Financial Derivatives

This book offers a succinct account of the principles of financial derivatives pricing. The first chapter provides readers with an intuitive exposition of basic random calculus. Concepts such as volatility and time, random walks, geometric Brownian motion, and Itô’s lemma are discussed heuristically. The second chapter develops generic pricing techniques for assets and derivatives, determining the notion of a stochastic discount factor or pricing kernel, and then uses this concept to price conventional and exotic derivatives. The third chapter applies the pricing concepts to the special case of interest rate markets, namely, bonds and swaps, and discusses factor models and term-structure-consistent models. The fourth chapter deals with a variety of mathematical topics that underlie derivatives pricing and portfolio allocation decisions, such as mean-reverting processes and jump processes, and discusses related tools of stochastic calculus, such as Kolmogorov equations, martingales techniques, stochastic control, and partial differential equations.

Jamil Baz is the chief investment strategist of GLG, a London-based hedge fund. Prior to holding this position, he was a portfolio manager with PIMCO in London, a managing director in the Proprietary Trading Group of Goldman Sachs, chief investment strategist of Deutsche Bank, and executive director of Lehman Brothers fixed income research division. Dr. Baz teaches financial economics at Oxford University. He has degrees from the London School of Economics (M.Sc.), MIT (S.M.), and Harvard University (A.M., Ph.D.).

George Chacko is chief investment officer of Auda, a global asset management firm, in New York. He is also a professor at Santa Clara University, California, where he teaches finance. Dr. Chacko previously served for ten years as a professor at Harvard Business School in the finance department. Dr. Chacko held managing directorships in fixed income sales and trading at State Street Bank in Boston and in pension asset management at IFL in New York. He holds a B.S. from MIT, an M.B.A. from the University of Chicago, and an M.A. and Ph.D. from Harvard University.
Financial Derivatives

Pricing, Applications, and Mathematics

JAMIL BAZ

GLG

GEORGE CHACKO

Auda
To Maurice and Elena J.B.

To my parents G.C.
Contents

Acknowledgments

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

1 Preliminary Mathematics

- 1.1 Random Walk | 5 |
- 1.2 Another Take on Volatility and Time | 8 |
- 1.3 A First Glance at Itô’s Lemma | 9 |
- 1.4 Continuous Time: Brownian Motion; More on Itô’s Lemma | 11 |
- 1.5 Two-Dimensional Brownian Motion | 14 |
- 1.6 Bivariate Itô’s Lemma | 15 |
- 1.7 Three Paradoxes of Finance
 - 1.7.1 Paradox 1: Siegel’s Paradox | 16 |
 - 1.7.2 Paradox 2: The Stock, Free-Lunch Paradox | 18 |
 - 1.7.3 Paradox 3: The Skill Versus Luck Paradox | 19 |

2 Principles of Financial Valuation

- 2.1 Uncertainty, Utility Theory, and Risk | 22 |
- 2.2 Risk and the Equilibrium Pricing of Securities | 28 |
- 2.3 The Binomial Option-Pricing Model | 41 |
- 2.4 Limiting Option-Pricing Formula | 46 |
- 2.5 Continuous-Time Models
 - 2.5.1 The Black-Scholes/Merton Model – Pricing Kernel Approach | 48 |
 - 2.5.2 The Black-Scholes/Merton Model – Probabilistic Approach | 57 |
 - 2.5.3 The Black-Scholes/Merton Model – Hedging Approach | 61 |
2.6 Exotic Options 63
 2.6.1 Digital Options 64
 2.6.2 Power Options 65
 2.6.3 Asian Options 67
 2.6.4 Barrier Options 71

3 Interest Rate Models 78
 3.1 Interest Rate Derivatives: Not So Simple 78
 3.2 Bonds and Yields 80
 3.2.1 Prices and Yields to Maturity 80
 3.2.2 Discount Factors, Zero-Coupon Rates, and Coupon Bias 82
 3.2.3 Forward Rates 85
 3.3 Naive Models of Interest Rate Risk 88
 3.3.1 Duration 88
 3.3.2 Convexity 99
 3.3.3 The Free Lunch in the Duration Model 104
 3.4 An Overview of Interest Rate Derivatives 108
 3.4.1 Bonds with Embedded Options 109
 3.4.2 Forward Rate Agreements 110
 3.4.3 Eurostrip Futures 112
 3.4.4 The Convexity Adjustment 113
 3.4.5 Swaps 118
 3.4.6 Caps and Floors 120
 3.4.7 Swaptions 121
 3.5 Yield Curve Swaps 122
 3.5.1 The CMS Swap 122
 3.5.2 The Quanto Swap 127
 3.6 Factor Models 131
 3.6.1 A General Single-Factor Model 131
 3.6.2 The Merton Model 135
 3.6.3 The Vasicek Model 139
 3.6.4 The Cox-Ingersoll-Ross Model 142
 3.6.5 Risk-Neutral Valuation 144
 3.7 Term-Structure-Consistent Models 147
 3.7.1 “Equilibrium” Versus “Fitting” 147
 3.7.2 The Ho-Lee Model 153
 3.7.3 The Ho-Lee Model with Time-Varying Volatility 157
 3.7.4 The Black-Derman-Toy Model 162
 3.8 Risky Bonds and Their Derivatives 166
 3.8.1 The Merton Model 167
 3.8.2 The Jarrow-Turnbull Model 168
Contents

3.9 The Heath, Jarrow, and Morton Approach 172
3.10 Interest Rates as Options 180

4 Mathematics of Asset Pricing 184
4.1 Random Walks 184
 4.1.1 Description 184
 4.1.2 Gambling Recreations 186
4.2 Arithmetic Brownian Motion 192
 4.2.1 Arithmetic Brownian Motion as a Limit of a Simple Random Walk 192
 4.2.2 Moments of an Arithmetic Brownian Motion 196
 4.2.3 Why Sample Paths Are Not Differentiable 198
 4.2.4 Why Sample Paths Are Continuous 198
 4.2.5 Extreme Values and Hitting Times 199
 4.2.6 The Arcsine Law Revisited 203
4.3 Geometric Brownian Motion 204
 4.3.1 Description 204
 4.3.2 Moments of a Geometric Brownian Motion 207
4.4 Itô Calculus 209
 4.4.1 Riemann-Stieljes, Stratonovitch, and Itô Integrals 209
 4.4.2 Itô’s Lemma 214
 4.4.3 Multidimensional Itô’s Lemma 222
4.5 Mean-Reverting Processes 225
 4.5.1 Introduction 225
 4.5.2 The Ornstein-Uhlenbeck Process 225
 4.5.3 Calculations of Moments with the Dynkin Operator 226
 4.5.4 The Square-Root Process 228
4.6 Jump Process 229
 4.6.1 Pure Jumps 229
 4.6.2 Time Between Two Jumps 231
 4.6.3 Jump Diffusions 232
 4.6.4 Itô’s Lemma for Jump Diffusions 233
4.7 Kolmogorov Equations 234
 4.7.1 The Kolmogorov Forward Equation 234
 4.7.2 The Dirac Delta Function 236
 4.7.3 The Kolmogorov Backward Equation 236
4.8 Martingales 239
 4.8.1 Definitions and Examples 239
 4.8.2 Some Useful Facts About Martingales 241
 4.8.3 Martingales and Brownian Motion 242
Contents

4.9 Dynamic Programming
 4.9.1 The Traveling Salesman
 4.9.2 Optimal Control of Itô Processes: Finite Horizon
 4.9.3 Optimal Control of Itô Processes: Infinite Horizon
4.10 Partial Differential Equations
 4.10.1 The Kolmogorov Forward Equation Revisited
 4.10.2 Risk-Neutral Pricing Equation
 4.10.3 The Laplace Transform
 4.10.4 Resolution of the Kolmogorov Forward Equation
 4.10.5 Resolution of the Risk-Neutral Pricing Equation

Bibliography

Index
Acknowledgments

We are as ever in many people’s debt. Both authors are lucky to have worked with or been taught by eminent experts such as John Campbell, Sanjiv Das, Jerome Detemple, Ken Froot, Andrew Lo, Franco Modigliani, Vasant Naik, Michael Pascutti, Lester Seigel, Peter Tufano, Luis Viceira, and Jean-Luc Vila. A list, by no means exhaustive, of colleagues who have read or influenced this manuscript includes Richard Bateson, Eric Briys, Robert Campbell, Marcel Cassard, Didier Cossin, François Degeorge, Lev Dynkin, David Folkerts-Landau, Vincent Koen, Ravi Mattu, Christine Miqueu-Baz, Arun Muralidhar, Prafulla Nabar, Brian Pinto, David Prieul, Vlad Putyatin, Nassim Taleb, Michele Toscani, Sadek Wahba, and Francis Yared. Special thanks are due to Tarek Nassar, Saurav Sen, Feng Li, and Dee Luther for diligent help with the manuscript. The biggest debt claimant to this work is undoubtedly Robert Merton, whose influence pervades this manuscript, including the footnotes; as such, because there is no free lunch, he must take full responsibility for all serious mistakes, details of which should be forwarded directly to him.