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The problem of the structure of matter

The description of the physical and chemical properties of matter is a central issue
that has occupied the minds of scientists since the age of the ancient Greeks. In
their route to dissect matter down to what cannot be divided any further, they
coined the term atom, the indivisible. Matter became then a collection of atoms.
More than twenty centuries had to pass until the development of a more precise
concept of atom, thanks, amongst others, to the systematic studies of Mendeleyev
and the establishment in 1869 of the periodic table of the elements (Mendeleyev,
1869). The discovery of the electron in 1897 and the first modern model of the
atomic structure by Sir Joseph Thomson were soon refined by his student, Sir
Ernest Rutherford, who in 1910 showed that an atom was made of a positively
charged small nucleus and a number of negatively charged electrons that neutralize
the nuclear charge. Much in the spirit of planetary systems, and drawing from
the analogy between gravitational and electrostatic interactions, scientists in the
beginning of the twentieth century built an image of the atom that consisted of a
number Z of electrons — of elementary charge —e — orbiting around the nucleus
of charge Ze.

A number of experimental observations, though, were incompatible with this
idea of orbiting electrons. In particular, according to the successful electromag-
netic theory, charged electrons in orbital (radially accelerated) motion should
radiate energy, thus decelerating and eventually collapsing onto the nucleus.
Clearly, such a picture would imply that matter is essentially unstable, in flagrant
contradiction with our everyday experience of the very existence of matter. It
was this kind of incompatibility that motivated the idea that matter at such small
scale does not obey the laws of classical mechanics and electromagnetism, but a
different set of laws, whose body became known as quantum mechanics (Bohr,
1913). To solve the problem of electron radiation, Bohr postulated the existence
of certain peculiar orbits for which the electron would not radiate. These orbits
correspond to specific energies and radii, and the promotion from one orbit to
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4 The problem of the structure of matter

another could only happen through the absorption or emission of a quantum of
energy. One of the appealing aspects of this theory was its conceptual compati-
bility with Planck’s theory of black body (electromagnetic) radiation, which also
required discrete energy levels. The emission of light of very precise frequency
by atoms could then be explained as the decay of an electron from a higher
to a lower energy level, by emitting a quantum of radiation whose frequency
was proportional to the energy difference between these levels. These ebullient
new ideas gave a tremendous momentum to the field, and, in a few decades, the
mathematical apparatus, the language of quantum mechanics, was largely devel-
oped. Schrodinger’s equation was published in 1926 (Schrodinger, 1926), and it
was soon applied to multi-electronic atoms and to polyatomic systems such as
molecules (Heitler and London, 1927) and solids (Bloch, 1928). It is the main
goal of this book to describe the different approaches to the description of matter
at the atomic scale, i.e. in terms of atomic nuclei and electrons.

In general terms, we can imagine a piece of matter as a collection of interact-
ing atoms, sometimes under the influence of an external field. This ensemble of
particles may be in the gas phase (molecules, clusters) or in a condensed phase
(bulk solids, surfaces, wires). It could be in a solid, liquid or amorphous phase,
either homogeneous or heterogeneous (molecules in solution, interfaces, adsor-
bates on surfaces). However, at this scale, we can unambiguously describe all
these systems as a set of atomic nuclei and electrons interacting via coulombic,
electrostatic forces. Formally, we can write the Hamiltonian of such a system in
the following general form:

P 32 N 32 2 P P
~ h h ZZ
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2 N N P N
e 1 ZI
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where R={R;, I=1,...,P} is a set of P nuclear coordinates, and r =
{r;, i=1,...,N}isasetof N electronic coordinates. Z; and M, are the nuclear

charges and masses, respectively. Since the electrons are fermions, the total elec-
tronic wave function must be antisymmetric, i.e. it should change sign whenever
the coordinates of any two electrons are exchanged. Different nuclear species
are distinguishable, but nuclei of the same species also obey a specific statistics
according to the nuclear spin. They are fermions for half-integer nuclear spin
(e.g. H, *He) and bosons for integer spin (e.g. D, *He, H,). All the ingredients
are well known and, in principle, all the properties can be derived by solving the
time-independent Schrodinger equation:

H ¥R, 1r)=E&Y,(R,T), (1.2)
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The problem of the structure of matter 5

where &, are the energy eigenvalues and W, (r, R) are the corresponding eigen-
states, or wave functions, which must be antisymmetric with respect to exchange
of electronic coordinates in r, and symmetric or antisymmetric with respect to
exchange of nuclear variables in R.

In practice, this problem is almost impossible to treat within a full quantum
mechanical framework. Only in a few cases, such as hydrogenoid atoms or the
H; molecule, a complete analytic solution is available. Exact numerical solutions
are also limited to a few cases, mostly atoms and very small molecules. There
are several features that contribute to this difficulty, but the most important is
that this is a multi-component many-body system, and the two-body nature of the
Coulomb interaction makes the above Schrodinger equation not separable.

In order to fix ideas, let us confine ourselves to the case of an atom with Z
electrons, and focus on the electronic wave function. First of all, to respect the
antisymmetry of the wave function against electron exchange, we can, in principle,
write such a wave function as an antisymmetrized product of one-electron wave
functions (a so-called Slater determinant). This assumes, however, some kind of
separability of the Schrodinger equation, implying that the probability of finding
an electron at some point in space is essentially independent of where the other
electrons are located. The repulsive electron—electron interaction is quite at odds
with this picture, because an electron located at point r in space precludes other
electrons from approaching this location, much in the spirit of an exclusion zone.
Hence, the probability of finding an electron at r depends on the location of the
other Z — 1 electrons. This phenomenon is known as correlation, and it implies
that the exact many-body wave function should contain factors depending on
two electronic coordinates. Therefore, the image in terms of one-electron wave
functions can be somewhat crude in many cases.

This means that the full Schrodinger equation cannot be easily decoupled
into a set of equations, so that, in general, we have to deal with 3(P+ N)
coupled degrees of freedom. The usual choice is to resort to a few reasonable
and well-controlled approximations, which encompass a wide variety of prob-
lems of interest. Of course, there are systems where the hypotheses leading to
these approximations are violated, and these are by no means uninteresting. They
require, however, a much larger theoretical and computational effort, and thus,
historically, precedence has been given to the easier systems.

In the first part of this book we shall develop the theory starting from two major
approximations: the adiabatic separation of the nuclear and electronic degrees
of freedom, and the classical treatment of atomic nuclei. We shall then discuss
in detail the different approaches to tackling the electronic problem, as emerged
from two, often contrasting, but mostly cooperating, communities: chemists and
physicists, trying to establish a common language between them. This will be
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6 The problem of the structure of matter

done in the spirit of facilitating the understanding of chemical approaches by
physicists, and vice versa. In fact, similar approaches are sometimes adopted by
the two communities using different names, as is the case of tight-binding and
semiempirical methods. In the second part, we shall concentrate on the different
computational methods proposed to cast the problem of the structure of matter in
a form amenable to numerical treatment, devoting our attention also to specific
algorithms.

1.1 Adiabatic approximation

A first observation is that the time scale associated with the motion of nuclei
is usually much slower than that associated with electrons. In fact, the most
unfavorable case of a single proton already corresponds to a mass ratio of 1:1836,
i.e. less than 1%. Within a classical picture we could say that, under typical
conditions, the velocity of the electron is much larger than that of the heavy
particle (the proton). In this spirit, Born and Oppenheimer (1927) proposed a
scheme for separating the motion of nuclei from that of the electrons. The original
work studied the time-independent Hamiltonian (1.1) perturbatively in the mass
ratio k = (m/M)'/*. The influence of the nuclei on the electronic wave functions
becomes apparent when considering a new set of nuclear variables defined by
R = R, + ku, where u represents the displacement of the nuclei with respect to
their equilibrium positions R. Using this change of variables and expanding the
R-dependent terms in the potential in powers of u, they obtained an expansion
of the Hamiltonian in powers of k. By keeping terms up to fourth order in «,
they showed that no mixing of different electronic stationary states happened due
to the interaction with the nuclei. Therefore, under appropriate conditions that
are discussed below, the electrons do not undergo transitions between stationary
states. This is called the adiabatic approximation. The reason for the name is
based more on dynamical, rather than stationary, arguments. We will first present
a semiclassical picture which serves to fix the ideas, and then the quantum
mechanical derivation from time-dependent perturbation theory. This will allow
us to inspect the limits of validity of the adiabatic approximation.

Let us first analyze the case of a molecular system, where the electronic
spectrum is discrete. The arguments here have to be adapted to the case of
infinite systems such as solids or liquids, which exhibit a continuum spectrum of
excitations. In a molecule there are basically three types of motion: electronic,
nuclear vibrations, and nuclear rotations, each one corresponding to a typical
time (or energy) scale. The energy scale of the electronic motion is given by
the separation between successive electronic eigenstates, which is of the same
order of magnitude as the ground state energy. This quantity is of the order of
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1.1 Adiabatic approximation 7

E. ~ h?/(ma®), where a is a typical interatomic distance in the molecule. This
distance a gives an indication of the order of magnitude of the amplitude of
the electronic motion. Typical distances are of the order of a few A, and the
associated energies are in the order of 1 eV. The energy scale of nuclear vibrations
is given, in the harmonic approximation, by the quantum E, = hw, where w is the
frequency of the vibrational motion. The order of magnitude of such a frequency
can be obtained by thinking that the energy of a classical oscillatory motion of
amplitude a is Mw?a®. With a being a typical interatomic distance, a motion of this
amplitude would cause the extraction of an atom from the molecule. Since atoms
in molecules bind mostly via shared electrons (chemical bonding), this energy can
be identified with that of breaking a chemical bond, which is of the same order of
magnitude as the electronic energy E,. Hence, Mw?a* ~ E., and replacing a in
terms of E, from the first expression leads to E, = hw ~ (m/M)'/?E,. Rotational
energies are the smallest of them all. They are related to the angular momentum
of the molecule, which is quantized in levels separated by & h. The energy is
E = LZ/ I, where I is the moment of inertia of the molecule, which is of the order
of Ma®. Therefore, E, ~ h*>/Ma* = (m/M)h?/ma* = (m/M)E,. In summary,
there is the following relation between these three energy scales:

E, ~ K’E, ~ K'E,. (1.3)

Therefore, if we take a value of k &~ 0.066 (corresponding to the N, molecule),
we have that rotational energies are about two orders of magnitude smaller than
vibrational energies, and these in turn are two orders of magnitude smaller than
electronic energies. For example, the first electronic excitation energy in the N,
molecule is 7.5 eV, the vibrational excitation energy is about 300 meV, and the
rotational level separation is around 0.5 meV.

In extended systems the electronic spectrum is continuous and, in principle, so
is the excitation spectrum. Here we have to distinguish two cases. For insulating
and semiconducting systems the smallest electronic excitation is given by the
energy gap, which, as in the case of molecules, falls in the region of a few eV
(Eq ~ 1.1 eV for silicon and ~ 4 eV for diamond). For metallic systems the
electronic excitations form a continuum, so that, formally, £, = 0 and, strictly
speaking, the adiabatic approximation should not be applicable. We shall discuss
this at the end of this section, but, for the moment being, let us analyze the situ-
ation in which, for some reason, the electronic energy levels are more narrowly
spaced than what has been assumed above. In that case the electronic energy
scale becomes comparable to that of the nuclear vibrational motion, the adiabatic
separation breaks down, and nuclei and electrons have to be treated in a unified
framework. Examples of this behavior are when the electronic gap closes due to
some external factor, e.g. pressure, doping, or temperature. States can be formed
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8 The problem of the structure of matter

where electrons are intimately coupled to a nuclear vibration, thus giving rise to
exotic entities like polarons. Thermal agitation also modifies the spacing between
electronic levels but in a dynamical way. Occasionally, two or more levels may
become so close that the nuclear motion promotes an electronic transition from
one to another level, thus violating the hypotheses of the adiabatic approxima-
tion. If these crossings involve electron—nuclear interactions that occur during
a limited period of time, then they can be studied using asymptotic techniques
that view the non-adiabatic region in terms of transition probabilities, like the
Landau—Zener approach (Messiah, 1961). The same phenomenon happens in
atomic and molecular collisions. A more general approach requires the dynamical
treatment of the electronic motion coupled to the nuclear motion, but described
at the quantum-mechanical level. Practical schemes to achieve this goal within
a harmonic description of the nuclear motion (phonons) have only very recently
become available (see, e.g., Horsfield eral., 2004).

The electrons can then be thought of as instantaneously following the motion of
the nuclei, while remaining always in the same stationary state of the electronic
Hamiltonian. This stationary state will vary in time because of the electrostatic
coupling of the two sets of degrees of freedom, but, if the electrons were, e.g., in
the (many-electron) ground state, they would remain there forever. In other words,
as the nuclei follow their dynamics, the electrons instantaneously adjust their
wave function according to the nuclear wave function. This approximation ignores
the possibility of having non-radiative transitions between different electronic
eigenstates. Transitions can only arise through the coupling with an external
electromagnetic field, but this issue will not be addressed in the following.

All this can be cast in a formal mathematical framework by proposing a solution
to Eq. (1.2) of the following form:

YR, r,)=) 0,R,)P,(R,r), (1.4)

n

where 0, (R, r) are wave functions describing the evolution of the nuclear sub-
system in each one of the adiabatic electronic eigenstates ®, (R, r). These satisfy
the time-independent Schrodinger equation

ileq)n(R’r) :En(R)(I)n(R’ l‘), (15)
where the electronic Hamiltonian is:
hey=T+0Up+V,=H-T,-V,. (1.6)

Here T is the electronic kinetic operator, Uee is the electron—electron 1nteract10n
V,e the electron—nuclear interaction, T the nuclear kinetic operator, and V,,, the
inter-nuclear interaction.
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1.1 Adiabatic approximation 9

In this partial differential equation on the r variables, the 3P nuclear coordinates
R enter as parameters. This expansion, which is always mathematically possible, is
called the expansion in the adiabatic basis, because @, (R, r) are solutions of the
time-independent electronic Schrodinger equation, corresponding to a particular
nuclear configuration. Equation (1.5) has to be solved for all nuclear configurations
R where the nuclear wave function is non-vanishing.

By replacing the above ansatz into the full Schrddinger equation we obtain:

P 32
[ +22Z41, E(R)i|®(Rt)_

P h2 )
—E E D, \|Vi|P,)0,(R, 1t
n112M< |I| > (

YT f0,R0- (@,F,) (1.7)
n =1 2MI
which constitutes a set (infinite, in principle) of coupled partial differential equa-
tions containing off-diagonal terms. Here we have used Dirac’s bra-ket notation
to indicate matrix elements of the type

(®,]7,|®,) = / @:(R, )V, P, (R, 1) dr. (1.8)
Therefore, the reduction of the full wave function to an expression of the type
YR,r,1)=0,R,HP,(R,r) (1.9)

is not completely correct, because, even if the system was initially prepared in a
pure state like the above one, the off-diagonal terms will mix (excite) the different
electronic eigenstates along the temporal evolution. These are precisely the non-
radiative transitions alluded to above. If this is the case, then the dynamics is said
to be non-adiabatic. However, if the off-diagonal terms can be neglected, then an
expression like (1.9) is valid because the nuclear dynamics has no means to cause
electronic transitions, and the electrons remain always in the same (n) adiabatic
state (ground or excited). In this case, the dynamics is said to be adiabatic.
The necessary condition for neglecting the non-adiabatic couplings is that

P 32
h
Z—<® V/10,) - (@,]V|®,)| < |Ey(R) - E, (R)] (1.10)
=M
or, equivalently,
m hQ,
<1, (1.11)

M |E,(R)—E,(R)
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10 The problem of the structure of matter

where (), is the maximum frequency of rotation of the electronic wave function
due to the nuclear motion, and the energies in the denominator correspond to
the electronic adiabatic eigenstates (the energy gap if ¢ = 1 and n = 0). Notice
that the mass ratio m/M is always smaller than 5 x 107, thus justifying the
adiabatic approximation unless a very small gap occurs, as for open-shell, conical
intersections or Jahn—Teller systems. The case of lighter particles such as muons
would be different. Typical electronic excitations are of the order of 1 eV, while
typical nuclear excitations (phonons) are of the order of 0.01 eV. This indicates
that there is a clear separation of energy (and consequently time) scales. There
are situations in which this approximation is not adequate, but they are rather
exceptional cases.

The arguments in favor of an adiabatic treatment of metallic systems are more
subtle. In principle, it can be argued that the adiabatic approximation breaks down
because the energy gap is zero and electronic excitations of vanishing energy are
possible. However, since typical temperatures (between room temperature and a
few thousand degrees) are usually much lower than the electronic Fermi temper-
ature, excitations are confined to a narrow region around the Fermi surface, and
most properties are little affected by neglecting non-adiabatic contributions due to
these few electrons. In fact, the usual treatment of electronic transport phenomena
in metals begins with the adiabatic description and introduces non-adiabatic terms
(in the form of electron—phonon interactions) afterwards, perturbatively. In terms
of the ratio of energy scales, it can also be realized that the relevant excitations in
metals at small wave numbers are not electron—hole pairs, which, besides being
very few, carry a small oscillator strength (Migdal’s theorem). The relevant energy
scale is actually dictated by the plasmon (collective charge excitation), which is
again typically of the order of a few eV.

1.2 Classical nuclei approximation

Therefore, according to the adiabatic approximation, the total wave function can
be written in the form of Expression (1.9), where 0,(R, 7) is the nuclear wave
function. At room temperature the thermal wavelength is Ay = (h%/2MkgT)'/?,
which, for hydrogen at room temperature, is of the order of 0.2 A. Regions
of space separated by more than Ay do not exhibit quantum phase coherence.
Interatomic distances are normally of the order of 1 A, and then the total nuclear
wave function can be considered as an incoherent superposition of individual
nuclear wave packets:

»
0,R, 1) =[] PR, RV (1), 1), (1.12)
I=1

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521815916
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521815916 - Electronic Structure Calculations for Solids and Molecules: Theory and Computational
Methods

Jorge Kohanoff

Excerpt

More information

1.2 Classical nuclei approximation 11

where R()(7) are the centers of the individual wave packets. The details of the
decoherence process, i.e. the quantum-to-classical transition, have been the subject
of intense debate in recent years and are now fairly well understood (see Habib
et al., 1998, and references therein), but they go beyond the scope of this book.
The above expression for the nuclear wave function is called the time-dependent
Hartree approximation, and does not include correlations between the different
nuclei. Exchange effects are also absent in this expression, although they could be
recovered by proposing a total wave function in the form of a Slater determinant
(for odd-spin nuclei), thus leading to the so-called time-dependent Hartree—Fock
approximation. However, atomic nuclei exhibit exchange effects only at very
low temperatures, e.g. below 5 K in the case of hydrogen. In addition, nuclear
masses are typically large enough that the individual nuclear wave packets are
quite localized, provided that the curvature of the potential where they move is
sufficiently large. For instance, the ground state of a proton in a typical molecular
bonding environment has a width of about 0.25 A. The combination of these two
observations allows us to propose that, in most cases, atomic nuclei can be treated
as classical particles.

The time-dependent adiabatic Schrédinger equation for the nuclear wave func-

tion is
.90, (R, 1) PoRr
h—————=|—-) —V R)| 0 (R,?), 1.13
with
P h2 )
£,(R)=¢,(R)+ Zl _2M1 (D, Vi |D,). (1.14)
I=

The second term in this expression is a diagonal correction to the electronic
energy levels due to the dependence of the electronic wave function on the
nuclear coordinates. It can be shown by dimensional analysis that the matrix
element in the second term is proportional to the electron mass, so that the
correction to the energy levels is proportional to k* = m/M. It is a correction
that can actually be calculated, and turns out to be smaller than 0.5% in the most
unfavorable cases (Handy and Lee, 1996). Therefore, in practice, it is usually
neglected, as suggested by Born and Oppenheimer (1927). When this term is
included, the approximation is called adiabatic. When it is neglected it receives
the name of Born—Oppenheimer approximation. Very often these two terms are
used indistinctly to indicate the case in which the diagonal correction is ignored.
In what follows, we shall use the Born—Oppenheimer approximation and ignore
this term.
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