
Practical Interfacing in
the Laboratory
Using a PC for Instrumentation,
Data Analysis, and Control

Stephen E. Derenzo
University of California, Berkeley, California



published by the press syndicate of the university of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

This editionC© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published asInterfacing: A laboratory approach using the microcomputer for
instrumentation, data analysis and controlby Prentice-Hall, Englewood Cliffs, NJ, 1990.
First published by Cambridge University Press 2003

Printed in the United Kingdom at the University Press, Cambridge

TypefacesTimes 10.5/14 pt, Helvetica Neue, and Arial SystemLATEX2ε [tb]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Derenzo, Stephen E.
Practical interfacing in the laboratory : using a PC for instrumentation, data analysis, and
control / Stephen E. Derenzo.

p. cm.
Rev. ed. of: Interfacing, c1990.
Includes bibliographical references and index.
ISBN 0-521-81527-4
1. Computer interfaces. 2. Microcomputers. 3. Automatic data collection systems.
4. Computer interfaces – Laboratory manuals. 5. Microcomputers – Laboratory manuals.
6. Automatic data collection systems – Laboratory manuals. I. Derenzo, Stephen E.
Interfacing.
TK7887.5 .D42 2002
620′.0028′4 – dc21 2001052859

ISBN 0 521 81527 4 hardback



Contents

Preface xiii
Acknowledgments xvii

1 Digital tools 1

1.1 Introduction 1
1.2 The microcomputer 2
1.3 Number systems 5
1.4 Digital building blocks 8
1.5 Digital counters/timers 13
1.6 Parallel and serial input/output ports 18
1.7 Digital data-acquisition procedures 29
1.8 Switch debouncing 33
1.9 Digital interfacing standards 35
1.10 Problems 44
1.11 Additional reading 51

Laboratory exercises
1. Introduction to C programming 53
2. Measuring event times 58
3. Digital interfacing: switches and lights 66

2 Analog tools 75

2.1 Introduction 75
2.2 Operational-amplifier circuits 76
2.3 Op-amp characteristics 85
2.4 Instrumentation and isolation amplifiers 89

vii



viii Contents

2.5 Noise sources 94
2.6 Analog filtering 98
2.7 The power amplifier 117
2.8 Problems 118
2.9 Additional reading 127

Laboratory exercises
4. Operational-amplifier circuits 128
5. Instrumentation amplifiers 136
6. Analog filtering 145

3 Analog ↔ digital conversion and sampling 153

3.1 Introduction 153
3.2 Digital-to-analog converter circuits 153
3.3 Analog-to-digital converter circuits 161
3.4 The sample-and-hold amplifier 173
3.5 Sampling analog waveforms 180
3.6 Frequency aliasing 183
3.7 Available data-acquisition systems 186
3.8 Problems 187
3.9 Additional reading 200

Laboratory exercises
7. Introduction to A/D and D/A conversion 201
8. D/A conversion and waveform generation 206
9. A/D conversion and periodic sampling 213
10. Frequency aliasing 221

4 Sensors and actuators 226

4.1 Introduction 226
4.2 Position and angle sensors 228
4.3 Temperature transducers 234
4.4 Strain-sensing elements 253
4.5 Force and pressure transducers 255
4.6 Measuring light 261
4.7 Producing visible light 268



ix Contents

4.8 Ionic potentials 271
4.9 The detection and measurement of ionizing radiation 274
4.10 Measuring time 277
4.11 Problems 278
4.12 Additional reading 298

Laboratory exercises
11. Measuring angular position 300
12. Measuring temperature 305
13. Measuring strain and force 311
14. Measuring light with a photodiode 316
15. The thermoelectric heat pump 322
16. Electrodes and ionic media 329
17. The human heart 334
18. The electromyogram (EMG) 343
19. The electrooculogram (EOG) 352

5 Data analysis and control 360

5.1 Introduction 360
5.2 The Gaussian-error distribution 360
5.3 Student’st test 366
5.4 Least-squares fitting 372
5.5 The chi-squared statistic 375
5.6 Solving nonlinear equations 379
5.7 Monte Carlo simulation 383
5.8 Fourier transforms 385
5.9 Digital filters 415
5.10 Control techniques 419
5.11 Problems 427
5.12 Additional reading 448

Laboratory exercises
20. Analog↔ digital conversion and least-squares fitting 449
21. Fast Fourier transforms of sampled data 454
22. Fast Fourier transforms of the human voice 461
23. Digital filtering 471
24. Process compensation using Fourier deconvolution and digital filtering 477
25. Analog temperature control using a resistive heater 485



x Contents

26. Temperature control using the computer and a resistive heater 490
27. Temperature control using the computer and a thermoelectric heat pump 497

Appendix A Grounding and shielding 504
A.1 Introduction 504
A.2 Interference noise due to common impedance 504
A.3 Interference noise due to capacitive coupling 505
A.4 General rules to follow 506

Appendix B Experimental uncertainties 508
B.1 Multimeter accuracy 508
B.2 Propagation of random error 508

Appendix C C programming tips 510
C.1 Declare all variables 510
C.2 Arithmetic statements 510
C.3 Conditional tests 511
C.4 Conditional operators 511
C.5 Indexed looping 511
C.6 Bitwise logical operators 512
C.7 Increment and decrement operators 512
C.8 Theprintf statement 513
C.9 Defining your own functions 513
C.10 “Including” your own functions 514
C.11 Opening and writing to files of arbitrary name 515
C.12 Using library functions 515
C.13 Allocating large storage arrays 516
C.14 General format rules for C programs 516

Appendix D Numerical methods and C functions 517
D.1 Introduction 517
D.2 Fast Fourier transform 517
D.3 Minimization function PARFIT 520
D.4 The uncertainty estimation function VARFIT 529
D.5 Numerical evaluation of functions defined by integrals 542
D.6 Function inversion using Newton’s method 549
D.7 Function inversion using quadratic approximation 549
D.8 Random number generator 550

Appendix E Summary of Data Translation DT3010 PCI plug-in card 553
E.1 Introduction 553
E.2 Parallel output 553
E.3 Parallel input 556



xi Contents

E.4 Analog output 556
E.5 Analog input 557
E.6 Using the DT3010 board with the Microsoft visual C++ compiler 557

Appendix F Using the digital oscilloscope to record waveforms 558
F.1 Introduction 558
F.2 Capturing the waveform 558
F.3 Printing the waveform 558

Appendix G Electrical hazards and safety 560
G.1 Introduction 560
G.2 Electrical power 561
G.3 The ground fault interrupter circuit 563
G.4 The isolation transformer 564
G.5 Typical accident scenarios 564
G.6 Methods of accident prevention 564

Appendix H Standard resistor and capacitor values 566
H.1 Standard resistor values and color codes 566
H.2 Standard capacitor values and codes 566

Appendix I ASCII character codes 569
I.1 ASCII character set codes 569

Glossary 572
Index 602



1 Digital tools

1.1 Introduction

In the past few years, enormous advances have been made in the cost, power, and
ease of use of microcomputers and associated analog and digital circuits. It is now
possible, with a relatively small expenditure, to purchase a microcomputer system that
will take data, quickly analyze them, and display the results or control a process. This
has been made possible by the development of technology that can fabricate millions of
transistors, diodes, resistors, capacitors, and conductors on a single siliconintegrated
circuit chip .

Normally, the microcomputer is equipped with a number of standard items: the
microprocessor chip and associated circuits, random-access memory chips, removable
floppy and cartridge disk drives, magnetic hard disk drives, optical disk drives, key-
boards, video display screens, serial interfaces, printers, andx–y entry devices such
as the mouse, trackball, joystick, bitpad, and touch-sensitive display screen. However,
data acquisition and control require additional components, such as digital and analog
input/output (I/O) ports, and counters/timers. Analog input ports contain analog
multiplexers, sample-and-hold (S/H) amplifiers, and analog-to-digital (A/D) convert-
ers. Analog output ports contain digital-to-analog (D/A) converters.

Even for designs requiring only a microprocessor and a few additional circuits, there
are considerable advantages to using the resources of the microcomputer during the
development stage. These include program code editors and compilers, an operating
system for thestorageandmanipulationof codeanddata files, andample random-access
memory.

In this chapter, we discuss digital interfacing concepts used in microcomputer-based
data-acquisition and control systems (Figure 1.1), including parallel and serial input/
output ports, handshaking, and digital counters/timers. Analog tools (amplification and
filtering) are treated in Chapter 2, digital-to-analog and analog-to-digital conversion
and sampling in Chapter 3, and sensors and actuators in Chapter 4.

1



2 Digital tools

Sensor

Bridge

Instrumentation
amplifier

Filter S/H A/D

D/A

Display

Control

Digital control
circuit

Parallel
input port

Micro-
computer

Parallel
output port

Timer
Trigger

interrupt

Input
strobe

Output strobe
Power amplifier

Figure 1.1 A microcomputer system interfaced to sensors and associated analog circuits for data
acquisition, analysis, and control.

1.2 The microcomputer

In selecting a system for data acquisition and control, themicrocomputer itself is a
crucial component (Figure 1.2). The microcomputer is sufficiently small to fit on a
laboratory bench (or desktop) and yet contains the following components:
1. Themicroprocessoris an integrated circuit that reads program instructions from

memory and uses them to determine the sequence of actions that it performs. It is
connected to memory and peripheral circuits by an address bus, a data bus, and
control lines.

These actions include reading data and instructions from memory, performing
calculations, executing different instructions depending on the outcome of a cal-
culation, printing data, and transferring data to and from peripheral devices such
as hard disks. Microprocessors vary greatly in their speed and data-handling capa-
bility.

2. Random-access memory (RAM)usually consists of high-speed semiconductor
memory chips that are used to store and retrieve program instructions and data.
The highest data-acquisition speeds are achieved when external data are read di-
rectly into RAM, so the size of the RAM places a limit on the number of data values
that can be sampled rapidly.

3. Common user interface devices are the keyboard, video display screen, printer,
mouse, joystick, and trackball. Some systems provide voice input and synthe-
sized speech output. The IEEE-1284 interface standard includes the standard par-
allel printer (SPP) port as well as other enhancements. The universal serial bus
(USB) is the current standard for keyboards and pointing devices. For higher



3 1.2 The microcomputer

Microprocessor

Random-access memory
(RAM)

Parallel I/O port

Serial and parallel
peripheral ports Data

bus

Address
decoder

Address
bus and
control
lines Keyboard, pointing device, video display screen,

printers, etc. (RS232, USB, IEEE1284, IEEE1394)

Select

Select

Disk controllers (IDE, SCSI)
Address
decoder

Disk 1 Disk 2

Analog I/O port

D/A A/D

Address
decoder

Address
decoder

SelectAddress
decoder

counter/timer

SelectAddress
decoder

Clock

Figure 1.2 The microcomputer consists of a microprocessor that communicates with memory and
input/output devices by address and data buses.

speed transfers (external hard drives, digital camcorders, HDTV), the IEEE-1394
standard (FireWire or i.Link) has recently been introduced.

4. Magnetic disk memory is used for the long-term storage of programs and data,
and consists of one or more flat circular plates coated with a magnetic surface.
Magnetic disk capacities range from 500 kbytes to 2 Mbytes for small removable
floppy disks and from 1 to 20 Gbytes or more for hard disks. Access time consists
of a fixed delay of tens of milliseconds (for the read/write head to locate the desired
track) and a transfer time of typically 1�s per 16-bit word.

5. Optical disk memory includes the CD-ROM and the DVD-ROM disks. The
CD-ROM (compact disk-read-only memory) and DVD-ROM (digital versatile
disk) drives use optical storage and retrieval technology that was developed for
the music and entertainment industry. The capacity of the CD-ROM is over
600 Mbytes and about ten times larger for the DVD-ROM. Both are 12 cm in



4 Digital tools

diameter. Microcomputers and workstations are commonly shipped with a CD-
ROM containing a back-up copy of the system software and on-line documen-
tation, eliminating many floppy disks and thousands of pages of paper. CD-W
(write once) and CD-RW (rewritable) and DVD-RAM (random-access) technology
allows information to be written onto these disks.

6. The operating system permits the user to manipulate program and data files and
supports a high-level compiled programming language (FORTRAN, Pascal, C,
compiled BASIC, etc.).

7. A compiler’s function is to translate a high-level language into microprocessor
code that is able to:
(i) perform numerical computations and conditional branching,
(ii) communicate directly with a data-acquisition and control board or parallel I/O

port (see below),
(iii) read and write files to the disk.
Additional useful features include:
(i) a full range of scientific functions (sine, cosine, exp, log, etc.), and the ability

to compute using floating-point representation, which can handle very small
and very large numbers (for example, 80-bit extended precision can handle
numbers from±10−4,932 to ±10+4,932 with a precision of 19 decimal digits);

(ii) the ability to write functions in assembly code for greater speed during data
acquisition (somecompilerspermit intermixedassemblycodeandhigher-level
code);

(iii) a built-in editor that displays lines causing compilation errors and permits
immediate correction;

(iv) a single command that compiles all changed program modules, links all nec-
essary modules, and runs the result.

8. An analog input/output port (also called a data-acquisition and control circuit),
with the required speed and number of A/D and D/A conversion circuits.

9. A parallel input/output port with sufficient speed, if item 8 is not available. In
this case, it becomes necessary to design and build a data-acquisition circuit for
connection to the parallel I/O port (this is demonstrated in Laboratory Exercise 9).

10. A counter/timer that can determine elapsed times to an accuracy of typically 1�s,
count input pulses, or produce output pulses of any desired width and period with
an accuracy of typically 1�s.

The microprocessor communicates with the other components of the microcomputer
by an address bus, a data bus, and a number of control lines (Figure 1.2). Theaddress
busallows the microprocessor to select particular components individually. Each com-
ponent has a unique assignedaddresswhether it is a RAM location, an I/O port register,
or other peripheral circuit. Anaddress decoderproduces aselectpulse whenever the
assigned address appears on the address bus. For example, a 16-Mbit RAM chip has
an internal address decoder with 24 input lines and 16 million select lines, one for each



5 1.3 Number systems

memory bit that can be selected. Thedata bus is used to transmit data words to and
from the microprocessor and its associated circuits.

Note: In some systems, memorylocations and external devicesare distinguished from each other by
a special control bit. In others, a large block of memory address space is reserved for external devices.

Since many devices are attached to the data and address buses and at any instant
only one can be sending data, control lines are used to indicate when the bus is busy,
when a sending device requests use of the bus, when use is granted, etc. These details
are beyond the scope of this book and are mentioned to outline the organization of the
microcomputer.

Laboratory Exercise 1 is designed to familiarize the reader with the particular ed-
itor and compiler that will be used for the rest of the exercises as well as review 2’s
complement, hexadecimal, real, and integer interpretations of binary numbers.

1.3 Number systems

1.3.1 Binary number representations

Binary numbers can be interpreted in a variety of ways. Table 1.1 shows the inter-
pretation of 8-bit binary patterns as unsigned decimal, hexadecimal, Gray, and 2’s
complement numbers. The 16-bit and 32-bit numbers are logical extensions.

A/D converters and counters/timers produce binary bit patterns that are to be inter-
preted as unsigned numbers. The binary sequence runs continuously from all bits= 0
to all bits= 1 and the leftmost bit is the most significant bit (MSB).

Angle and position encoders usually produceGray codethat runs from all bits= 0
to all bits = 1, but the binary sequence is not continuous because it has the special
property that advancing from one number to the next involves changing the state of
only one bit. Gray code is described further in the following section.

Binary numbers can also be represented inhexadecimalform (base 16) for efficient
notation. Note that each 8-bit byte can be represented as two hexadecimal digits. Octal
(base 8) is less frequently used.

Binary bit patterns can also be interpreted as signed numbers, to include negative
numbers (<0) as well as 0 and positive numbers (>0). Some computers use signed bi-
nary representation, where the leftmost bit represents the sign. While this representation
is closer to that of the printed page, it is seldom used in computers because arithmetic
operations take longer due to the need to process the sign bit.

Most microcomputers use2’s complement representationto deal more efficiently
with negative and positive numbers. In 2’s complement representation, the sign of a
number is changedby complementing (reversing) all its bits and thenaddingone. This is
called the2’s complement operation. By using this operation, the subtraction process



6 Digital tools

Table 1.1 Interpretations of 8-bit binary numbers

Unsigned
Binary decimal Hexadecimal Gray 2’s complement

0000 0000 0 00 0 0
0000 0001 1 01 1 1
0000 0010 2 02 3 2
0000 0011 3 03 2 3
0000 0100 4 04 7 4
0000 0101 5 05 6 5
0000 0110 6 06 4 6
0000 0111 7 07 5 7
0000 1000 8 08 15 8
0000 1001 9 09 14 9
0000 1010 10 0A 12 10
0000 1011 11 0B 13 11
0000 1100 12 0C 8 12
0000 1101 13 0D 9 13
0000 1110 14 0E 11 14
0000 1111 15 0F 10 15
0001 0000 16 10 31 16

. . . . . . . . . . . . . . .
0111 1110 126 7E 65 126
0111 1111 127 7F 64 127
1000 0000 128 80 192 −128
1000 0001 129 81 193 −127

. . . . . . . . . . . . . . .
1111 1110 254 FE 129 −2
1111 1111 255 FF 128 −1

a− b can be performed by addinga to the 2’s complement ofb. For an 8-bit number,
2 is represented as binary 0000 0010 (hexadecimal 02) and−2 is represented as binary
1111 1110 (hexadecimal FE). For example, 5− 2 = 3 in 2’s complement arithmetic is:

5 0000 0101 simply add, but ignore
−2 1111 1110 the most significant carry bit

3 0000 0011

Note that in 2’s complement notation, positive numbers have their MSB= 0 and
negative numbers have their MSB= 1.

Warning: sign extension
As demonstrated in Laboratory Exercise 1, if the MSB of a number is zero, then
conversion from 8 to 16 bits or from 16 to 32 bits occurs as expected. However, if the



7 1.3 Number systems

Table 1.2 Typical variable types, storage, and ranges of values

Type No. bits Decimal digits Range

Char 8 −128 to+127
Unsigned char∗ 8 0 to 255
Short 16 −32,768 to+32,767
Unsigned integer 16 0 to 65,535
Int and long 32 −2,147,483,648 to 2,147,483,647
Unsigned long∗ 32 0 to 4,294,967,295
Float 32 7 ±1.2× 10−38 to ±3.4× 10+38

Double 64 14 ±2.3× 10−308 to ±1.7× 10+308

Extended∗ 80 19 ±1.7× 10−4932 to ±1.1× 10+4932

∗Standard in ANSI C, but not available on all C or Pascal compilers.

MSB is one, then the leftmost additional bits of the longer number will be filled with
ones (sign extension). In this way, the converted number will have the same numerical
value in 2’s complement representation. For example, when transferred from char to
int, 35 becomes 0035 and 8A becomes FF8A. Thus, if unsigned numbers are read from
a counter/timer or A/D converter in blocks of eight bits, some precautions are necessary
before they can be packed into 16- or 32-bit numbers. There are two approaches:
1. Mask the left half of the number with zeros (see Appendix C).
2. Declare all relevant variables to be “unsigned.”

Table 1.2 shows the typical internal representations available on microcomputers.
They are also explored in Laboratory Exercise 1. Each program variable is declared to
be one of these types. The float, double, and extended have 8-, 11-, and 15-bit exponents
and 23, 52, and 63 bits of precision, which correspond to 7, 15, and 19 decimal digits
of precision, respectively.

1.3.2 Gray code

Gray code is used extensively in external devices such as digital position encoders
because the transition from any number to the next involves a change of only one bit
(Table 1.3). If binary code were used, erroneous values could result when more than
one bit changed, since it is not possible to guarantee that all bits change simultaneously
from one number to the next.

The exclusive-OR circuits shown in Figure 1.3 convert numbers from Gray code to
binary code and from binary code to Gray code. See the following section for a review
of the AND, inclusive-OR, and exclusive-OR logic circuits. It will be noted on the
left-hand side of Figure 1.3 that bit 1, for example, cannot be determined until bit 2 is
known, and bit 2 cannot be determined until bit 3 is known, etc. Thus the output is valid
only afterN gate propagation times. A “valid data” signal can be derived by connecting



8 Digital tools

Table 1.3 Binary and Gray codes and their decimal equivalents

Decimal Binary Gray Decimal Binary Gray

0 00000 00000 16 10000 11000
1 00001 00001 17 10001 11001
2 00010 00011 18 10010 11011
3 00011 00010 19 10011 11010
4 00100 00110 20 10100 11110
5 00101 00111 21 10101 11111
6 00110 00101 22 10110 11101
7 00111 00100 23 10111 11100
8 01000 01100 24 11000 10100
9 01001 01101 25 11001 10101

10 01010 01111 26 11010 10111
11 01011 01110 27 11011 10110
12 01100 01010 28 11100 10010
13 01101 01011 29 11101 10011
14 01110 01001 30 11110 10001
15 01111 01000 31 11111 10000

Bit 4

Bit 3

Bit 2

Bit 1

Bit 4

Bit 3

Bit 2

Bit 1

MSB

LSB
Gray
code

Binary
code

Bit 4

Bit 3

Bit 2

Bit 1

Bit 4

Bit 3

Bit 2

Bit 1

LSB
Gray
code

Binary
code

MSB

Figure 1.3 Circuitsused to convert Gray code to binary and binary code to Gray code. Four bits are
shown. The logic elements shown perform the exclusive OR, which has an output logic state that
equals one only if the input logic states differ.

all input bits to an inclusive-OR circuit that is used as the input to a pulse generator.
The output is read at the trailing edge of the pulse. Alternatively, a table lookup from
computer memory or read-only memory (ROM) can be used to convert between Gray
and binary codes.

1.4 Digital building blocks

This section describes the fundamental building blocks used to connect to a multiple-
output bus, sample and store a logic state at a well-defined time, generate pulses,



9 1.4 Digital building blocks

Table 1.4 Logic voltage ranges for TTL and ECL circuit families

TTL (V) ECL (V)

Power supplies 0,+5 (±5%) 0,−5.2 (±5%)
Allowed “0” input range −0.5 to+0.8 −5.0 to−1.4
Ambiguous input range +0.8 to+2.0 −1.4 to−1.1
Allowed “1” input range +2.0 to+5.5 −1.1 to+0.0
Nominal logic “0” output +0.2 −1.75
Nominal logic “1” output +3.2 −0.90
Allowed “0” output range +0.0 to+0.4 −1.85 to−1.65
Ambiguous output range +0.4 to+2.4 −1.65 to−0.96
Allowed “1” output range +2.4 to+5.0 −0.96 to−0.81
Typical pulse risetime (10–90%) 10 ns∗ 1.5 ns†

∗Low-power Schottky TTL.
†ECL 10,000.

Output

Output
enable

Input

Figure 1.4 Tri-state buffer (see Table 1.5 for the function table and Figure 1.5 for a typical timing
diagram).

and perform logical tests (AND, OR, etc.) of logic states. Table 1.4 lists the ranges
of external voltages for the two most commonly used families of logic circuits, TTL
(transistor–transistor logic) and ECL (emitter-coupled logic).

Note1: To allow for voltage drop along conductors, the requirements for output are more stringent
than for input.
Note2: For both TTL and ECL, a logic 1 is always more positive in voltage than a logic 0.

1.4.1 Tri-state buffer

The tri-state buffer has three output states: asserted high, asserted low, and high
impedance. In the high-impedance state, the output neither loads nor drives any circuit
connected to it. This device has the usual logic input, but also has an additional enable
input that determines whether the output follows the input or is put in the high-
impedance state. The tri-state buffer is an essential component when several differ-
ent outputs must be connected to form a common bus. See Figure 1.4 for the circuit
schematic, Figure 1.5 for a typical timing diagram, and Table 1.5 for the function
table.



10 Digital tools

Table 1.5 Function table for tri-state buffer

Input Output enable Tri-state output

H L H
L L L
X∗ H High impedance

∗X = don’t care.

Table 1.6 Function table for edge-triggeredD-type flip-flop

DataD ClockC Flip-Flop outputQ

H ↑† H
L ↑ L
X∗ H or ↓§ or L Previous state

∗X = don’t care.
†↑ = low-to-high edge.
§↓ = high-to-low edge.

Enable

Output High impedance

Input

Figure 1.5 Typical timing diagram for the tri-state buffer (see Table 1.5 for the function table).

Clock

C
D Q

OutputInput

Figure 1.6 Edge-triggered D-type flip-flop (see Table 1.6 for the function table and Figure 1.7 for a
typical timing diagram).

Input (D)

Clock (C )

Output (Q) Previous state

Figure 1.7 Typical timing diagram for the edge-triggered D-type flip-flop (see Table 1.6 for the
function table).



11 1.4 Digital building blocks

Table 1.7 Function table for transparent latch

DataD GateG Latch outputQ

H H H
L H L
X∗ L Previous state

∗X = don’t care.

Gate
(latch enable)

G
D Q

OutputInput

Figure 1.8 Transparent latch (see Figure 1.9 for a typical timing diagram and Table 1.7 for the
function table).

1.4.2 Edge-triggered D-type flip-flop

The basic element in the parallel output port is the edge-triggeredD-type flip-flop,
which differs somewhat from the simple flip-flop that can be switched between two
logic states. The edge-triggered D-type flip-flop has two inputs, a data input (D) and a
clock input (C) (Figure 1.6). The output (Q) is set equal to the logic state of the input
(D) during the clock (C) low-to-high edge. At all other times, the state ofQ does not
change even ifD changes. See Table 1.6 for the function table and Figure 1.7 for a
typical timing diagram.

Frequently, the outputs have tri-state buffers (see Figures 1.4 and 1.5) so that several
outputs can be connected. The 74LS374 tri-state octal D-type edge-triggered flip-flop
is such an example. The state ofQ is only asserted at the output line when the “output-
enable” line is asserted. When the output-enable line is not asserted, the output is in
a high-impedance state that neither drives nor loads any other circuit connected to the
output. Whenever two or more outputs are connected to a common line called abus,
they must all have tri-state outputs.

1.4.3 Transparent latch

The transparent latch (Figure1.8) is similar to theedge-triggeredD-typeflip-flop,except
that the output is equal to the input the entire time that the latch enable is asserted. See
Table 1.7 for the function table and Figure 1.9 for a typical timing diagram.

Frequently, the outputs have tri-state buffers (see Figures 1.4 and 1.5) so that several
outputs can be connected. The 74LS373 tri-state octal D-type transparent latch is such
an example.



12 Digital tools

Input (D)

Gate (G)

Output (Q) Prev. state

Figure 1.9 Typical timing diagram for transparent latch.

1

Q1

Q1

C 1

13

4

8

1415

+5 V

16

2

74LS123

B1

A1

3

R C

Clear

0.1 µF

Figure 1.10 74LS123 dual retriggerable one-shot. Pin numbers correspond to section 1. Pulsewidth
is determined by the external resistor and capacitor values.

1.4.4 One-shot

The one-shot produces output pulses of fixed width, where the width is determined
by the values of an external resistorR and capacitorC. Figure 1.10 shows one of
two sections of the 74LS123 dual retriggerable one-shot and its external components,
and Table 1.8 shows the function table. The pulse widthW can be estimated using
the equation:

W = 0.37R(C + 22 pF)

The actual pulse width may differ by typically 20% due to component variations.
To produce a more precise pulse width, it is common to use a variable resistor that is
adjusted while observing the pulses on an oscilloscope.

The retriggerable one-shot has the property that if a new trigger is received while an
output pulse is in progress, the output pulse is extended from that time by an amount
W. The non-retriggerable one-shot ignores input triggers while an output pulse is in
progress.

1.4.5 AND, OR, exclusive-OR gates

Integrated circuits are readily available to perform standard logic operations such as
AND, OR, and exclusive OR (Figure 1.11). (The OR is also called the inclusive OR



13 1.5 Digital counters/timers

Table 1.8 Function table for 74LS123 retriggerable one-shot

ClearC Input A Input B OutputQ OutputQ̄

L X X L H
X∗ H X L H
X X L L H
H L ↑
H ↓§ H
↑† L H

∗X = don’t care.
†↑ = Low-to-high transition.
§↓ = High-to-low transition.

AND Inclusive OR Exclusive OR

A
B

Z

0
0
1
1

0
1
0
1

0
1
1
0

Inputs Output

A B Z

0
0
1
1

0
1
0
1

0
1
1
1

Inputs Output

A B Z

0
0
1
1

0
1
0
1

0
0
0
1

Inputs Output

A B Z

A
B

Z
A
B

Z

Figure 1.11 AND, inclusive-OR, and exclusive-OR logic gates.

to distinguish it from the exclusive OR.) The AND circuit is used to detect when two
logic levels are both high, the inclusive-OR circuit is used to detect when either of two
logic levels is high, and the exclusive-OR circuit is used to detect when two logic levels
differ. When a circle is shown at the output, the output is complemented (Z̄ rather than
Z) and the device is called a NAND or NOR gate.

1.4.6 Set/reset latch

This circuit has two digital inputs that allow the output to be set or reset. The TTL
74LS279 contains four set/reset latches and each has the logic table shown in Table 1.9.
It is used to convert pulses to stable logic levels. Specifically, if both inputs are initiallyH
(their inactive level), anLpulseon̄Swill setQ toHandanLpulseon̄Rwill resetQ to L.

1.5 Digital counters/timers

The digital counter/timer is a circuit that can count pulses that occur at arbitrary times,
measure time by counting clock pulses, or produce pulses uniformly spaced in time.
Normally, when executing a program, the microcomputer must perform other tasks that



14 Digital tools

Table 1.9 Function table for 74LS279 quad set/reset latch

Input S̄ Input R̄ OutputQ

L L H ∗

L H H
H L L
H H Previous value

∗May not persist when both inputs are set H.

make it impossible for the program to keep track of absolute time. Moreover, execution
speed depends on the clock frequency of the particular computer used. A variety of
integrated-circuit chips have been developed that can constantly keep track of time (and
even of the date) while the microcomputer is busy with other tasks (or even turned off).
For example, most microcomputers have battery-powered circuits that keep track of
the date and time (to the nearest second) and this information is recorded whenever a
disk file is created or changed. For data acquisition involving periodic sampling, a more
precise, dedicated clock circuit is needed that can be read by the program or produce a
series of external pulses evenly spaced in time. The use of a hardware counter/timer is
explored in Laboratory Exercise 2, where human reaction time is measured. Sections
1.5.1–1.5.3 describe typical applications of digital counter/timer circuits and two of the
more popular digital timer chips, the 8253 and the 9513.

1.5.1 Applications of digital counters/timers

Measuring the duration of a pulse
The counter is set to an initial value of 0 and to count up clock pulses when gated on.
The pulse whose duration is to be measured is used as the gate pulse. The pulse duration
is given byTw = N/ fc, whereN is the final value in the counter andfc is the clock
frequency.

Measuring the time difference between two events
The first event sets a logic level and the second event resets the logic level. The duration
of the resulting pulse is thenmeasuredusing themethod just described.Onewell-known
application is the timing of Olympic races to an accuracy of 1 ms.

Generating a pulse of precise duration
The counter is loaded with a numberN and set to count down once per clock pulse.
The output is high during counting and low after zero is reached. The duration of the
pulse is given byTw = N/ fc, where fc is the clock frequency.

Measuring an average pulse frequency
One counter is used to produce a pulse of precise duration, using the method just
described. A second counter counts pulses when gated on by the first counter. If the



15 1.5 Digital counters/timers

pulse duration isTw and the count in the second counter isM , then the average pulse
frequency is given byf p = M/Tw.

Producing pulses uniformly spaced in time
The counter is loaded with a numberN and set to count down once per clock pulse.
When its contents reaches zero, it produces an external pulse, reloads from a load
register, and then resumes counting. The frequency of the resulting pulses is given by
f p = fclock/N.

1.5.2 The 8253 programmable interval timer

This integrated-circuit chip (manufactured by Intel and others) has three 16-bit
down counters that can be used to count clock pulses and can be written and read
under program control. It has a number of functions that permit it to act as a pulse
generator, a digital one-shot, or a digital square-wave generator. These functions are
selected by writing to a control register. At typical 1-MHz clock rates, there are two
issues:
1. It is not possible to read a rapidly changing accumulator directly, and it is necessary

to latch the accumulator into a buffer (temporary storage) register. When the latch
command is given, circuits on the chip transfer the contents of the specified counter
to a buffer register that can be read later. If the counter value is in the process of
changing, the circuits wait for the value to become stable before latching. Note that
the read command reads the buffer register (not the counter itself) and, as a result, the
value read is the counter value at the instant the latch command was given, not the
counter value at the time of the read (Figure 1.12).

2. A 16-bit accumulator will overflow in 16 ms or less, and for counting longer periods,
it is necessary to hardwire twoaccumulators in sequence.Since the twoaccumulators

Address
bus

Latch control circuit

Data
bus

1-MHz pulse
generator Accum-

ulator

Latch command pulse

Latch
register

Read control circuit

Enable pulse

Tri-state
driver

Figure 1.12 Circuits for accumulating 1-MHz pulses, for transferring a valid accumulator value to a
latch register under computer control, and for reading the value into memory.



16 Digital tools

N = 1 to 3
as needed

Write control word for counter N
Write 16 bits to counter N

N = 1 to 3
as needed

Latch counter N into register N

N = 1 to 3
as needed

Read register N

Initialize
and start
counters

Counters are
running – latch

and read at
any time

Figure 1.13 Sequence of operations for initializing, loading, latching, and reading the 8253
counter/timer.

must be latched by different instructions,an ambiguity arises whenever the faster
accumulator passes through zero. The chip does not have circuits to handle this
problem and the simplest solution is to reread the slower accumulator. (See the
following warning about cascading counter/timer chips.)
The initialization, loading, latching, and reading sequence is shown in Figure 1.13.

1.5.3 The AM9513 system timing controller

This integrated-circuit chip (manufacturedbyAdvancedMicroDevices) hasmanymore
features than the 8253 and requires more program steps to initialize (Figure 1.14). It
has five independent 16-bit counters, a 1-MHz clock, and on-chip subscalers to permit
divide-by-N counting for slower rates and longer time ranges.

Under program control, the input of any counter can be connected to any subscaler,
the overflow output of another counter, or to an external input line. Similarly, the
overflow output of any counter can be connected to the input of another counter or to
an external output line.

The five counters can be latched in any combination with a single instruction. How-
ever, whenever two or more counters are cascaded, the ambiguity mentioned before is
still present (although less frequent), and still requires rereading the slower counter. This
interval timer is used in the Metra Byte parallel I/O board and the National Instruments
analog data-acquisition board (among others).

Warning: cascading counter/timer chips
When two counter/timer chips are cascaded, the more rapidly moving counter (say,
counter 1) receives input pulses from the system clock and increments until it reaches
FFFF (for a 16-bit counter). As it transitions to 0000, it sends a carry pulse that incre-
ments the less rapidly moving counter (counter 2; see Figure 1.15).



17 1.5 Digital counters/timers

Set pointer to master mode register
Write 16 bits to register

Set pointer to counter N mode register
Write 16 bits to register N = 1 to 5

as needed

Set pointer to counter N load register
Write 16 bits to register N = 1 to 5

as needed

Arm any or all counters
    to begin counting

Load any or all counters

Set pointer to counter N hold register
Read 16 bits from register N = 1 to 5

as needed

Latch any or all counters
   in hold registers

Initialize
counters

Start
counters

Counters are
running – latch

and read at
anytime

Figure 1.14 Sequence of operations for initializing, loading, latching, and reading the 9513
counter/timer. The counters may be latched and read repeatedly at anytime.

Clock Counter 1

Low bits

Counter 2

High bits

Overflow

Figure 1.15 Timer consisting of a clock and two cascaded counters.

Unfortunately, it is not possible to guarantee that these two events happen simul-
taneously, and erroneous timing information can be read occasionally. For example,
suppose that counter 2 readsA73D andcounter 1 readsFFFF (Table1.10).After counter 1
receives its next clock pulse, we would hope that counter 2 and counter 1 would change
simultaneously and readA73E 0000, but if one changes before the other, andwe latch the
counters during this very brief period, we will get eitherA73E FFFF orA73D 0000. Both
are in error by over 65,000 counts! Moreover, it is not possible to latch the outputs of
two different counter circuits simultaneously, even if they could change simultaneously.



18 Digital tools

Table 1.10 Correct and incorrect values of cascaded counters

Counter 1 Counter 2

Correct simultaneous increment of counters FFFF A73D
1 and 2 (perfect timing) 0000 A73E

FFFF A73D
Incorrect: 1 increments before 2 (65,536

too low)→ 0000 A73D
0000 A73E

FFFF A73D
Incorrect: 2 increments before 1 (65,536

too high)→ FFFF A73E
0000 A73E

The general solution to this problem is to use the following steps:
1. Latch and read both counters.
2. If counter 1 is “near” 0000, go back to step 1.

The nearness condition is determined by the range of counter 1 values during which
counter 2 could be changing.

For the 9513 in 1-MHz increment mode and “simultaneous” counter latching,
counter 1 will increment at most 2�s before its overflow pulse can increment counter 2.
In this case the nearness condition in step 2 is “if counter 1 < 2.”

For the 8253, where the counters decrement at 1 MHz and are latched by separate
program statements that are separated by typically 20�s, counter 1 would be latched
immediately before counter 2, and a safe nearness condition in step 2 would be “if

counter 1 > FF00.”

1.6 Parallel and serial input/output ports

Theparallel input/output (I/O) port allows the microcomputer to communicate di-
rectly with logic voltages in the external digital world and handles most of the problems
of control and synchronization with the microprocessor address and data buses. The
most convenient is the bi-directional port, which has separate input and output lines,
simplifying the connection to external devices. Since all bits are transferred in parallel
(at the same time), it is generally faster than the serial port. Laboratory Exercise 3 in-
volves reading switches and writing to lights using a parallel port. Moreover, A/D and
D/A converters naturally deal with parallel digital information and can be interfaced
directly to a parallel I/O port, as demonstrated in Laboratory Exercises 8 and 9.

The parallel I/O port usually includes the following addressable internal registers:
1. Data registersthat hold input data until the program can read them and hold output

data while needed by the external circuit.



19 1.6 Parallel and serial input/output ports

2. A control register that allows the program to write ones and zeros to control the
mode of operation of the port or the logic state of external lines. These lines are
typically used to notify an external circuit that the program: (i) has new output,
(ii) has read new input, or (iii) is ready to accept new input.

3. A status registerthat can be read by the program to determine the status of the data
register or the logic state of external lines. Various bits would be set when an external
circuit: (i) has asserted and latched new data on the input port (and are ready to be
read by the program), (ii) has read the contents of the output port, or (iii) is ready to
read new data from the output port.
Some commercial parallel I/O ports have only data registers and no handshaking

registers, but it is possible to assign some of the data bits to be used by the program
to communicate with external circuits. This is described in the following sections on
parallel input and output handshaking.

Most parallel I/O ports have both input and output data lines, whose functions cannot
be changed (the bi-directional port), while others permit each data bit to be either input
or output, as specified by the contents of a special control register.

Theserial I/O port also has addresses for setting up the communication protocol
and then can transfer data serially in time using only one input and one output line. The
advantage over the parallel port is that existing circuits (specifically telephone commu-
nication lines) can transmit serial data over long distances, even to other continents. For
connection to nearby peripheral devices the older RS232 serial port is being replaced
by much faster USB and IEEE 1394 serial ports. (See Section 1.9 for more details.)

1.6.1 Handshaking considerations

Handshakingconsistsof thecommunicationproceduresused toensure that both sender
and receiver are ready for data transmission, that the sender tells the receiver when data
are ready, and the receiver tells the sender that the data have been taken.

Parallel data can be correctly read only when all bits are stable. Handshaking is
essential and allows the sender to signal the receiver when new data are ready and
stable.

The following steps describe how handshaking can be implemented using two hand-
shaking lines “ready for data” and “data available” in addition to the data lines. They can
be used for data transmission in either direction between any combination of computers
and external circuits. Between transactions, “ready for data” and “data available” are
FALSE.
1. When the receiver is ready for new data, it sets “ready for data”TRUE.
2. The sender detects “ready for data”TRUE.
3. (a) If the receiver initiates the data transfers, the sender asserts the requested data as



20 Digital tools

soon as possible after step 2. (“Asserts” means setting voltages on the data lines
that correspond to the 0s and 1s of the data.)

(b) If the sender initiates the data transfers, the sender can assert data anytime after
step 2.

4. After the voltages on the data lines have settled, the sender sets “data available”
TRUE. (It is essential that the data are validbefore“data available” is set true.)

5. The receiver detects “data available” TRUE and reads the data.
6. The receiver sets “ready for data”FALSE. (At this point the receiver is not ready

for data because it needs to do something with the data it just read.)
7. The sender detects “ready for data”FALSE andsets “data available”FALSE. (At

this point the sender is relieved of the responsibility of asserting the data.)
Handshaking is required for both serial and parallel data when a series of data values

must be transmitted faithfully and the receiver or the sender have an unpredictable
response time or are transferring data at unpredictable times (asynchronous communi-
cation).

Handshaking is generally not necessary when the sender continually produces data
(such as temperature measurements), and the receiver can tolerate occasional erroneous
values that arise during bit changes. To avoid this problem, digital position encoders
(see Chapter 4) use Gray code which has the property that neighboring values differ by
only one bit (see Table 1.1).

Design tip

If a circuit asserts digital data for a brief period and the computer may not be able to read the data
promptly:
1. Connect each output line of the circuit to a transparent latch.
2. When the circuit has data, it can store the data on the latch until it can be read by the computer.
3. Handshaking is needed so that the external circuit can inform the program that new data are
available and the program can inform the external circuit that the data have been taken.

1.6.2 The parallel output port

Theparallel output port reads a number from computer memory and converts the bit
pattern to logic voltage levels on wires in the world “outside” the computer. Additional
control lines and status registers may also be provided so that: (i) the external circuit can
tell the computer program that it is ready to receive output data, (ii) the computer
program can tell the external circuit that it has data in its internal registers, and
(iii) the external circuit can tell the computer program that the output data have been
taken.

The basic element in the parallel output port is theregister, a circuit able to sample,
store, and output digital data on command. This is usually achieved by using a set




