Hands-On Electronics

Packed full of real circuits to build and test, *Hands-On Electronics* is a unique introduction to analog and digital electronics theory and practice. Ideal both as a college textbook and for self-study, the friendly style, clear illustrations and construction details included in the book encourage rapid and effective learning of analog and digital circuit design theory. All the major topics for a typical one-semester course are covered, including RC circuits, diodes, transistors, op amps, oscillators, digital logic, counters, D/A converters and more. There are also chapters explaining how to use the equipment needed for the examples (oscilloscope, multimeter and breadboard), together with pinout diagrams for all the key components referred to in the book.
Hands-On Electronics

A One-Semester Course for Class Instruction or Self-Study

Daniel M. Kaplan

and

Christopher G. White

Illinois Institute of Technology
Contents

List of figures xi
List of tables xv
About the authors xvi
To the Reader xvii
Acknowledgments xviii
Introduction xix

1 Equipment familiarization: multimeter, breadboard, and oscilloscope 1

1.1 Multimeter 1
1.2 Breadboard 2
 1.2.1 Measuring voltage 4
 1.2.2 Measuring current; resistance and Ohm’s law 5
 1.2.3 Measuring resistance 8
1.3 Oscilloscope 8
 1.3.1 Probes and probe test 10
 1.3.2 Display 11
 1.3.3 Vertical controls 11
 1.3.4 Horizontal sweep 12
 1.3.5 Triggering 12
 1.3.6 Additional features 13

2 RC circuits 15

2.1 Review of capacitors 15
 2.1.1 Use of capacitors; review of AC circuits 17
 2.1.2 Types and values of capacitors 19
Contents

2.2 Review of current, voltage, and power 20
 2.2.1 Destructive demonstration of resistor power rating 21
2.3 Potentiometer as voltage divider 22
 2.3.1 DC voltage divider 23
 2.3.2 AC voltage divider 23
2.4 RC circuit 24
2.5 RC circuit as integrator 24
2.6 Low-pass filter 25
2.7 RC circuit as differentiator 27
2.8 High-pass filter 28
2.9 Summary of high- and low-pass filters 28

3 Diodes 31

 3.1 Semiconductor basics 31
 3.2 Types of diodes 35
 3.3 Rectification 36
 3.4 Diode action – a more sophisticated view 37
 3.5 Measuring the diode characteristic 38
 3.6 Exploring rectification 40
 3.7 Input and output impedance 45

4 Bipolar transistors 47

 4.1 Bipolar-junction-transistor basics 47
 4.1.1 Basic definitions 50
 4.1.2 Simplest way to analyze transistor circuits 51
 4.1.3 Ebers–Moll transistor model 52
 4.2 Experiments 54
 4.2.1 Checking transistors with a meter 54
 4.2.2Emitter follower 55
 4.2.3 Common-emitter amplifier 57
 4.2.4 Collector as current source 59
 4.2.5 Transistor switch 60
 4.3 Additional exercises 61
 4.3.1 Darlington connection 61
Contents

4.3.2 Push–pull driver 62
4.3.3 Common-base amplifier 63

5 Transistors II: FETs 65
5.1 Field-effect transistors 65
5.1.1 FET characteristics 66
5.1.2 Modeling FET action 68
5.2 Exercises 69
5.2.1 FET characteristics 69
5.2.2 FET current source 70
5.2.3 Source follower 71
5.2.4 JFET amplifier 73

6 Transistors III: differential amplifier 75
6.1 Differential amplifier 75
6.1.1 Operating principle 76
6.1.2 Expected differential gain 76
6.1.3 Measuring the differential gain 77
6.1.4 Input offset voltage 78
6.1.5 Common-mode gain 78
6.2 Op amps and their building blocks 79
6.2.1 Current mirror 79
6.2.2 Differential amplifier with current-source loads 80
6.2.3 Improved current mirror 82
6.2.4 Wilson current mirror 82

7 Introduction to operational amplifiers 85
7.1 The 741 operational amplifier 85
7.1.1 741 pinout and power connections 86
7.1.2 An ideal op amp 87
7.1.3 Gain of inverting and noninverting amplifiers 88
7.1.4 Op amp ‘golden rules’ 90
7.1.5 The nonideal op amp 90
Contents

7.2 Experiments 91
- 7.2.1 Testing open-loop gain 91
- 7.2.2 Inverting amplifier 92
- 7.2.3 Noninverting amplifier 93
- 7.2.4 Voltage follower 94
- 7.2.5 Difference amplifier 95

7.3 Additional experiments 97
- 7.3.1 Current source 97
- 7.3.2 Noninverting summing amp with difference amplifier 98

8 More op amp applications 101
8.1 Op amp signal processing 101
- 8.1.1 Differentiator 102
- 8.1.2 Integrator 103
- 8.1.3 Logarithmic and exponential amplifiers 105

8.2 Experiments 106
- 8.2.1 Differential and integral amplifiers 106
- 8.2.2 Logarithmic and exponential amplifiers 108
- 8.2.3 Op amp active rectifier 108
- 8.2.4 Op amp with push–pull power driver 109

8.3 Additional exercises 111

9 Comparators and oscillators 113
9.1 Experiments 113
- 9.1.1 Op amp as comparator 113
- 9.1.2 Unintentional feedback: oscillation 115
- 9.1.3 Intentional positive feedback: Schmitt trigger 116
- 9.1.4 RC relaxation oscillator 117
- 9.1.5 555 timer IC 118

9.2 Additional experiments 121
- 9.2.1 Alarm! 121
- 9.2.2 Sine/cosine oscillator 122
- 9.2.3 Active bandpass filter 123
10 Combinational logic

10.1 Digital logic basics
10.1.1 Logic levels
10.1.2 Logic families and history
10.1.3 Logic gates
10.1.4 Summary of Boolean algebra

10.2 CMOS and TTL compared
10.2.1 Diode logic
10.2.2 Transistor–transistor logic (TTL)
10.2.3 Complementary MOSFET logic (CMOS)
10.2.4 Powering TTL and TTL-compatible integrated circuits

10.3 Experiments
10.3.1 LED logic indicators and level switches
10.3.2 MOSFETs
10.3.3 CMOS NAND gate
10.3.4 Using NANDs to implement other logic functions
10.3.5 TTL quad XOR gate

10.4 Additional exercises
10.4.1 7485 4-bit magnitude comparator

11 Flip-flops: saving a logic state

11.1 General comments
11.1.1 Schematics
11.1.2 Breadboard layout
11.1.3 Synchronous logic
11.1.4 Timing diagrams

11.2 Flip-flop basics
11.2.1 Simple RS latch
11.2.2 D-type flip-flop

11.3 JK flip-flop

11.4 Tri-state outputs
11.5 Flip-flop applications
 11.5.1 Divide-by-four from JK flip-flops
 11.5.2 Contact bounce
 11.5.3 Electronic coin toss

12 Monostables, counters, multiplexers, and RAM
 12.1 Multivibrators
 12.2 Counters
 12.3 Experiments
 12.3.1 Bi-quinary ripple counter
 12.3.2 Monostable multivibrator
 12.3.3 Multiplexer and finite-state machine
 12.3.4 RAM

13 Digital ↔ analog conversion
 13.1 A simple D/A converter fabricated from familiar chips
 13.2 Tracking ADC
 13.3 080x ADC and DAC chips
 13.3.1 Successive-approximation ADC
 13.4 Additional exercises
 13.4.1 Digital recording
 13.4.2 Successive-approximation ADC built from components

Further reading
Appendix A Equipment and supplies
Appendix B Common abbreviations and circuit symbols
Appendix C RC circuits: frequency-domain analysis
Appendix D Pinouts
Glossary of basic electrical and electronic terms
Index
Figures

1.1 Illustration showing many of the basic features of the PB-503 powered Protoboard.

1.2 Measuring voltage.

1.3 Measuring current.

1.4 Illustration of the Tektronix TDS 210 digital oscilloscope.

2.1 Representation of an arbitrary, periodic waveform.

2.2 Circuit demonstrating destructive power loading.

2.3 Three schematics representing a resistive voltage divider.

2.4 The voltage-divider concept for RC circuits.

2.5 High-pass filter or voltage differentiator.

2.6 Relationships among input voltages and capacitor and resistor voltages for high- and low-pass RC filters.

3.1 Representation of a junction between P-type and N-type semiconductor material.

3.2 Diode circuit symbol and biasing.

3.3 Typical current–voltage characteristics for germanium and silicon diodes.

3.4 Representation of physical diodes and symbols used in circuit diagrams.

3.5 Measuring the forward characteristic of a diode.

3.6 Power transformer supplies $V_{out} \approx 25$ V r.m.s.

3.7 Power transformer with half-wave rectification.

3.8 Half-wave rectifier with filter capacitor.

3.9 An example of how to insert a diode bridge into a breadboard.

3.10 Full-wave rectification using diode bridge.

3.11 Full-wave rectification with filter capacitor.

3.12 Complete rectifier circuit.

4.1 Construction and circuit symbols and biasing examples for NPN and PNP junction transistors.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Schematic representation of how an NPN transistor operates.</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Characteristic curves for an NPN bipolar transistor.</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Transistor as back-to-back diodes; TO-92 pinout.</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Emitter follower.</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Emitter follower with optional load circuit for measurement of Z_{out}.</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Common-emitter amplifier.</td>
<td>57</td>
</tr>
<tr>
<td>4.8</td>
<td>Transistor current source.</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Transistor switch.</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>Darlington pair.</td>
<td>62</td>
</tr>
<tr>
<td>4.11</td>
<td>Driving loudspeaker with push–pull buffer.</td>
<td>63</td>
</tr>
<tr>
<td>4.12</td>
<td>Common-base amplifier.</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Construction and circuit symbols of JFETs.</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>Schematic representation of JFET operation.</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Idealized common-source characteristic curves for a JFET.</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Circuit for measuring the common-source characteristic curves.</td>
<td>71</td>
</tr>
<tr>
<td>5.5</td>
<td>Self-biasing JFET current source.</td>
<td>72</td>
</tr>
<tr>
<td>5.6</td>
<td>Source follower.</td>
<td>73</td>
</tr>
<tr>
<td>5.7</td>
<td>Source follower with current-source load.</td>
<td>73</td>
</tr>
<tr>
<td>5.8</td>
<td>JFET amplifier.</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>Differential amplifier and function generator with 100-to-1 attenuator.</td>
<td>76</td>
</tr>
<tr>
<td>6.2</td>
<td>Current sink for differential amplifier.</td>
<td>79</td>
</tr>
<tr>
<td>6.3</td>
<td>Current mirror.</td>
<td>80</td>
</tr>
<tr>
<td>6.4</td>
<td>Differential amplifier with current-mirror load.</td>
<td>81</td>
</tr>
<tr>
<td>6.5</td>
<td>Differential amplifier with Wilson-current-mirror load.</td>
<td>82</td>
</tr>
<tr>
<td>7.1</td>
<td>Diagram of 8-pin DIP 741 package showing ‘pinout’.</td>
<td>86</td>
</tr>
<tr>
<td>7.2</td>
<td>Op amp inverting-amplifier circuit.</td>
<td>88</td>
</tr>
<tr>
<td>7.3</td>
<td>Op amp noninverting-amplifier circuit.</td>
<td>89</td>
</tr>
<tr>
<td>7.4</td>
<td>Open-loop op amp test circuit.</td>
<td>91</td>
</tr>
<tr>
<td>7.5</td>
<td>Circuit for demonstrating summing junction.</td>
<td>93</td>
</tr>
<tr>
<td>7.6</td>
<td>Op amp voltage follower and voltage follower as the input stage to an inverting-op-amp circuit.</td>
<td>95</td>
</tr>
<tr>
<td>7.7</td>
<td>Difference amplifier.</td>
<td>96</td>
</tr>
<tr>
<td>7.8</td>
<td>Op amp current source.</td>
<td>98</td>
</tr>
<tr>
<td>7.9</td>
<td>Fancy summing circuit.</td>
<td>99</td>
</tr>
<tr>
<td>8.1</td>
<td>Generalized op amp inverting-amplifier circuit.</td>
<td>102</td>
</tr>
<tr>
<td>List of figures</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>8.2 Basic op amp differentiator.</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>8.3 Improved op amp differentiator.</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>8.4 Basic op amp integrator.</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>8.5 Improved op amp integrator.</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>8.6 Op amp logarithmic amplifier.</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>8.7 Op amp exponential amplifier.</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>8.8 Simple and improved versions of an op amp half-wave rectifier.</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>8.9 Op amp follower with push–pull output-buffer power driver with two feedback arrangements.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>9.1 Poor comparator and 311 comparator.</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>9.2 311 comparator with 10 k series input resistor.</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>9.3 Schmitt trigger using 311 comparator.</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>9.4 RC relaxation oscillator using comparator.</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>9.5 Block diagram for the 555 timer IC.</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>9.6 555 timer IC used as an oscillator and as a one-shot or timer.</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>9.7 555 timer configured as an alarm.</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>9.8 Sine/cosine oscillator.</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>9.9 Active bandpass filter.</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>10.1 Logic levels for various 7400-family lines.</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>10.2 Labeling of 7400-series chips.</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>10.3 Standard logic gates with truth tables.</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>10.4 De Morgan’s theorems expressed symbolically.</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>10.5 Two-input diode gate.</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>10.6 Diode–transistor NAND gate using 2N3904s.</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>10.7 Schematic representation of an ‘enhancement-mode’ N-channel MOSFET.</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>10.8 Schematic representations of a CMOS inverter constructed using one N-channel and one P-channel MOSFET.</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>10.9 Schematic representation of a CMOS NAND gate with LED logic-level indicator.</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>10.10 Logic-level switch using either an SPST or SPDT switch and a pull-up resistor.</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>10.11 Circuits for measuring the channel resistance as a function of gate voltage.</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>11.1 Timing diagram with timing definitions for a rising-edge-triggered flip-flop.</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>11.2</td>
<td>Simple RS latch made of two-input NANDs with state table.</td>
<td>146</td>
</tr>
<tr>
<td>11.3</td>
<td>7474 D-type flip-flop with state table.</td>
<td>147</td>
</tr>
<tr>
<td>11.4</td>
<td>Sample timing diagram for a (positive-edge-triggered) 7474 D-type flip-flop.</td>
<td>147</td>
</tr>
<tr>
<td>11.5</td>
<td>Pinout of the 74112 JK flip-flop.</td>
<td>149</td>
</tr>
<tr>
<td>11.6</td>
<td>Pinout and power connections for the 74373 and input and output connections for testing the tri-state output.</td>
<td>150</td>
</tr>
<tr>
<td>11.7</td>
<td>Divide-by-four ripple counter.</td>
<td>151</td>
</tr>
<tr>
<td>11.8</td>
<td>Synchronous divide-by-four counter.</td>
<td>152</td>
</tr>
<tr>
<td>11.9</td>
<td>Looking at contact bounce by driving a divide-by-four counter from a switch.</td>
<td>153</td>
</tr>
<tr>
<td>12.1</td>
<td>Pinout of 7490 decade counter.</td>
<td>157</td>
</tr>
<tr>
<td>12.2</td>
<td>Pinout of TIL311 hex display.</td>
<td>158</td>
</tr>
<tr>
<td>12.3</td>
<td>Timing diagram for a gated clock signal.</td>
<td>160</td>
</tr>
<tr>
<td>12.4</td>
<td>Pinout of 121 and 123 one-shots with external RC timing network.</td>
<td>160</td>
</tr>
<tr>
<td>12.5</td>
<td>Substandard outputs resulting from gating clock signals.</td>
<td>161</td>
</tr>
<tr>
<td>12.6</td>
<td>Pinout of 74150 16-to-1 multiplexer.</td>
<td>163</td>
</tr>
<tr>
<td>12.7</td>
<td>Pinout of 7489 16×4 RAM.</td>
<td>163</td>
</tr>
<tr>
<td>13.1</td>
<td>Simple D/A converter and output waveform resulting from input counting sequence.</td>
<td>168</td>
</tr>
<tr>
<td>13.2</td>
<td>Simple A/D converter.</td>
<td>171</td>
</tr>
<tr>
<td>13.3</td>
<td>Pinout for ADC080x series of A/D converters and the on-chip self-clocking configuration.</td>
<td>172</td>
</tr>
<tr>
<td>13.4</td>
<td>Pinout for DAC080x series of D/A chips.</td>
<td>175</td>
</tr>
<tr>
<td>13.5</td>
<td>Method for producing a DC-shifted waveform.</td>
<td>176</td>
</tr>
<tr>
<td>13.6</td>
<td>Control logic for 8-bit successive-approximation ADC.</td>
<td>179</td>
</tr>
<tr>
<td>13.7</td>
<td>8-bit successive-approximation ADC.</td>
<td>180</td>
</tr>
<tr>
<td>C.1</td>
<td>Series RC circuit.</td>
<td>193</td>
</tr>
<tr>
<td>C.2</td>
<td>Right triangle to illustrate Eq. C.17.</td>
<td>193</td>
</tr>
</tbody>
</table>
Tables

1.1 Digital multimeter inputs.
1.2 Color code for nonprecision resistors.
2.1 Some typical dielectric materials used in capacitors.
3.1 A sample of commercially available diodes.
4.1 A sample of commercially available bipolar transistors.
10.1 Common families within the 7400 series.
About the authors

Dr Daniel M. Kaplan received his Ph.D. in Physics in 1979 from the State University of New York at Stony Brook. His thesis experiment discovered the b quark, and he has devoted much of his career to experimentation at the Fermi National Accelerator Laboratory on properties of particles containing heavy quarks. He has taught electronics laboratory courses for non-electrical-engineering majors over a fifteen-year period at Northern Illinois University and at Illinois Institute of Technology, where he is currently Professor of Physics and Director of the Center for Accelerator and Particle Physics. He also serves as Principal Investigator of the Illinois Consortium for Accelerator Research. He has been interested in electronics since high school, during the junior year of which he designed a computer based on DTL integrated circuits. Over more than twenty-five years in experimental particle physics he has often been responsible for much of his experiments’ custom-built electronic equipment. He is the author or co-author of over 150 scientific papers and one encyclopedia article, and co-editor of three books on heavy-quark physics and related fields.

Dr Christopher G. White is Assistant Professor of Physics at Illinois Institute of Technology. He received his Ph.D. in Physics from the University of Minnesota in 1990. He has authored or co-authored over 100 scientific articles in the field of high-energy particle physics, and his current research interests involve neutrinos and hyperons. Dr White is an enthusiastic and dedicated teacher who enjoys helping students to overcome their fear of electronics and to gain both confidence and competence.
To the Reader

Some of you may be encountering electronic circuits and instruments for the first time. Others may have ‘played around’ with such stuff if, for example, you were ever bitten by the ‘ham radio’ bug. In either case, this sequence of laboratory experiments has been designed to introduce you to the fundamentals of modern analog and digital electronics.

We use electronic equipment all the time in our work and recreation. Scientists and engineers need to know a bit of electronics, for example to modify or repair some piece of equipment, or to interface two pieces of equipment that may not have been designed for that purpose. To that end, our goal is that by the end of the book, you will be able to design and build any little analog or digital circuit you may find useful, or at least understand it well enough to have an intelligent conversation about the problem with an electrical engineer. A basic knowledge of electronics will also help you to understand and appreciate the quirks and limitations of instruments you will be using in research, testing, development, or process-control settings.

We expect few of you to have much familiarity with such physical theories as electromagnetism or quantum mechanics, so the thrust of this course will be from phenomena and instruments toward theory, not the other way round. If your curiosity is aroused concerning theoretical explanations, so much the better, but unfamiliarity with physical theory should not prevent you from building or using electronic circuits and instruments.
Acknowledgments

We are grateful to Profs Carlo Segre and Tim Morrison for their contributions and assistance, and especially to the IIT students without whom this book would never have been possible. Finally, we thank our wives and children for their support and patience. It is to them that we dedicate this book.
Introduction

This book started life as the laboratory manual for the course Physics 300, ‘Instrumentation Laboratory’, offered every semester at Illinois Institute of Technology to a mix consisting mostly of physics, mechanical engineering, and aeronautical engineering majors. Each experiment can be completed in about four hours (with one or two additional hours of preparation).

This book differs from existing books of its type in that it is faster paced and goes into a bit less depth, in order to accommodate the needs of a one-semester course covering the elements of both analog and digital electronics. In curricula that normally include one year of laboratory instruction in electronics, it may be suitable for the first part of a two-semester sequence, with the second part devoted to computers and computer interfacing – this scheme has the virtue of separating the text for the more rapidly changing computer material from the more stable analog and digital parts.

The book is also suitable for self-study by a person who has access to the necessary equipment and wants a hands-on introduction to the subject. We feel strongly, and experience at IIT has borne out, that to someone who will be working with electronic instrumentation, a hands-on education in the techniques of electronics is much more valuable than a blackboard-and-lecture approach. Certainly it is a better learning process than simply reading a book and working through problems.

The appendices suggest sources for equipment and supplies, provide tables of abbreviations and symbols, and list recommendations for further reading, which includes chapter-by-chapter correspondences to some popular electronics texts written at similar or somewhat deeper levels to ours: the two slim volumes by Dennis Barnaal, Analog Electronics for Scientific Application and Digital Electronics for Scientific Application (reissued by Waveland Press, 1989); Horowitz and Hill’s comprehensive The Art of Electronics (Cambridge University Press, 1989); Diefenderfer and Holton’s Principles of Electronic Instrumentation (Saunders, 1994);
and Simpson’s *Introductory Electronics for Scientists and Engineers* (2nd edition, Prentice-Hall, 1987). There is also a glossary of terms and pinout diagrams for transistors and ICs used within. The reader is presumed to be familiar with the rudiments of differential and integral calculus, as well as with elementary college physics (including electricity, magnetism, and direct- and alternating-current circuits, although these topics are reviewed in the text).

The order we have chosen for our subject matter begins with the basics – resistors, Ohm’s law, simple AC circuits – then proceeds towards greater complexity by introducing nonlinear devices (diodes), then active devices (bipolar and field-effect transistors). We have chosen to discuss transistors before devices made from them (operational amplifiers, comparators, digital circuitry) so that the student can understand not only how things work but also why.

There are other texts that put integrated circuits, with their greater ease of use, before discrete devices; or digital circuits, with their simpler rules, before the complexities of analog devices. We have tried these approaches on occasion in our teaching and found them wanting. Only by considering first the discrete devices from which integrated circuits are made can the student understand and appreciate the remarkable properties that make ICs so versatile and powerful. A course based on this book thus builds to a pinnacle of intellectual challenge towards the middle, with the three transistor chapters. After the hard uphill slog, it’s smooth sailing from there (hold onto your seatbelts!).

The book includes step-by-step instructions and explanations for the following experiments:
1. Multimeter, breadboard, and oscilloscope;
2. RC circuits;
3. Diodes and power supplies;
4. Transistors I;
5. Transistors II: FETs;
6. Transistors III: differential amplifier;
7. Introduction to operational amplifiers;
8. More op-amp applications;
9. Comparators and oscillators;
10. Combinational logic;
11. Flip-flops: saving a logic state;
12. Monostables, counters, multiplexers, and RAM;

These thirteen experiments fit comfortably within a sixteen-week semester. If you or your instructor prefers, one or two experiments may easily be omitted to leave a couple of weeks at the semester’s end for independent student projects. To this end, Chapter 6, ‘Transistors III’, has been designed so that no subsequent experiment depends on it; obviously this is also the case for Chapter 13, ‘Digital↔analog conversion’, which has no subsequent experiment.

As you work through the exercises, you will find focus questions and detailed instructions indicated by the symbol ‘◨’. Key concepts for each exercise will be denoted by the symbol ‘⋆’. Finally, the standard system of units for electronics is the MKS system. Although you may occasionally run across other unit systems, we adhere strictly to the MKS standard.