The New Physics for the Twenty-First Century

Recent scientific advances have led to a dramatic reappraisal of our understanding of the world around us, and made a significant impact on our lifestyle. Underpinning all the other branches of science, physics affects the way we live our lives.

This book investigates the key frontiers in modern-day physics, exploring our Universe – from the particles inside an atom to the stars that make up a galaxy, from brain research to the latest advances in high-speed electronic research networks.

Each of the nineteen self-contained chapters written by leading international experts in a lively and accessible style will fascinate scientists of all disciplines and anyone wanting to know more about the world of physics today.

Gordon Fraser worked in science publications at CERN for over 25 years, where he was editor of Cern Courier, the international monthly news magazine of high-energy physics. After gaining his Ph.D. in theoretical particle physics at Imperial College, London, he branched out into technical journalism and communications. He is author, co-author, and editor of several science books, including Antimatter – The Ultimate Mirror, published in 2000.
The New PHYSICS for the Twenty-First Century

Edited by GORDON FRASER
Contents

Contributors vii
Editor's acknowledgements viii
Introduction: the new physics for the twenty-first century 1

Part I Matter and the Universe 11
1. Cosmology 13
 Wendy L. Freedman and Edward W. Kolb
2. Gravity 41
 Ronald Adler
3. The new astronomy 69
 Arnon Dar
4. Particles and the Standard Model 86
 Chris Quigg
5. Superstring theory 119
 Michael B. Green

Part II Quantum matter 143
6. Manipulating atoms with photons 145
 Claude Cohen-Tannoudji and Jean Dalibard
7. The quantum world of ultra-cold atoms 171
 William Phillips and Christopher Foot
8. Superfluids 200
 Henry Hall
9. Quantum phase transitions 229
 Subir Sachdev

Part III Quanta in action 255
10. Essential quantum entanglement 257
 Anton Zeilinger
11. Quanta, ciphers, and computers 268
 Artur Ekert
12. Small-scale structures and “nanoscience” 284
 Yoseph Imry
Contents

Part IV Calculation and computation 309
13. Physics of chaotic systems 311
 Henry D. I. Abarbanel
14. Complex systems 334
 Antonio Politi
 Tony Hey and Anne Trefethen

Part V Science in action 403
16. Biophysics and biomolecular materials 405
 Cyrus R. Safinya
17. Medical physics 444
 Nikolaj Pavel
18. Physics of materials 481
 Robert Cahn
19. Physics and Society 505
 Ugo Amaldi

Index 532
Contributors

Wendy Freedman, Carnegie Observatories, Pasadena
Rocky Kolb, Chicago/Fermilab
Ronald Adler, Stanford
Arnon Dar, Technion Haifa
Chris Quigg, Fermilab
Michael Green, Cambridge
Claude Cohen-Tannoudji, ENS Paris
Jean Dalibard, ENS Paris
Christopher Foot, Oxford
William Phillips, NIST
Henry Hall, Manchester
Subir Sachdev, Harvard
Anton Zeilinger, Vienna
Artur Ekert, Cambridge and Singapore
Yoseph Imry, Weizmann Institute
Henry Abarbanel, UC San Diego
Antonio Politi, Florence
Tony Hey, Microsoft
Anne Trefethen, UK e-Science Core Programme
Cyrus Safinya, UC Santa Barbara
Nikolaj Pavel, Humboldt, Berlin
Robert Cahn, Cambridge
Ugo Amaldi, Milan-Bicocca and TERA Foundation
Editor's acknowledgements

My sincere thanks go to Simon Mitton of Cambridge University Press for the original invitation to undertake this challenging work. Subsequent progress was supervised by Simon Capelin who first had the idea for such a physics anthology 20 years ago and who worked closely with Paul Davies on the 1989 edition of New Physics.

With material from so many sources, it was a difficult book to put together. However, the enthusiastic and diligent CUP production team transformed an immense pile of amorphous material into an attractive final product.

Many thanks also go to all the contributors. It was a privilege to work with so many distinguished scientists and to learn so much about new physics and its impact on the twenty-first century.