DYNAMICS OF ONE-DIMENSIONAL QUANTUM SYSTEMS

One-dimensional quantum systems show fascinating properties beyond the scope of the mean-field approximation. However, the complicated mathematics involved is a high barrier to non-specialists. Written for graduate students and researchers new to the field, this book is a self-contained account of how to derive a quasi-particle picture from the exact solution of models with inverse-square interparticle interactions.

The book provides readers with an intuitive understanding of exact dynamical properties in terms of exotic quasi-particles that are neither bosons nor fermions. Powerful concepts, such as the Yangian symmetry in the Sutherland model and its lattice versions, are explained. A self-contained account of non-symmetric and symmetric Jack polynomials is also given. Derivations of dynamics are made easier, and are more concise than in the original papers, so readers can learn the physics of one-dimensional quantum systems through the simplest model.

YOSHIO KURAMOTO is a Professor of Physics at Tohoku University, Japan. He is an expert on strongly correlated electron systems, and has authored and co-authored several books and many papers in related research fields. He is a member of the Physical Society of Japan, and has served as one of the editors of the Society’s journal.

YUSUKE KATO is an Associate Professor in the Department of Basic Science at the University of Tokyo. His working fields are physics of condensed matter, correlated electron systems in one dimension, integrable systems, superconductivity and Bose–Einstein condensation.
Dynamics of One-Dimensional Quantum Systems
Inverse-Square Interaction Models

YOSHIO KURAMOTO
Tohoku University

YUSUKE KATO
University of Tokyo

© in this web service Cambridge University Press
www.cambridge.org
Contents

Preface

1 Introduction
 1.1 Motivation
 1.2 One-dimensional interaction as a disguise
 1.3 Two-body problem with $1/r^2$ interaction
 1.4 Freezing spatial motion
 1.5 From spin permutation to graded permutation
 1.6 Variants of $1/r^2$ systems
 1.7 Contents of the book

Part I Physical properties

2 Single-component Sutherland model
 2.1 Preliminary approach
 2.1.1 Jastrow-type wave functions
 2.1.2 Triangular matrix for Hamiltonian
 2.1.3 Ordering of basis functions
 2.2 Descriptions of energy spectrum
 2.2.1 Interacting boson description
 2.2.2 Interacting fermion description
 2.2.3 Exclusion statistics
 2.3 Elementary excitations
 2.3.1 Partitions
 2.3.2 Quasi-particles
 2.3.3 Quasi-holes
 2.3.4 Neutral excitations
2.4 Thermodynamics 47
 2.4.1 Interacting boson picture 48
 2.4.2 Free anyon picture 50
 2.4.3 Exclusion statistics and duality 51
 2.4.4 Elementary excitation picture 54
2.5 Introduction to Jack polynomials 55
2.6 Dynamics in thermodynamic limit 61
 2.6.1 Hole propagator \(\langle \hat{\psi}^\dagger(x, t) \hat{\psi}(0,0) \rangle \) 62
 2.6.2 Particle propagator \(\langle \hat{\psi}(x, t) \hat{\psi}^\dagger(0,0) \rangle \) 65
 2.6.3 Density correlation function 67
2.7 Derivation of dynamics for finite-sized systems 70
 2.7.1 Hole propagator 71
 2.7.2 *Particle propagator 77
 2.7.3 Density correlation function 86
2.8 *Reduction to Tomonaga–Luttinger liquid 90
 2.8.1 Asymptotic behavior of correlation functions 91
 2.8.2 Finite-size corrections 93

3 Multi-component Sutherland model 98
3.1 Triangular form of Hamiltonian 99
3.2 Energy spectrum of multi-component fermionic model 104
 3.2.1 Eigenstates of identical particles 104
 3.2.2 Wave function of ground state 107
 3.2.3 Eigenstates with bosonic Fock condition 109
3.3 Energy spectrum with most general internal symmetry 111
3.4 Elementary excitations 114
 3.4.1 Quasi-particles 114
 3.4.2 Quasi-holes 115
3.5 Thermodynamics 120
 3.5.1 Multi-component bosons and fermions 120
 3.5.2 Explicit results for U(2) anyons 123
 3.5.3 Generalization to U(\(K\)) symmetry 127
3.6 Eigenfunctions 129
 3.6.1 Non-symmetric Jack polynomials 129
 3.6.2 Jack polynomials with U(2) symmetry 133
3.7 Dynamics of U(2) Sutherland model 135
 3.7.1 Hole propagator \(\langle \hat{\psi}_1^\dagger(x, t) \hat{\psi}_1(0,0) \rangle \) 136
 3.7.2 Unified description of correlation functions 138
3.8 Derivation of dynamics for finite-sized systems 142
 3.8.1 Hole propagator 142
 3.8.2 Density correlation function 146
Contents

4 **Spin chain with 1/r^2 interactions** 150
4.1 Mapping to hard-core bosons 151
4.2 Gutzwiller–Jastrow wave function 152
4.2.1 Hole representation of lattice fermions 152
4.2.2 Gutzwiller wave function in Jastrow form 155
4.3 Projection to the Sutherland model 156
4.4 Static structure factors 157
4.5 *Derivation of static correlation functions 163
4.6 Spectrum of magnons 171
4.7 Spinons 173
4.7.1 Localized spinons 173
4.7.2 Spectrum of spinons 175
4.7.3 Polarized ground state 178
4.8 Energy levels and their degeneracy 180
4.8.1 Degeneracy beyond SU(2) symmetry 180
4.8.2 Local current operators 183
4.8.3 Freezing trick 185
4.9 From Young diagrams to ribbons 188
4.9.1 Removal of phonons 188
4.9.2 Completeness of spinon basis 190
4.9.3 Semionic statistics of spinons 193
4.9.4 Variants of Young diagrams 194
4.10 Thermodynamics 196
4.10.1 Energy functional of spinons 196
4.10.2 Thermodynamic potential of spinons 200
4.10.3 Susceptibility and specific heat 203
4.10.4 *Thermodynamics by freezing trick 205
4.11 Dynamical structure factor 208
4.11.1 Brief survey on dynamical theory 208
4.11.2 Exact analytic results 211
4.11.3 Dynamics in magnetic field 215
4.11.4 Comments on experimental results 219

5 **SU(K) spin chain** 220
5.1 Coordinate representation of ground state 221
5.2 Spectrum and motif 223
5.3 Statistical parameters via freezing trick 229
5.4 Dynamical structure factor 231
6 Supersymmetric t–J model with $1/r^2$ interaction 233
6.1 Global supersymmetry in t–J model 234
6.2 Mapping to $U(1,1)$ Sutherland model 235
6.3 Static structure factors 239
6.4 Spectrum of elementary excitations 245
 6.4.1 Energy of polynomial wave functions 245
 6.4.2 Spinons and antispinons 250
 6.4.3 Holons and antiholons 253
6.5 Yangian supersymmetry 256
 6.5.1 Yangian generators 256
 6.5.2 Ribbon diagrams and supermultiplets 259
 6.5.3 Motif as representation of supermultiplets 261
6.6 Thermodynamics 262
 6.6.1 Parameters for exclusion statistics 262
 6.6.2 Energy and thermodynamic potential 265
 6.6.3 Fully polarized limit 267
 6.6.4 Distribution functions at low temperature 268
 6.6.5 Magnetic susceptibility 270
 6.6.6 Charge susceptibility 272
 6.6.7 Entropy and specific heat 274
6.7 Dynamics of supersymmetric t–J model 278
 6.7.1 Coupling of external fields to quasi-particles 278
 6.7.2 Dynamical spin structure factor 280
 6.7.3 Dynamical structure factor in magnetic fields 287
 6.7.4 Dynamical charge structure factor 290
 6.7.5 Electron addition spectrum 293
 6.7.6 Electron removal spectrum 295
 6.7.7 Momentum distribution 300
6.8* Derivation of dynamics for finite-sized t–J model 302
 6.8.1 Electron addition spectrum 303
 6.8.2 Dynamical spin structure factor 306

Part II Mathematics related to $1/r^2$ systems 309
7 Jack polynomials 311
7.1 Non-symmetric Jack polynomials 312
 7.1.1 Composition 312
 7.1.2 Cherednik–Dunkl operators 314
 7.1.3 Definition of non-symmetric Jack polynomials 319
 7.1.4 Orthogonality 319
Contents

7.1 Generating operators 324
7.1.5 Generating operators 324
7.1.6 Arms and legs of compositions 329
7.1.7 Evaluation formula 333
7.2 Antisymmetrization of Jack polynomials 334
7.2.1 Antisymmetric Jack polynomials 334
7.2.2 Integral norm 338
7.2.3 Binomial formula 341
7.2.4 Combinatorial norm 342
7.3 Symmetric Jack polynomials 346
7.3.1 Relation to non-symmetric Jack polynomials 346
7.3.2 Evaluation formula 351
7.3.3 Symmetry-changing operator 352
7.3.4 Bosonic description of partitions 355
7.3.5 Integral norm 359
7.3.6 Combinatorial norm 360
7.3.7 Binomial formula 364
7.3.8 Power-sum decomposition 364
7.3.9 Duality 365
7.3.10 Skew Jack functions and Pieri formula 368
7.4 U(2) Jack polynomials 371
7.4.1 Relation to non-symmetric Jack polynomials 371
7.4.2 Integral norm 372
7.4.3 Cauchy product expansion formula 373
7.4.4 $U_B(2)$ Jack polynomials 373
7.4.5 Evaluation formula 375
7.4.6 Binomial formula 377
7.4.7 Power-sum decomposition 381
7.5 U(1,1) Jack polynomials 382
7.5.1 Relation to non-symmetric Jack polynomials 382
7.5.2 Evaluation formula 384
7.5.3 Bosonization for separated states 385
7.5.4 Factorization for separated states 386
7.5.5 Binomial formula for separated states 388
7.5.6 Integral norm 389
8 Yang–Baxter relations and orthogonal eigenbasis 391
8.1 Fock condition and R-matrix 392
8.2 R-matrix and monodromy matrix 397
8.3 Yangian gl_2 401
8.4 Relation to U(2) Sutherland model 403
Contents

8.5 Construction of orthogonal set of eigenbasis 406
 8.5.1 Examples for small systems 406
 8.5.2 Orthogonal eigenbasis for N-particle systems 416

8.6 Norm of Yangian Gelfand–Zetlin basis 419

9 SU(K) and supersymmetric Yangians 422
 9.1 Construction of monodromy matrix 423
 9.2 Quantum determinant vs. ordinary determinant 426
 9.3 Capelli determinant 427
 9.4 Quantum determinant of SU(K) Yangian 430
 9.5 Alternative construction of monodromy matrix 431
 9.6 Drinfeld polynomials 435
 9.7 Extension to supersymmetry 438

10 Uglov’s theory 441
 10.1 Macdonald symmetric polynomials 441
 10.2 Uglov polynomials 444
 10.3 Reduction to single-component bosons 445
 10.4 From Yangian Gelfand–Zetlin basis to Uglov polynomials 449
 10.5 Dynamical correlation functions 450

Afterword 455
References 458
Index of symbols 464
Index 471
Preface

This book is concerned primarily with the exact dynamical properties of one-dimensional quantum systems. As a crucial property of exactly soluble models, we assume that the interaction decays as the inverse square of the distance. The family of these models is called the inverse-square interaction ($1/r^2$) models. In the one-dimensional continuum space, the model is often referred to as the Calogero–Sutherland model. In the one-dimensional lattice, on the other hand, the first $1/r^2$ models appeared as a spin model, which is now called the Haldane–Shastry model. Soon after the discovery of the Haldane–Shastry model, it was recognized that the imposition of supersymmetry allows the model to acquire the charge degrees of freedom, while keeping the exactly soluble nature. The resultant one-dimensional electron model is called the supersymmetric t-J model. Various generalizations of these models have been proposed.

Recent experimental progress in quasi-one-dimensional electron systems, especially by neutron scattering and photoemission spectroscopy, has enhanced the theoretical motivation for exploring the dynamics over a wide frequency and momentum range. The $1/r^2$ models are ideally suited to meet this situation, since the model allows derivation of exact dynamical information most easily and transparently. In spite of the special appearance of the $1/r^2$ models, the intuition thus obtained contributes greatly to understanding low-dimensional physics in general. This kind of approach to dynamics is complementary to another powerful approach using the bosonization and conformal field theory. The latter is especially suitable to asymptotics of correlation functions at long spatial and temporal distances.

The literature relevant to the $1/r^2$ models is vast and scattered. Moreover, many papers include a difficult-looking mathematical set-up. This situation may cause newcomers to see a barrier too high to jump over before enjoying the rich and beautiful ingredients of the $1/r^2$ models. For several years, the authors have realized the necessity of a comprehensive treatise. This book is intended to be accessible to non-specialists who are interested in strongly correlated quantum systems. It explains the wonderfully beautiful physics and related mathematics in a self-contained manner, without assuming special knowledge on theories in one dimension. In order to make a coherent discussion, we have included many results that are newly derived for this book, in addition to summarizing what has been reported in the literature. We hope that this book is useful not only to experts already working in the field, but also to graduate students and researchers trying to delve into the fascinating physics in low dimensions.
We are grateful to our collaborators, former students, and scientific colleagues who have worked in this area and helped our understanding of the subject, especially to M. Arikawa, N. Kawakami, T. Kimura, R. Nakai, O. Narayan, Y. Saiga, B. S. Shastry, B. Sutherland, T. Yamamoto, H. Yokoyama, and J. Zittartz. Our deepest thanks go to M. Arikawa, who carefully read the first version of the manuscript and made many useful suggestions.