<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>48–50</td>
</tr>
<tr>
<td>hFE</td>
<td>48–50</td>
</tr>
<tr>
<td>Q</td>
<td>53, 57</td>
</tr>
<tr>
<td>rBE</td>
<td>53, 57</td>
</tr>
<tr>
<td>rE</td>
<td>52, 57</td>
</tr>
<tr>
<td>VBE</td>
<td>50</td>
</tr>
<tr>
<td>VCE</td>
<td>51</td>
</tr>
<tr>
<td>−3 dB point</td>
<td>26</td>
</tr>
<tr>
<td>2N3904 pinout</td>
<td>54</td>
</tr>
<tr>
<td>2N3906 pinout</td>
<td>54</td>
</tr>
<tr>
<td>2N5485 pinout</td>
<td>69</td>
</tr>
<tr>
<td>311 comparator</td>
<td>114</td>
</tr>
<tr>
<td>311 pinout</td>
<td>114</td>
</tr>
<tr>
<td>555 timer</td>
<td>118, 156</td>
</tr>
<tr>
<td>7400 IC series</td>
<td>125</td>
</tr>
<tr>
<td>741 op amp</td>
<td>85</td>
</tr>
<tr>
<td>741 pinout</td>
<td>86</td>
</tr>
<tr>
<td>74121 monostable</td>
<td>156, 159</td>
</tr>
<tr>
<td>74121 pinout</td>
<td>159</td>
</tr>
<tr>
<td>74138 decoder</td>
<td>178</td>
</tr>
<tr>
<td>74150 mux</td>
<td>162</td>
</tr>
<tr>
<td>74150 pinout</td>
<td>162</td>
</tr>
<tr>
<td>74191 counter</td>
<td>168</td>
</tr>
<tr>
<td>7489 RAM</td>
<td>163</td>
</tr>
<tr>
<td>7489 pinout</td>
<td>163</td>
</tr>
<tr>
<td>AC coupling</td>
<td>43</td>
</tr>
<tr>
<td>acceptor</td>
<td>32</td>
</tr>
<tr>
<td>active bandpass filter</td>
<td>123</td>
</tr>
<tr>
<td>active differentiator</td>
<td>102, 106</td>
</tr>
<tr>
<td>active filter</td>
<td>123</td>
</tr>
<tr>
<td>active integrator</td>
<td>103, 107</td>
</tr>
<tr>
<td>active rectifier</td>
<td>108</td>
</tr>
<tr>
<td>ADC</td>
<td>167</td>
</tr>
<tr>
<td>successive-approximation</td>
<td>171</td>
</tr>
<tr>
<td>tracking</td>
<td>170</td>
</tr>
<tr>
<td>addition</td>
<td>141</td>
</tr>
<tr>
<td>algebra</td>
<td>126, 140, 141</td>
</tr>
<tr>
<td>alternating-current</td>
<td>15</td>
</tr>
<tr>
<td>ammeter</td>
<td>39</td>
</tr>
<tr>
<td>amplifier</td>
<td>50</td>
</tr>
<tr>
<td>common-emitter</td>
<td>57</td>
</tr>
<tr>
<td>difference</td>
<td>95</td>
</tr>
<tr>
<td>differential</td>
<td>86</td>
</tr>
<tr>
<td>exponential</td>
<td>105</td>
</tr>
<tr>
<td>grounded-emitter</td>
<td>59</td>
</tr>
<tr>
<td>inverting</td>
<td>168</td>
</tr>
<tr>
<td>op amp</td>
<td>88</td>
</tr>
<tr>
<td>logarithmic</td>
<td>105</td>
</tr>
<tr>
<td>noninverting</td>
<td>89</td>
</tr>
<tr>
<td>op amp</td>
<td>89</td>
</tr>
<tr>
<td>operational</td>
<td>79, 85</td>
</tr>
<tr>
<td>amplitude</td>
<td>13, 17, 18</td>
</tr>
<tr>
<td>analog</td>
<td>167</td>
</tr>
<tr>
<td>analog information</td>
<td>167</td>
</tr>
<tr>
<td>analog-to-digital conversion</td>
<td>167</td>
</tr>
<tr>
<td>analog-to-digital converter</td>
<td>167</td>
</tr>
<tr>
<td>anode</td>
<td>35, 54</td>
</tr>
<tr>
<td>arithmetic, binary</td>
<td>125, 126, 141</td>
</tr>
<tr>
<td>assertion-level logic</td>
<td>127, 146</td>
</tr>
<tr>
<td>assertion-level logic notation</td>
<td>146</td>
</tr>
<tr>
<td>astable multivibrator</td>
<td>120, 156</td>
</tr>
<tr>
<td>asynchronous counter</td>
<td>151, 157</td>
</tr>
<tr>
<td>attenuating probe</td>
<td>10</td>
</tr>
<tr>
<td>attenuation</td>
<td>10, 26, 77</td>
</tr>
<tr>
<td>attenuator</td>
<td>76, 77, 91</td>
</tr>
<tr>
<td>bandpass filter</td>
<td>123</td>
</tr>
<tr>
<td>bandwidth</td>
<td>87</td>
</tr>
<tr>
<td>base</td>
<td>48</td>
</tr>
<tr>
<td>BCD counter</td>
<td>157</td>
</tr>
<tr>
<td>bi-quinary counter</td>
<td>157</td>
</tr>
<tr>
<td>bias current</td>
<td>94</td>
</tr>
<tr>
<td>binary addition</td>
<td>141</td>
</tr>
<tr>
<td>binary arithmetic</td>
<td>125, 126, 141</td>
</tr>
<tr>
<td>binary counter</td>
<td>156, 157</td>
</tr>
<tr>
<td>binary search algorithm</td>
<td>171</td>
</tr>
<tr>
<td>binary-coded decimal</td>
<td>157</td>
</tr>
<tr>
<td>bipolar junction transistor</td>
<td>47</td>
</tr>
<tr>
<td>bistable multivibrator</td>
<td>143, 156</td>
</tr>
<tr>
<td>blocking capacitor</td>
<td>56</td>
</tr>
<tr>
<td>Boolean algebra</td>
<td>126, 140, 141</td>
</tr>
<tr>
<td>bouncer</td>
<td>152</td>
</tr>
<tr>
<td>breakout</td>
<td>26</td>
</tr>
<tr>
<td>buffer</td>
<td>55</td>
</tr>
<tr>
<td>push–pull</td>
<td>62</td>
</tr>
</tbody>
</table>
buffering, 55

capacitance code, 20
capacitance
parasitic, 56
capacitive reactance, 19
capacitor, 15, 16, 19, 20
blocking, 56
ceramic, 16
electrolytic, 16
mica, 16
paper, 16
polarized, 16
types of, 16
carry-in, 156
carry-out, 156, 157
cascaded counters, 156
cathode, 35, 54
clipping, 77
closed-loop, 89
CMOS, 125
CMOS IC’s, powering, 136
CMOS logic, 133
CMOS TTL, 133
CMRR, 78, 96, 97
collector, 48
common-emitter amplifier, 57
common-mode, 78
common-mode gain, 78
common-mode rejection, 78
common-mode rejection ratio, 78, 96
comparator, 113
311, 114
voltage, 113
magnitude, 142
compliance, 59, 71
contact bounce, 152
conversion
analog-to-digital, 167
digital-to-analog, 167
converter
analog-to-digital, 167
digital-to-analog, 167
counter, 151, 152, 156
74191, 168
asynchronous, 151, 157
BCD, 157
bi-quinary, 157
binary, 156, 157
decade, 157
cascaded, 156
decimal, 157, 158
four-bit, 157
negative-edge-triggered, 157
ripple, 151, 157
synchronous, 152, 157
two-bit, 151, 156
crossover distortion, 63, 109
CRT, 9
current mirror, 79
current source
FET, 70
op amp, 97
transistor, 59
current-source load, FET, 72
CY62256 memory, 177
D-type flip-flop, 147
DAC, 167
DAC806, 174
DAC80x, 178
family, 174
Darlington, 61
data selector, 162
DC coupling, 79, 85
DC offset, 87
debouncer, switch, 153
debugging, 144
debugging digital logic, 144
decade counter, 157
decibel, 83
decimal, binary-coded, 157
decimal counter, 157, 158
decoder, 178
74138, 178
delay, propagation, 148
DeMorgan’s theorem, 141, 146
diagram
state, 143
timing, 143
dielectric, 16
dielectric constant, 16
difference amplifier, 95
differential amplifier, 75, 76, 86
differential gain, 76, 77
differential signal, 75
differentialiator, 15, 27, 75, 102
active, 102, 106
op amp, 102, 106
digital, 167
digital information, 167
digital logic, 125
debugging, 144
digital meter, 1
digital recording, 177
digital-to-analog conversion, 167
digital-to-analog converter, 167
diode, 31
gate-channel, 66
light-emitting, 60
zener, 123
diode characteristic, 31, 33, 34
diode constant, 106
diode drop, 37
diode logic, 131
diode test, multimeter, 54
diode-bridge rectifier, 43
DIP IC package, pin numbers, 129
display
logic-level, 137
TIL311, 158
distortion, 58
crossover, 63, 109
divide-by-four circuit, 151
divide-by-ten circuit, 158
divide-by-two circuit, 148
DMM, 1
donor, 32
driver, push–pull, 109
DVM, 1
dynamic resistance, 37, 52, 57
of diode, 37
of emitter, 52
FET source, 72
Ebers–Moll transistor model, 52
ECL, 125
electrolytic, 16
electrolytic capacitor, 16
emitter, 48
emitter follower, 55
emitter resistance, 52
equality tester, 141
exclusive-OR gate, 141
exponential amplifier, 105
factor, quality (Q), 124
false, 126
feedback, 79
negative, 71, 75, 79, 88, 117
positive, 62, 113, 117
FET, 65
FET current source, 70
FET saturation, 67
filter, 123
active, 123
bandpass, 123
high-pass, 15, 28
low-pass, 15, 25, 28
finite-state machine, 143, 162
flip-flop, 143, 156
D-type, 147
JK, 148
toggling, 148
follower, voltage, 94
forward-bias, 34
four-bit counter, 157
frequency domain, 15, 101
function generator, 2, 13
gain, common-mode, 78
gain, differential, 77
gate current, 66
gate
exclusive-OR, 141
NAND, 140
OR, 142
XOR, 141
gate-channel diode, 66
golden rules, op amp, 90
ground, virtual, 93, 168
ground clip, 10
grounded-emitter amplifier, 59
half-power frequency, 26
hexadecimal, 158, 164
hexadecimal display, TIL311, 158
high (logic level), 126
hysteresis, 116, 170
IC
digital, 85
linear, 85
ideal ammeter, 39
ideal op amp, 87
ideal rectifier, 36
ideal voltmeter, 39
impedance input, 45
output, 45
measuring, 46
indicators, LED, breadboard, 137
inductance, 19
inductive reactance, 19
inductor, 19
information analog, 167
digital, 167
input bias current, 94
input impedance, 45
input offset voltage, 78, 91
integrated circuit digital, 85
linear, 85
integrator, 15, 24, 103
active, 103, 107
op amp, 103, 107
internal state, 143, 146, 149, 162
inverter, 60, 141, 149
inverting amplifier, 58, 88, 168
op amp, 88, 168
JFET, 65
JK flip-flop, 148
junction diode, 32
junction, summing, 93, 169
latch, RS, 145, 153
LED, 60
LED indicators, breadboard, 137
level switches, breadboard, 137,
138
LF398 SHA, 177
light-emitting diode, see LED
logarithmic amplifier, 105
logarithmic search algorithm, 171

logic
assertion-level, 127, 146
digital, 125
diode, 131
multiplexer, 162
negative, 127
positive, 127
sequential, 143
synchronous, 144
logic function, universal, 140
logic levels, 125, 126
TTL, 126
logic-level displays, 137
low (logic level), 126
machine, state, 143, 162
magnitude comparator, 142
margin, noise, 126
memory
random-access, 162
word-addressable, 163
meter, digital, 1
mho, 48
MKS, 16
momentary-contact switch, 153
monostable, 156, 159
monostable multivibrator, 156, 159
MOSFET, 65
MOSFET logic, 133
multimeter, 1
multimeter diode test, 54
multiplexer, 162
multiplexer or logic, 162
multivibrator, 120, 143, 156, 159
astable, 120, 156
bistable, 143, 156
monostable, 156, 159
mux, 162
NAND, 140
NAND gate, 140
negative feedback, 75, 79, 88
negative logic, 127
negative-edge-triggered counter, 157
negative-edge triggering, 147, 149, 157
noise margin, 126
noninverting amplifier, op amp, 89
PNP transistor, 48
offset voltage, 78
Ohm’s law, 6
one (logic level), 126
one-shot, 156, 159
op amp, 79, 85
differentiator, 102
golden rules, 90
ideal, 87
integrator, 103
inverting amplifier, 88
noninverting amplifier, 89
rectifier, 108
signal-processing, 101
op-amp inverting amplifier, 168
open-collector output, 164
open-loop, 88, 91, 113
operational amplifier, see op amp
OR, 142
OR gate, 142
oscillation, 115
parasitic, 56
oscillator, square-wave, 117
relaxation, 117
sink–source, 122
oscilloscope, 8–10
cursors, 14
measurement, 13
triggering, 12
output impedance, 45
measurement of, 46
output, 3-state, see output, three-state
output, open-collector, 164
output, three-state, 164
output, totem-pole, 133, 164
output, tri-state, see output, three-state
parasitic capacitance, 56
parasitic oscillation, 56
passband, 124
peak-to-peak voltage, 17
permissivity, 16
phase shift, 25
pick-up, 115
pin numbers, DIP IC package, 129
pinch-off, 66
pinch-off voltage, VEE, 68
pinout
74121, 159
74150, 162
7489, 163
pin compensation adjustment, 10
propagation delay, 148
measurement of, 148
pull-up resistor, 114, 164
push–pull buffer, 62
push–pull driver, 109
quality factor (Q), 124
quiescent voltage, 57
RAM, 162
7489, 163
random-access memory, see RAM
RC circuit, 15
RC timing network, 159
reactance, 19
capacitive, 19
inductive, 19
recording, digital, 177
rectification, 31, 36
rectifier, 36, 40
active, 108
capacitive, 19
inductive, 19
full-wave, 43
half-wave, 40
ideal, 38
op amp, 108
reference lead, 10
register, shift, 181
regulator, 40
rejection ratio, common-mode, 96
relaxation oscillator, 117
resistance
dynamic, 37, 52, 57
static, 37
resistor
pull-up, 114, 164
shunt, 104
reverse saturation current, 33, 52
ripple counter, 151, 157
ripple voltage, 43
RS latch, 145, 153
sample-and-hold, 177
saturated switch, 60
saturation
bipolar-transistor, 59, 60
transistor, 68
saturation current, 33, 52
saturation drain current, FET, 68
saturation region, FET, 67
saturation voltage, 91
Schmitt trigger, 116
search algorithm
binary, 171
logarithmic, 171
sequential, 143
series, 5, 6, 8
SHA, 177
shift register, 181
short circuit, 7, 11
shunt resistor, 104
signal processing, op amp, 101
simple transistor model, 51
sine-cosine oscillator, 122
slew rate, 87
source follower, 71
SPDT switch, 152
speed, transition, 126
state, internal, 143, 146, 149, 162
state diagram, 143
state machine, 143, 162
state table, 146
state resistance, 37
stored charge, 61
stray capacitance, 115
successive-approximation ADC, 171
summing junction, 93, 169
switch, 152
momentary-contact, 153
SPDT, 152
level, breadboard, 137, 138
switch debouncer, 153
synchronous counter, 152, 157
synchronous logic, 144
table, state, 146
table, truth, 140, 141, 143, 146
tester, equality, 141
theorem, DeMorgan’s, 141, 146
Thévenin equivalent circuit, 45
three-state output, 164
three-terminal voltage regulators, 45
threshold voltage, 113
TIL311 display, 158
time constant, 24
time domain, 15, 102
timer, 118, 156, 555
timing diagram, 143
timing network, RC, 159
TO-92 case, 54
toggling flip-flop, 148
totem-pole output, 133, 164
tracking ADC, 170
transconductance amplifier, 48
transconductance
FET, 68
transistor, 68
transistor, field-effect, 65
transistor, junction, 47
transistor, simple model, 51
transistor action, 48
transistor current source, 59
transistor model, Ebers–Moll, 52
transistor saturation, 68
transition speed, 126
tri-state, 149, 150
tri-state output, see output, three-state
trigger, Schmitt, 116
triggering
negative-edge, 147, 149, 157
positive-edge, 147
true (logic level), 126
truth table, 140, 141, 143, 146
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL, 125</td>
</tr>
<tr>
<td>TTL families, 128, 133</td>
</tr>
<tr>
<td>TTL history, 128, 133</td>
</tr>
<tr>
<td>TTL ICs, powering, 136</td>
</tr>
<tr>
<td>TTL logic levels, 126</td>
</tr>
<tr>
<td>two-bit counter, 151, 156</td>
</tr>
<tr>
<td>universal logic function, 140</td>
</tr>
<tr>
<td>virtual ground, 93, 168</td>
</tr>
<tr>
<td>voltage</td>
</tr>
<tr>
<td>peak-to-peak, 17</td>
</tr>
<tr>
<td>quiescent, 57</td>
</tr>
<tr>
<td>threshold, 113</td>
</tr>
<tr>
<td>voltage comparator, 113</td>
</tr>
<tr>
<td>voltage-divider, 15, 22, 23, 26</td>
</tr>
<tr>
<td>voltage drop, 43</td>
</tr>
<tr>
<td>voltage follower, 94</td>
</tr>
<tr>
<td>voltage regulation, 44</td>
</tr>
<tr>
<td>voltmeter, ideal, 39</td>
</tr>
<tr>
<td>word addressing, 163</td>
</tr>
<tr>
<td>XOR, 141</td>
</tr>
<tr>
<td>XOR gate, 141</td>
</tr>
<tr>
<td>Zener diode, 35, 123</td>
</tr>
<tr>
<td>zero, 126</td>
</tr>
</tbody>
</table>