements on the overall frequency
response can be determined by multiplying their individual response functions
together.

The frequency response is often characterized by a cutoff frequency

fc = 1

2πτRC
, (1.39)

at which the amplitude drops to 1/
√
2 of its value atf = 0, or

|Vout( fc)| = 1√
2
|Vout(0)|. (1.40)

1.4 Solid state physics

The electrical properties of a semiconductor are altered dramatically by photoexci-
tation due to the absorption of an ultraviolet, visible, or infrared photon, making this
class of material well adapted to a variety of photon detection strategies. Metals, on
the other hand, have high electrical conductivity that is only insignificantly modified
by the absorption of photons, and insulators require more energy to excite electrical
changes than is available from individual visible or infrared photons.

In addition, adding small amounts of impurities to semiconductors can strongly
modify their electrical properties at and below room temperature. Consequently,
semiconductors are the basis for most electronic devices, including those used for
amplification of photoexcited currents as well as those used to detect photons with
too little energy to be detected through photoexcitation.
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Because of these properties of semiconductors, virtually every detector we shall
discuss depends on these materials for its operation. To facilitate our discussion, we
will first review some of the properties of semiconductors. The concepts introduced
below are used throughout the remaining chapters.

The elemental semiconductors are silicon and germanium; they are found in col-
umn IVa of the periodic table (Table 1.3). Their outermost electron shells, or valence
states, contain four electrons, half of the total number allowed for these shells. They
form crystalswith a diamond lattice structure (note that carbon is also in column IVa).
In this structure, each atom bonds to its four nearest neighbors; it can therefore share
one valence electron with each neighbor, and vice versa. Electrons are fermions
and must obey the Pauli exclusion principle, which states that no two particles
with half-integral quantum mechanical spin can occupy identical quantum states.[2]

Because of the exclusion principle, the electrons shared between neighboring nuclei
must have opposite spin (if they had the same spin, they would be identical quan-
tum mechanically), which accounts for the fact that they occur in pairs. By sharing
electrons, each atom comes closer to having a filled valence shell, and a quantum
mechanical binding force known as a covalent bond is created.

The binding of electrons to an atomic nucleus can be described in terms of a
potential energy “well” around the nucleus. Electrons may be in the ground state
or at various higher energy levels called excited states. There is a specific energy
difference between these states which can bemeasured by detecting an absorption or
emission line when an electron shifts between energy levels. The sharply defined en-
ergy levels of an isolated atom occur because of constructive interference of electron
wave functions within the potential well; there is destructive interference at all other
energies. When atoms are brought close enough together to allow the electron wave
functions to begin overlapping, the energy levels of the individual atoms split due to
the coupling between the potential wells. The splitting occurs because the electrons
must distribute themselves so that no two of them are in an identical quantum state,
according to the exclusion principle. In a compact structure such as a crystal, the en-
ergy levels split multiply into broad energy zones called bands. The “valence states”
and “conduction states” in a material are analogous to the ground state and excited
states, respectively, in an isolated atom. Band diagrams such as those in Figure 1.7
can represent this situation.

For any material at a temperature of absolute zero, all available states in the band
would be filled up to some maximum level. The electrical conductivity would be
zero because there would be no accessible states into which electrons could move.
Conduction becomes possible when electrons are lifted into higher and incompletely
filled energy levels, either by thermal excitation or by other means. There are two
distinct possibilities. In a metal, the electrons only partially fill a band so that a very
small amount of energy (say, a temperature just above absolute zero) is required to
gain access to unfilled energy levels and hence to excite conductivity. Metal atoms



Table 1.3Periodic table of the elements

Ia IIa III b IV b Vb VIb VII b VIII Ib IIb III a IV a V a VI a VII a 0
1 ↓ 2
H He
3 4 5 6 7 8 9 10
Li Be B C N O F Ne
11 12 13 14 15 16 17 18
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K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs Ba La Hf Ta W Re Os ir Pt Au Hg Tl Pb Bi Po At Rn
87 88 89
Fr Ra Ac
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Figure 1.7. Energy band diagrams for insulators, semiconductors, and metals.

have a small number of loosely bound, outer-shell electrons that are easily given up
to form ions. In a bulk metal, these electrons are contributed to the crystal as a whole,
creating a structure of positive ions immersed in a sea of free electrons. This situation
produces metallic bonding.

On the other hand, in a semiconductor or an insulator, the electrons would com-
pletely fill a band at absolute zero. To gain access to unfilled levels, an electron must
be lifted into a level in the next higher band, resulting in a threshold excitation energy
required to initiate electrical conductivity. In this latter case, the filled band is called
the valence band and the unfilled one the conduction band. The bandgap energy,
Eg, is the energy between the highest energy level in the valence band,Ev, and the
lowest energy level in the conduction band,Ec. It is theminimumenergy that must be
supplied to excite conductivity in thematerial. Semiconductors have 0<Eg < 3.5 eV.

The band diagrams for insulators and semiconductors are similar to each other,
but the insulators have larger values ofEg because the conduction electrons are more
tightly bound to the atoms than they are in semiconductors. It therefore takes more
energy to break these bonds in insulators so the electrons can move through the
material. A common kind of insulator is a compound containing atoms from opposite
ends of the periodic table (one example is NaCl). In this case, the valence electron is
taken from the metal atom and added to the outer valence band of the halide atom;
both atoms then have filled outer electron shells. The electrostatic attraction of the
positive metal and negative halide ions forms the crystal bond. This bonding is called
ionic.[3]

Despite their differing electrical behavior, the band diagrams for semiconduc-
tors and insulators are qualitatively similar. Semiconductors are partially conducting
under typically encountered conditions because the thermal excitation at room tem-
perature is adequate to lift some electrons across their modest energy bandgaps.
However, their conductivity is a strong function of temperature (going roughly as
e−Eg/2kT; kT ≈ 0.025 eV at room temperature), and near absolute zero they behave
as insulators. In such a situation, the charge carriers are said to be “frozen out”.




