Financial Derivatives

Pricing, Applications, and Mathematics

JAML BAZ
Deutsche Bank

GEORGE CHACKO
Harvard Business School

CAMBRIDGE UNIVERSITY PRESS
Contents

2.6 Exotic Options
2.6.1 Digital Options 64
2.6.2 Power Options 65
2.6.3 Asian Options 67
2.6.4 Barrier Options 71

3 Interest Rate Models 78
3.1 Interest Rate Derivatives: Not So Simple 78
3.2 Bonds and Yields 80
3.2.1 Prices and Yields to Maturity 80
3.2.2 Discount Factors, Zero-Coupon Rates, and Coupon Bias 82
3.2.3 Forward Rates 85
3.3 Naive Models of Interest Rate Risk 88
3.3.1 Duration 88
3.3.2 Convexity 99
3.3.3 The Free Lunch in the Duration Model 104
3.4 An Overview of Interest Rate Derivatives 108
3.4.1 Bonds with Embedded Options 109
3.4.2 Forward Rate Agreements 110
3.4.3 Eurostrip Futures 112
3.4.4 The Convexity Adjustment 113
3.4.5 Swaps 118
3.4.6 Caps and Floors 120
3.4.7 Swaptions 121
3.5 Yield Curve Swaps 122
3.5.1 The CMS Swap 122
3.5.2 The Quanto Swap 127
3.6 Factor Models 131
3.6.1 A General Single-Factor Model 131
3.6.2 The Merton Model 135
3.6.3 The Vasicek Model 139
3.6.4 The Cox-Ingersoll-Ross Model 142
3.6.5 Risk-Neutral Valuation 144
3.7 Term-Structure-Consistent Models 147
3.7.1 “Equilibrium” Versus “Fitting” 147
3.7.2 The Ho-Lee Model 153
3.7.3 The Ho-Lee Model with Time-Varying Volatility 157
3.7.4 The Black-Derman-Toy Model 162
3.8 Risky Bonds and Their Derivatives 166
3.8.1 The Merton Model 167
3.8.2 The Jarrow-Turnbull Model 168
Contents

3.9 The Heath, Jarrow, and Morton Approach 172
3.10 Interest Rates as Options 180

4 Mathematics of Asset Pricing 184
4.1 Random Walks 184
4.1.1 Description 184
4.1.2 Gambling Recreations 186
4.2 Arithmetic Brownian Motion 192
4.2.1 Arithmetic Brownian Motion as a Limit of a Simple Random Walk 192
4.2.2 Moments of an Arithmetic Brownian Motion 196
4.2.3 Why Sample Paths Are Not Differentiable 198
4.2.4 Why Sample Paths Are Continuous 198
4.2.5 Extreme Values and Hitting Times 199
4.2.6 The Arcsine Law Revisited 203
4.3 Geometric Brownian Motion 204
4.3.1 Description 204
4.3.2 Moments of a Geometric Brownian Motion 207
4.4 Itô Calculus 209
4.4.1 Riemann-Stieljes, Stratonovitch, and Itô Integrals 209
4.4.2 Itô’s Lemma 214
4.4.3 Multidimensional Itô’s Lemma 222
4.5 Mean-Reverting Processes 225
4.5.1 Introduction 225
4.5.2 The Ornstein-Uhlenbeck Process 225
4.5.3 Calculations of Moments with the Dynkin Operator 226
4.5.4 The Square-Root Process 228
4.6 Jump Process 229
4.6.1 Pure Jumps 229
4.6.2 Time Between Two Jumps 231
4.6.3 Jump Diffusions 232
4.6.4 Itô’s Lemma for Jump Diffusions 233
4.7 Kolmogorov Equations 234
4.7.1 The Kolmogorov Forward Equation 234
4.7.2 The Dirac Delta Function 236
4.7.3 The Kolmogorov Backward Equation 236
4.8 Martingales 239
4.8.1 Definitions and Examples 239
4.8.2 Some Useful Facts About Martingales 241
4.8.3 Martingales and Brownian Motion 242
Contents

4.9 Dynamic Programming 245
4.9.1 The Traveling Salesman 245
4.9.2 Optimal Control of Itô Processes: Finite Horizon 247
4.9.3 Optimal Control of Itô Processes: Infinite Horizon 248
4.10 Partial Differential Equations 253
4.10.1 The Kolmogorov Forward Equation Revisited 253
4.10.2 Risk-Neutral Pricing Equation 256
4.10.3 The Laplace Transform 257
4.10.4 Resolution of the Kolmogorov Forward Equation 262
4.10.5 Resolution of the Risk-Neutral Pricing Equation 265

Bibliography 269

Index 327
Introduction

This book is about risk and derivative securities. In our opinion, no one has described the issue more eloquently than Jorge Luis Borges, an intrepid Argentinian writer. He tells a fictional story of a lottery in ancient Babylonia. The lottery is peculiar because it is compulsory. All subjects are required to play and to accept the outcome. If they lose, they stand to lose their wealth, their lives, or their loved ones. If they win, they will get mountains of gold, the spouse of their choice, and other wonderful goodies.

It is easy to see how this story is a metaphor of our lives. We are shaped daily by doses of randomness. This is where the providential financial engineer intervenes. The engineer’s thoughts are along the following lines: to confront all this randomness, one needs artificial randomness of opposite sign, called derivative securities. And the engineer calls the ratio of these two random quantities a hedge ratio.

Financial engineering is about combining the Tinker Toys of capital markets and financial institutions to create custom risk-return profiles for economic agents. An important element of the financial engineering process is the valuation of the Tinker Toys; this is the central ingredient this book provides.

We have written this book with a view to the following two objectives:

- to introduce readers with a modicum of mathematical background to the valuation of derivatives
Introduction

- to give them the tools and intuition to expand upon these results when necessary

By and large, textbooks on derivatives fall into two categories: the first is targeted toward MBA students and advanced undergraduates, and the second aims at finance or mathematics PhD students. The former tend to score high on breadth of coverage but do not go in depth into any specific area of derivatives. The latter tend to be highly rigorous and therefore limit the audience. While this book is closer to the second category, it strives to simplify the mathematical presentation and make it accessible to a wider audience. Concepts such as measure, functional spaces, and Lebesgue integrals are avoided altogether in the interest of all those who have a good knowledge of mathematics but yet have not ventured into advanced mathematics.

The target audience includes advanced undergraduates in mathematics, economics, and finance; graduate students in quantitative finance master’s programs as well as PhD students in the aforementioned disciplines; and practitioners afflicted with an interest in derivatives pricing and mathematical curiosity.

The book assumes elementary knowledge of finance at the level of the Brealey and Myers corporate finance textbook. Notions such as discounting, net present value, spot and forward rates, and basic option pricing in a binomial model should be familiar to the reader. However, very little knowledge of economics is assumed, as we develop the required utility theory from first principles.

The level of mathematical preparation required to get through this book successfully comprises knowledge of differential and integral calculus, probability, and statistics. In calculus, readers need to know basic differentiation and integration rules and Taylor series expansions, and should have some familiarity with differential equations. Readers should have had the standard year-long sequence in probability and statistics. This includes conventional, discrete, and continuous probability distributions and related notions, such as their moment generating functions and characteristic functions.

The outline runs as follows:

1. Chapter 1 provides readers with the mathematical background to understand the valuation concepts developed in Chapters 2 and 3. It provides an intuitive exposition of basic random
Introduction

calculus. Concepts such as volatility and time, random walks, geometric Brownian motion, and Itô's lemma are exposed heuristically and given, where possible, an intuitive interpretation. This chapter also offers a few appetizers that we call paradoxes of finance: these paradoxes explain why forward exchange rates are biased predictors of future rates; why stock investing looks like a free lunch; and why success in portfolio management might have more to do with luck than with skill.

2. Chapter 2 develops generic pricing techniques for assets and derivatives. The chapter starts from basic concepts of utility theory and builds on these concepts to derive the notion of a stochastic discount factor, or pricing kernel. Pricing kernels are then used as the basis for the derivation of all subsequent pricing results, including the Black-Scholes/Merton model. We also show how pricing kernels relate to the hedging, or dynamic replication, approach that is the origin of all modern valuation principles. The chapter concludes with several applications to equity derivatives to demonstrate the power of the tools that are developed.

3. Chapter 3 specializes the pricing concepts of Chapter 3 to interest rate markets; namely bonds, swaps, and other interest rate derivatives. It starts with elementary concepts such as yield-to-maturity, zero-coupon rates, and forward rates; then moves on to naïve measures of interest rate risk such as duration and convexity and their underlying assumptions. An overview of interest rate derivatives precedes pricing models for interest rate instruments. These models fall into two conventional families: factor models, to which the notion of price of risk is central, and term-structure-consistent models, which are partial equilibrium models of derivatives pricing. The chapter ends with an interpretation of interest rates as options.

4. Chapter 4 is an expansion of the mathematical results in Chapter 1. It deals with a variety of mathematical topics that underlie derivatives pricing and portfolio allocation decisions. It describes in some detail random processes such as random walks, arithmetic and geometric Brownian motion, mean-reverting processes and jump processes. This chapter also includes an exposition of the rules of Itô calculus and contrasts it with the
Introduction

competing Stratonovitch calculus. Related tools of stochastic calculus such as Kolmogorov equations and martingales are also discussed. The last two sections elaborate on techniques widely used to solve portfolio choice and option pricing problems: dynamic programming and partial differential equations.

We think that one virtue of the book is that the chapters are largely independent. Chapter 1 is essential to the understanding of the continuous-time sections in Chapters 2 and 3. Chapter 4 may be read independently, though previous chapters illuminate the concepts developed in each chapter much more completely.

Why Chapter 4 is at the end and not the beginning of this book is an almost aesthetic undertaking: Some finance experts think of mathematics as a way to learn finance. Our point of view is different. We feel that the joy of learning is in the process and not in the outcome. We also feel that finance can be a great way to learn mathematics.