Index

Page numbers in bold denote figures and tables

adaptation concept 275–7
continuity of adaptation, passive to
constructionist emphasis 285
and fitness 276
protein level 315
adaptation and constraint 286
variants of a specific gene (PGI) 278–83
adaptationism 276
additive effects of QTLs 63–4
age-dependent expression, human diseases 228
age-specific mortality
limits to human lifespan 372–3
public health 30–1
see also human mortality patterns
agriculture, human evolution studies 415–17
AIRMILES (technology) 94–5
allozymes 303
altruism
reciprocal 385
selection favoring 387
Amphipore, microsporidian 386
Anderson, W. W., density-dependent
selection 144
Anolis lizards 147
anthrax (Bacillus anthracis) 382
ants, temperature significance 36–7
fire ants 37
apostatic selection 166
applied population biology 345–448
conservation biology 347–65
human evolution studies 411–27
human mortality patterns 366–76
race and geneticists 428–48
RNA virus diseases 391–410
virulence, selection and evolution 377–90
atomism 276
bacteria
and phages, frequency-dependent
selection 168
plasmids 385–6
balancing selection 157, 164–9
Batesian mimicry 166
Bateson, W. 430–3
Bayesian analysis, BAGEL 80, 84, 86
behavioral genetics 240–3
biodiversity, evolutionary genomics 99
bioenergetically based studies 277–83
bioinformatics 94–103
background 95–7
biodiversity 98–100
comparative biology 100–1
environmental genomics 101–2
environmental microbial bioinformatics 101
population level bioinformatics 97–8
biological determinism, criticism 240–3
body weight, gestational programming 244–5
bounded hybrid superiority model 302
Brassica, sporophytic SI (SSI) 255–6
butterfly Colias
evolutionary importance of strongly
selected variants at major genes 287–9
genic selectionism vs. genotypic level of
selection 284–5
butterfly (cont.)
mechanistic evolutionary study 283–4
social context 289–90
neutralism and selectionism 286–7
butterfly Colias, bioenergetically based studies 277–83
adaptation, constraint and neutrality in variants of a specific gene 278–81
epistasis in metabolism 282–3
G6PD and PGM variants 283
phosphoglucose isomerase (PGI) polymorphism 278–83
adaptive complexities among taxa 282–9
molecular aspects 281–2
thermoregulatory adaptations and thermal constraints on flight 277–8

Caenorhabditis elegans, and C. briggsae, molecular evolution of early/late expressed development genes, DNA microarrays 81–2
carrying capacity K defined 13–14, 140
problems 9–10, 32
caterpillars, nuclear polyposis viruses 384
Cepaea nemoralis 162, 169, 171
character index scores 299–300
Chlamydia trachomatis 384–5
 cholera toxin, shared benefits 379–81
coalescent theory 193–215
gene genealogies 196–7, 198
genealogical variation, tree size and branching pattern 198–9
and phylogeography 205–10
measures of correlation in branching pattern 207–8
measures of variation in tree size 206–7
phylogenetics and intraspecific phylogeography 195–6
simulations 208–10
population genetics history 193–5
population structure/histroy effect on genealogies 200–2
equilibrium migration 202–4
isolation without gene flow 204–5
population growth and decline 200–2
scaling factor 261
Colias see butterfly Colias
community ecology, Lotka–Volterra model 14–15, 140, 147
comparative genomics 100–1
competitors, as selective agents 168
complex polymorphisms 115–16
conservation biology 347–65
applications 351–62
estimating long-term effective population size 357–62
genetic resistance to pathogens 354–7
genetic restoration of populations with low fitness 351–2
inbreeding depression, impact of natural environment 352–4
history 347–50
constructionist interactions with environment 285
crises, apostatic selection 166
cultural transmission, horizontal vs. vertical 418

demographic analysis
dependence of fitness 227–8
human mortality patterns 366–76
and natural selection 10–12
density-dependent selection 139–55
Anderson’s and Roughgarden’s models 144
classical selection 149
subpopulations (sinks) 151
density-independent selection 148–9
exploitative competition 146–8
Kostizin’s and MacArthur’s models 140–3
models with time lag 146
nonoverlapping generations 143–6
population dynamics and selection 151–2
Poulsen’s model 144–5
structured habitats 149–51
depression, life events and difficulties (LED) 237–9, 244–50
descendants, number 262–3
Shannon–Weaver information measure 263, 264
diabetes
QTLs 64
SNPs 62
divergence population genetics 316
DNA microarrays
applications 76–8
INDEX 451

expression profiling of natural isolates of vineyard yeast 82–6

gene expression profiling 81–8

interspecific comparisons in Drosophila 87–8

molecular evolution of early/late genes in nematodes 81–2

variation in gene expression in Drosophila 86–7

DNA polymorphisms, vs. protein polymorphisms 419–20

DNA sequencing, natural populations 75–6

Drosophila melanogaster (Adhr) 328

evolution of tolerance to ethanol 160

and D. simulans, interspecific comparisons 87–8, 125
dichaete and SoxN genes 120

DNA microarrays

interspecific comparisons 87–8

variation in gene expression profiles 86–7

gene duplication 123–5

nonsynonymous polymorphisms 158

ratio to synonymous changes 162

and recombination 161–2

QTL mapping, high-resolution mapping 58–9

quantitative mutational variation, smi 54

sibling species D. teissieri and D. yakuba 126

Drosophila melanogaster subgroup species 315–43

nine new species

erecta 317, 320–3

mauritiana 317, 323–4

melanogaster (syn) ampelophila 317

orena 317, 320–3

saxtongae 317, 320–3

sechellia 317, 323–4

simulans 87–8, 125, 317, 325, 328–30

teissieri 126, 317, 324–5

yakuba 126, 317, 324–5

classification 321

ecology and biogeography 320–5

Eastern endemics: mauritiana and sechellia 323–4

mainland endemics: teissieri and yakuba 324–5

neocosmopolitans: melanogaster and simulans 325

Western endemics: erecta, orena and santomea 320–3

morphology and taxonomy 316–20

males compared 319

origins summarized 317

phylogenetic tree

consensus 318

superimposed on map 322

population substructuring 325–30

melanogaster populations with different status 326–8

rainforest fragmentation, teissieri subdivision 325–6

simulans enigma, mtDNA haplotypes 328–30

reproductive relationships 350–4, 332

hybrid rescue genes 333

insular altitudinal hybrid zone between santomea and yakuba 333–4

postmating isolation 331–3

Zimbabwe and Brazza sexually diverging populations of melanogaster 330–4

summary/questions

chromosomal inversion frequency differences 334–5

genetic diversity reduced/sustained in insular endemics 335–6

sex-related genes: rapid evolution? 336–7

Drosophila pseudoobscura, testing for selection evidence 163

Drosophilidae, number of species 316

duplicate genes 119–20, 123–5

dynamic equilibrium model 302

East, E. M. 441–5

ecological gradient model 302

endangered species, estimating long-term effective population size 357–62

environment

coevolution with organism 16

genome/environment system 24–5

and genotype, norms of reaction 25–7

and plant growth, coefficients of variation 25–6

response to discrete “signals” 24

selection in variable environments 40–6

selection of complex physiological systems 42–6

suboptimal, traits reflecting compromise 38
INDEX

Europe, correlation of genes and languages 417–19

evolution rate

\[k = \frac{N_1}{N_3} 178–80 \]

faster fluctuations 187–8

related models 184–7

TIM and house-of-cards model 180–4

evolutionary case studies

butterfly Colias 275–95

Drosophila melanogaster subgroup species 315–43

hybridization/hybrid zones 297–314

evolutionary genetics

gene expression profiling 74–93

“major” genes concept 287–9

new genetic systems 122–6

and RNA virus diseases 391–410

exploitative competition 146–8

F1 hybrids 116

farming, human evolution studies 415–17

female fecundity, defined 217

fire ants 37

Fischer, E., and Rehoboth Bastards 434–7

fish, Colorado River, estimating long-term effective population size \(N_e \) 359–62

Fisher, R. A. 8, 10–11, 112, 193

mass selection 111, 117, 120, 126

natural selection 10–12

fitness

components, determination 12–13

dependence on demography 227–8

“depression of mean fitness” 288

genotype 114

in an equilibrium population 220

in vs. of population 12

lack of parameters 11

measures of selection 223–4

measuring 227

minimization 13

phenotypes and molecular traits, epistasis 115–17

population fitness 11–12, 114

fitness functions 114

fitness surface 113–14

flaviviruses 396, 401

Florida panther (Puma concolor coryi)

conservation program 351–2

flux control, metabolic control analysis 121–2

foot-and-mouth disease virus (FMDV) 395, 396

Escherichia coli, and Paramecium primaurelia, r and K covariation 143

Escherichia coli genome

genes homologous in Salmonella 120, 122–3

horizontal gene transfer (HGT) 122–3

variation 122

eugenic selection 431–45

Euler equation 10

Euler–Lotka equation 218, 221–2

environmental genomics 101–2

environmental microbial bioinformatics 101

epidemiology 233–53

gestational programming 244–5

life events and difficulties research 245–6

reciprocal causation models of IQ development 243, 246

epistasis in fitness, phenotypes and molecular traits 113–17

evidence from linkage disequilibrium and complex polymorphisms 115–16

evidence from species hybrids 116–17

newly arising mutations 114–15

qualitative vs. quantitative 117

and sexual traits 117

and stability 118–22

functional redundancy 119–20

interacting genetic networks 120–1

network stability 121–2

views of developmental complexity

Fisher’s 112–13

Gould’s 113

Escherichia coli, and Paramecium primaurelia, r and K covariation 143

Escherichia coli genome

genes homologous in Salmonella 120, 122–3

horizontal gene transfer (HGT) 122–3

variation 122

eugenic selection 431–45

Euler equation 10

Euler–Lotka equation 218, 221–2

environment taxonomy 35–9

life factor variance 35–6

opposing demands 37–8

patchiness 35

predictability 38–9

temperature 36–7

environmental complexities 233–53

behavioral genetics 240–3

from commentary to engagement 246–50

criticism of biological determinism, and IQ 240–3

environment in age of DNA 234–6

gestational programming 236–7

history (1974) 233–4

life events and difficulties (LED) 237–9, 245–50

reciprocal causation models of IQ development 243, 246

environmental genomics 101–2

evolutionary genetics

gene expression profiling 74–93

“major” genes concept 287–9

new genetic systems 122–6

and RNA virus diseases 391–410

exploitative competition 146–8

F1 hybrids 116

farming, human evolution studies 415–17

female fecundity, defined 217

fire ants 37

Fischer, E., and Rehoboth Bastards 434–7

fish, Colorado River, estimating long-term effective population size \(N_e \) 359–62

Fisher, R. A. 8, 10–11, 112, 193

mass selection 111, 117, 120, 126

natural selection 10–12

fitness

components, determination 12–13

dependence on demography 227–8

“depression of mean fitness” 288

genotype 114

in an equilibrium population 220

in vs. of population 12

lack of parameters 11

measures of selection 223–4

measuring 227

minimization 13

phenotypes and molecular traits, epistasis 115–17

population fitness 11–12, 114

fitness functions 114

fitness surface 113–14

flaviviruses 396, 401

Florida panther (Puma concolor coryi)

conservation program 351–2

flux control, metabolic control analysis 121–2

foot-and-mouth disease virus (FMDV) 395, 396

environmental genomics 101–2

environmental microbial bioinformatics 101

epidemiology 233–53

gestational programming 244–5

life events and difficulties research 245–6

reciprocal causation models of IQ development 243, 246

epistasis in fitness, phenotypes and molecular traits 113–17

evidence from linkage disequilibrium and complex polymorphisms 115–16

evidence from species hybrids 116–17

newly arising mutations 114–15

qualitative vs. quantitative 117

and sexual traits 117

and stability 118–22

functional redundancy 119–20

interacting genetic networks 120–1

network stability 121–2

views of developmental complexity

Fisher’s 112–13

Gould’s 113

Escherichia coli, and Paramecium primaurelia, r and K covariation 143

Escherichia coli genome

genes homologous in Salmonella 120, 122–3

horizontal gene transfer (HGT) 122–3

variation 122

eugenic selection 431–45

Euler equation 10

Euler–Lotka equation 218, 221–2

environment taxonomy 35–9

life factor variance 35–6

opposing demands 37–8

patchiness 35

predictability 38–9

temperature 36–7

environmental complexities 233–53

behavioral genetics 240–3

from commentary to engagement 246–50

criticism of biological determinism, and IQ 240–3

environment in age of DNA 234–6

gestational programming 236–7

history (1974) 233–4

life events and difficulties (LED) 237–9, 245–50

reciprocal causation models of IQ development 243, 246

environmental genomics 101–2

environmental microbial bioinformatics 101

epidemiology 233–53

gestational programming 244–5

life events and difficulties research 245–6

reciprocal causation models of IQ development 243, 246

epistasis in fitness, phenotypes and molecular traits 113–17

evidence from linkage disequilibrium and complex polymorphisms 115–16

evidence from species hybrids 116–17

newly arising mutations 114–15

qualitative vs. quantitative 117

and sexual traits 117

and stability 118–22

functional redundancy 119–20

interacting genetic networks 120–1

network stability 121–2

views of developmental complexity

Fisher’s 112–13

Gould’s 113

Escherichia coli, and Paramecium primaurelia, r and K covariation 143

Escherichia coli genome

genes homologous in Salmonella 120, 122–3

horizontal gene transfer (HGT) 122–3

variation 122

eugenic selection 431–45

Euler equation 10

Euler–Lotka equation 218, 221–2
INDEX 453

frequency-dependent selection 156–77
 see also nonsynonymous polymorphisms
functional redundancy, epistasis and stability
 119–20

gametophytic SI (GSI) 255–6, 258–60, 267
gene addition 124–6
gene conversion 125
gene duplication 119–20, 123–5
gene expression profiling 74–93
DNA microarrays 81–8
 statistical analysis 78–80
 BAGEL 80, 84, 86
gene genealogies
 coalescent theory 196–7, 198
 population structure/history effects
 200–5
gene inactivation, marginal fitness effects
 119–21
gene knockouts 115
gene loss 123–4
gene mapping 315
gene transfer 122–3
genes, and languages 417–19
genetic dissection of quantitative traits
 51–73

genetic drift
 human variation 411–13
 linkage disequilibrium (LD) and complex polymorphisms 159–60
 and mutagenesis 358
 quasispecies, long-term effective population size N, 395
 random, in human variation 411–13
 RNA viruses 395, 397

genetic load 158–61
 as artifact of incorrect models 288

genetic networks
 interactions 129–1
 stability 121

genetic resistance to pathogens 354–7

geneticists and biology of race (1900–24)
 Colton PGI 284–5

genotypes 24–35
 norms of reaction 25–7
 phenotypes of populations 30–1
 population/environment feedback 31–4
 role of history 34–5
 Schmalhausen’s Law 22, 27–9
 gestational programming, epidemiology 244–5
 Global Biodiversity Information Facility 99–100

haploid (nonrecombinant Y-chromosome)
 genes 416–17
hepatitis G (GBV-C) 396, 399
herbivores, and plant growth 31–3, 40–2
heritability
 extragenetic 29
 quantitative genetics 240, 241
heterozygous advantage 220–1
human calpain-10 (CALPN10) gene 62–3
human diseases, age-dependent expression 228
human evolution studies 411–27
 cultural transmission, horizontal vs. vertical 418
 DNA vs. proteins 419–20
 farming 415–17
 languages 417–19, 423–4
 mitochondrial DNA 97, 419–22
 Neanderthals and mtDNA 429
 nonrecombinant Y-chromosome (NRY) 414, 419–20
 surnames 412–13
 TMRCA (most common recent ancestor) studies 417, 419, 422
human evolution (cont.)
 tree analysis of population evolution 413–14
 understanding the last 100 000 years 422–4
human genome
 gene duplication 123–4
 linkage disequilibrium in European people 159
 nonsynonymous polymorphisms 157–8
 SNPs 157
human heredity, genetics and eugenics 430–4
human immunodeficiency viruses 395–7, 403, 405
human mortality patterns 366–76
 causes of mortality decline 371–2
 evolution of senescence 373–5
 modern human mortality 367–71
 old age mortality and limits to lifespan 372–3
human racial groups, and geneticists (1900–24) 428–48
hybrid rescue genes, D. melanogaster
 subgroup species 333
hybridization/hybrid zones 297–314
 history
 1920s and 1930s 298–9
 1940s and 1950s 299–301
 1960s and 1970s 301–3
 1980s to present 303–7
 introgressive 299
 models
 bounded hybrid superiority model 302
 dynamic equilibrium model 302
 ecological gradient model 302
 tension zone model 303–4
 speciation 305–6
 hybrids, epistasis 16–17
 Hydrobia snails 147
immunodeficiency viruses
 HIV-1 395–7, 403, 405
 phylogenetic tree 403
inbreeding depression, examples 352–4
infectious hematopoietic necrosis virus (IHNV) 355–7
influenza A virus 396
interacting genetic networks, epistasis and stability 129–2
interspecific competition, Lotka–Volterra model 14–15, 140, 147
intrinsic rate of increase r 13–15
IQ, reciprocal causation models of development 243, 246
isolation without gene flow 204–5
Johnson, R. H. 439–41
$k = 4 N_a$, flawed 178–92
K-selection (carrying capacity) 140
 and r-selection 13–14, 23, 143
Kostitzin, V. A.
 density-dependent selection 140
 logistic model for population growth 140, 142
languages, human evolution studies 417–19, 423–4
Levene, H., multiple niches 150, 159
Levin, S. A., and MacArthur, R., model of competition 147, 148
Lewontin, R., publications xi–xvi
 life events and difficulties (LED) 237–9, 244–50
 life factor variance 35–6
 life-history evolution 228–9
 linkage disequilibrium (LD)
 and complex polymorphisms drift 159–60
 epistasis 115–16, 159–60
 Europeans 159
 QTL mapping 55–6, 60–2
Lisaonella (Vibrio) anguillarum, salmon pathogen 355–7
Lotka–Volterra model, interspecific competition 14–15, 140, 147
Lotus sp., symbiotic bacteria, HGT 123
MacArthur, R.
 and Levin, S. A., model of competition 147, 148
 logistic model for population growth 140, 141
maize
 QTL effects 65
 teosinte tb 60
 “major” genes concept 287–9
 major histocompatibility complex (MHC)
 and heterozygous advantage 170
 and resistance to pathogens 353–7
 malaria, example of nonsynonymous polymorphism, heterozygous advantage 169–70
 mass selection (Fisher) 111, 117, 120
mating, and segregation 11
mating types in plants 254–71
maximum-likelihood genealogy, Solanaceae 256
mechanistic evolutionary study
butterfly Colias 275–96
feasibility 283–4
“major” genes concept 287–9
social context 289–90
Mendel, Gregor 430
Mendelian genetics, problems with slight variation 51
metabolic control analysis, flux control 121–2
microarray technology see DNA microarrays
microbial bioinformatics 101
microsporidians
Amblyospora 386
Nosema 384
migration
equilibrium migration 202–4
and selection 159, 170–1
removal of “foreign” loci 159
mimicry
Batesian 166
molecular 167
mitochondrial DNA 97, 419–22
models
bounded hybrid superiority model 302
carrying capacity \(K\) and intrinsic rate of increase \(r\) 13–14, 23
contingency level 9–10
density-dependent selection
Anderson’s and Roughgarden’s 144
Kostitzin’s 142, 143
MacArthur’s 140–1, 143
Poulsen’s 144–5
development, quantitative genetics 242
dynamic equilibrium model 302
ecological gradient model 302
gametogytic SI (GSI) 255–6, 258–60, 267
gene frequency interaction network 45, 46
human mortality patterns 366–76
Levin–MacArthur model of competition 147, 148
life-history evolution 216–32
Lotka–Volterra model, interspecific competition 14–15, 140, 147
maximum-likelihood genealogy, Solanaceae 256
model organisms, gene expression profiling, DNA microarrays 81–8
mutational landscape model 185–6
null models 198
plant growth, and herbivores 31–3, 40–2
Polya urn model 262–3
population structure and history, simulations 208–10
reciprocal causation models of IQ development 243, 246
selection 217–19
selection on gene frequency (Wright) 43–4
self-incompatibility (SI) in plants, Wright’s diffusion model of GSI 258–60
simplification tendency 23
stochastic gene substitution model 184–5
tension zone model 303–4
TIM and house-of-cards model 180–4
related models 184–7
Wright–Fisher model, nonoverlapping generations 197
Wright’s shifting balance theory (SBT) 106–12
molecular evolution, TIM, and house-of-cards model 180–4
molecular mimicry 167
monkeys, nonsynonymous polymorphisms, heterozygous advantage 169–70
mosquito, microsporidian Amblyospora 386
mtDNA (mitochondrial DNA) 97, 419–22
multiple loci, and quantitative traits 225–6
mutagenesis
bias to null alleles 53
fitness of newly arising mutations, epistasis 114–15
and genetic drift 358
null alleles combining 119
quantitative traits 53–5
subtle effects 54–5
screening 53–5
mutational landscape model 185–6
Myxobolus cerebralis 355–7
myxomatosis, rabbits 378–9
natural selection, and demography 10–12
Neanderthals and mtDNA 420
nematodes, molecular evolution of early/late expressed genes in development, DNA microarrays 81–2
neutralist-selectionist dispute 162, 286–7
new genetic systems 122–6
niches, multiple 150, 159
nonrecombinant Y chromosome (NRY) 419–20
haploids 416–17
SNPs 421–2
tree 414
nonsynonymous polymorphisms and
frequency-dependent selection 156–77
balance between selection and migration
170–1
balancing selection 157, 164–9
estimates of numbers 157–8
heterozygous advantage 169–70
numbers maintained by natural selection
158–64
genetic load 158–61
neutrality 163
polymorphism and recombination 161
polymorphism and restraint 162
testing for selection 162–4
selective agents, detection and ecology
164–9
competitors 168
parasites 167–8
predators 165–7
self-incompatibility 169
nuclear polyposis viruses, caterpillars 384
null alleles, bias of mutagenesis studies 53
null models 198
olfactory receptor genes 123
organism, coevolution with environment 16
Orthoptera
allele frequency change 304
calling songs 301, 302
post-glacial expansion 305
OTUs, automation 99
paralogous genes 120
Panama eumaura, and E. coli, r and K
covariation 143
parasites
host mobility and transmission 379
as selective agents 167–8
shared benefits 379–85
units of selection and evolution of
virulence 377–90
patchiness 35

INDEX

pathogens
sexual transmitted 384–5
shared benefits 379–85
Pearson, K. 432–4

Phrynosoma (whitefooted mouse), inbreeding
depression, impact of natural
environment 353–4
phenotypes
defined 52
of populations 30–4
stabilizing selection 22
phosphoglucone isomerase (PGI)
polymorphism 278–83
multiple substitutions 281
phylogenetic tree, primate
immunodeficiency viruses 403
phylogenetics, and intraspecific
phylogeography 195–6
phylogeography, and coalescent theory
205–10
Physalis, S-RNase sequences 256
plant growth
coefficients of variation 25, 26
heavy-metal tolerance 164
and herbivores 31–3, 40–2
plasmids, bacteria 385–6
pleiotropy, quantitative trait genes and
fitness 65–6
pollen, determination of specificity 255–6
pollutants, environmental microbial
bioinformatics 101
Polya urn model 262–3
Polyributa land snails, apostatic selection 166
polymorphisms
complex (super genes) 116
defined 157
DNA vs. protein 419–20
estimates and levels 157–8
mechanisms maintaining 22–3
and recombination 161–2
single nucleotide (SNPs) 62–3, 157–8,
420–2
see also nonsynonymous polymorphisms
polyplody 298
Popenoe, P. 439–41
population biology 7–48
determination of components of fitness
12–13
environment taxonomy 35–9
finding principles for unification 15,
16–19
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>genotype and organism</td>
<td>24–35</td>
</tr>
<tr>
<td>natural selection and demography, misunderstandings</td>
<td>10–12</td>
</tr>
<tr>
<td>population ecological processes</td>
<td>8, 13–16</td>
</tr>
<tr>
<td>population dynamics, and selection</td>
<td>151–2</td>
</tr>
<tr>
<td>population ecology models, contingency level</td>
<td>9–10</td>
</tr>
<tr>
<td>and population genetics, independent histories</td>
<td>8–10</td>
</tr>
<tr>
<td>population and evolutionary genetics</td>
<td>193–5</td>
</tr>
<tr>
<td>population fitness</td>
<td>11–12, 114</td>
</tr>
<tr>
<td>population genetics</td>
<td>216–32</td>
</tr>
<tr>
<td>construction of model of selection</td>
<td>217–19</td>
</tr>
<tr>
<td>demographic parameters</td>
<td>217</td>
</tr>
<tr>
<td>genetic parameters</td>
<td>217–19</td>
</tr>
<tr>
<td>dependence of fitness on demography</td>
<td>227–8</td>
</tr>
<tr>
<td>determining effects of selection</td>
<td>219–26</td>
</tr>
<tr>
<td>equilibrium conditions</td>
<td>219–21</td>
</tr>
<tr>
<td>fitness measures</td>
<td>223–4</td>
</tr>
<tr>
<td>multiple loci and quantitative traits</td>
<td>225–6</td>
</tr>
<tr>
<td>selection equations</td>
<td>219</td>
</tr>
<tr>
<td>sex differences and nonrandom mating</td>
<td>225</td>
</tr>
<tr>
<td>stability analyses</td>
<td>221–2</td>
</tr>
<tr>
<td>variable environments</td>
<td>226</td>
</tr>
<tr>
<td>weak selection</td>
<td>222–3</td>
</tr>
<tr>
<td>history</td>
<td>193–5</td>
</tr>
<tr>
<td>independence from population ecology</td>
<td>8–10</td>
</tr>
<tr>
<td>laws of transformation</td>
<td>9–10</td>
</tr>
<tr>
<td>measuring fitness</td>
<td>227</td>
</tr>
<tr>
<td>Schmalhausen’s Law</td>
<td>22, 27–8, 29</td>
</tr>
<tr>
<td>state space</td>
<td>8–9</td>
</tr>
<tr>
<td>population level bioinformatics</td>
<td>97–8</td>
</tr>
<tr>
<td>population size</td>
<td>225</td>
</tr>
<tr>
<td>estimating long-term effective population size</td>
<td>N, 357–62</td>
</tr>
<tr>
<td>genetic drift</td>
<td>395</td>
</tr>
<tr>
<td>population structure</td>
<td>193–215</td>
</tr>
<tr>
<td>and history, effect on genealogies</td>
<td>200–5</td>
</tr>
<tr>
<td>simulations</td>
<td>208–10</td>
</tr>
<tr>
<td>population viability analysis</td>
<td>PVA, 349</td>
</tr>
<tr>
<td>population/environment feedback</td>
<td>31–4</td>
</tr>
<tr>
<td>Poulsen’s model, density-dependent selection</td>
<td>144–5</td>
</tr>
<tr>
<td>predators</td>
<td>166</td>
</tr>
<tr>
<td>apostatic selection</td>
<td>166–7</td>
</tr>
<tr>
<td>as selective agents</td>
<td>165–7</td>
</tr>
<tr>
<td>predictability, environment taxonomy</td>
<td>38–9</td>
</tr>
<tr>
<td>primate immunodeficiency viruses, phyllogenetic tree</td>
<td>403</td>
</tr>
<tr>
<td>principal components analysis</td>
<td>PCA, vs.</td>
</tr>
<tr>
<td>principles of population biology building</td>
<td>16–19</td>
</tr>
<tr>
<td>protein electrophoresis</td>
<td>75, 278</td>
</tr>
<tr>
<td>protein networks, yeast 2-hybrid system</td>
<td>121</td>
</tr>
<tr>
<td>protein sequencing</td>
<td>96–7</td>
</tr>
<tr>
<td>natural populations</td>
<td>75–6</td>
</tr>
<tr>
<td>pseudogenes</td>
<td>125</td>
</tr>
<tr>
<td>divergent resolution</td>
<td>124</td>
</tr>
<tr>
<td>public health</td>
<td>27, 28</td>
</tr>
<tr>
<td>age-specific mortality</td>
<td>30–1</td>
</tr>
<tr>
<td>race, and health outcomes</td>
<td>111</td>
</tr>
<tr>
<td>risk classes</td>
<td>30–1</td>
</tr>
<tr>
<td>punctuated evolution</td>
<td>111</td>
</tr>
<tr>
<td>Punnett, R. C.</td>
<td>428–9</td>
</tr>
<tr>
<td>quantitative genetics</td>
<td>240</td>
</tr>
<tr>
<td>heritability</td>
<td>241</td>
</tr>
<tr>
<td>model of development</td>
<td>242</td>
</tr>
<tr>
<td>quantitative trait genes</td>
<td>51–73</td>
</tr>
<tr>
<td>epistasis between QTL genotypes</td>
<td>64</td>
</tr>
<tr>
<td>future technology</td>
<td>66–7</td>
</tr>
<tr>
<td>gene to QTN</td>
<td>62–3</td>
</tr>
<tr>
<td>identifying genes</td>
<td>53–63</td>
</tr>
<tr>
<td>multiple loci</td>
<td>225–6</td>
</tr>
<tr>
<td>mutagenesis</td>
<td>53–5</td>
</tr>
<tr>
<td>properties of genes</td>
<td>63–6</td>
</tr>
<tr>
<td>additive effects</td>
<td>63–4</td>
</tr>
<tr>
<td>interaction effects</td>
<td>64–5</td>
</tr>
<tr>
<td>pleiotropy</td>
<td>65–6</td>
</tr>
<tr>
<td>QTL to gene</td>
<td>59–62</td>
</tr>
<tr>
<td>QTL mapping</td>
<td>55–9</td>
</tr>
<tr>
<td>genome scans, linkage mapping</td>
<td>56–8</td>
</tr>
<tr>
<td>high-resolution mapping</td>
<td>38–9</td>
</tr>
<tr>
<td>quantitative trait loci (QTL)</td>
<td>52–67</td>
</tr>
<tr>
<td>and genetic load</td>
<td>160</td>
</tr>
<tr>
<td>quantitative trait nucleotides (QTN)</td>
<td>62–3</td>
</tr>
<tr>
<td>quasispecies, genetic drift</td>
<td>395</td>
</tr>
<tr>
<td>quasispecies theory, RNA viruses</td>
<td>393–5</td>
</tr>
<tr>
<td>r (asymptotic growth rate)</td>
<td>220</td>
</tr>
<tr>
<td>>selection, and K-selection</td>
<td>13–14, 23, 143</td>
</tr>
<tr>
<td>covariation</td>
<td>143</td>
</tr>
<tr>
<td>rabbits virus</td>
<td>378–9</td>
</tr>
<tr>
<td>myxomatosis virus</td>
<td>378–9</td>
</tr>
<tr>
<td>rabies virus</td>
<td>383–4, 402</td>
</tr>
<tr>
<td>race, and health outcomes</td>
<td>27, 28</td>
</tr>
</tbody>
</table>
race and geneticists (1900–24) 428–48
color line 439–41
Davenport and race crossing in chickens and humans 437–9
East 441–5
Fischer and Rehoboth Bastards 434–7
Mendelism, early successes 430
reciprocal altruism 385
recombination, RNA virus evolution 400–2
recombination mapping, QTL 58–9
recursion equation, selection at single locus 219
Rehoboth Bastards, and Fischer, E. 434–7
reinforcement 299, 300, 301–2, 304–5
lack of 307
replacement (nonsynonymous) polymorphisms 156
resistance to disease, horizontal vs. vertical 39
resources, population/environment feedback 31–4
risk classes, in public health 30–1
RNA viruses 391–410
animal diseases 393
evolution 393–7
reassortment 400
recombination 400–2
evolution rate 398–400
features 392
gene drift 395, 397
mutation rate \(U \) 391
primate immunodeficiency viruses, phylogenetic tree 403
quasispecies theory 393–5, 397
selection pressures 396
viral emergence 402–5
Roughgarden, J., density-dependent selection 144

S-alleles

divergence
bifurcation rate and homozygosity 260–1
rates of origin/extinction 260–1
Polya urn model 262–3
S-locus and S-alleles 254–67
S-RNase 255
Saccharomyces cerevisiae see yeasts
salmon (Oncorhynchus tsawagi/schi), genetic resistance to pathogens 354–7
Salmonella, and E. coli genomes, duplicate genes 120, 122–3
scale insects, predator–prey correlations 34

Schmalhausen’s Law 22, 27–8, 29
selection 219–26
apostatic 166
complex physiological systems 42–6
equilibrium conditions 219–21
fitness measures 223–4
and migration 159, 170–1
multiple loci and quantitative traits 225–6
neutrality 162
and population dynamics 151–2
population genetics 219–26
selection equations 219
sex differences and nonrandom mating 225
stability analyses 221–2
variable environments 226
weak selection 222–3
selective agents
detection 164–5
ecology 165–9
parasites 167–8
predators 165–7
selective constraint, synonymous sites 396
self-incompatibility (SI) in plants 254–71
determination of specificity 255–6
divergence among haplotypes 262–7
bifurcation process 263–7
relative population sizes and allele numbers 266–7
relative rate 263–6
spectrum of descendant number 262–3
gametophytic SI (GSI) 255–6
pattern of divergence 256–7
process of divergence 257–62
bifurcation rate and homozygosity 260–1
population and sample genealogies 257–8
rate of extinction 260–1
rate of origin 260
scaling factor 261–2
as selective agent 169
sporophytic SI (SSI) 255–6
senescence, in human mortality patterns 373–5
sex differences, nonrandom mating 225
sexual reproduction, construction of model of selection 217–19
sexual traits, epistasis 117
sexually transmitted pathogens 384–5
Shannon–Weaver information measure, descendant number 263, 264
shared benefits, viral pathogens 379–85
shifting balance theory (SBT) 106–12, 117–18
alternative to mass selection 109–10
critical assumptions 106–8
critics and defenders 108–9
linking microevolution to macroevolution 110–12
modified form 126
relevance to speciation and macroevolution 117–18
three factors 118
signals
determination of response 24
environmental 24
single nucleotide polymorphisms (SNPs) 62–3, 157–8
in D. melanogaster 158
human evolution studies 62–3, 157–8, 420–2
NRY SNPs 420–2
social context, mechanistic evolutionary study 289–90
sociology 233–53
gestational programming 244–5
life events and difficulties research 245–6
reciprocal causation models of IQ development 246
Solanaeae
divergence
Physalis and Solanum S-alleles 257–67
bifurcation rate 263–7
gamethropytic SI (GSI) 253–6
maximum-likelihood genealogy, HKY model 256
song sparrow (Melospiza), inbreeding
depression, impact of natural environment 353–4
speciation, shifting balance theory (SBT) 117–18
species hybrids, epistasis 116–17
Species Information Service 99–100
sporophytic SI (SSI) 255–6
stability analyses, selection 221–2
stabilizing selection, phenotypes 22
stochastic gene substitution model 184–5
substitution rate at locus 178–80
and adaptive evolution 178–92
long-term rate 179
symbiotic bacteria, horizontal gene transfer (HGT) 123
temperature measurement, significance 36–7
tension zone model 303–4
thermal adaptation
butterfly flight 277–83
constructionist interactions with environment 285
TIM and house-of-cards model 180–1
faster fluctuations 187–8
related models 184–7
TMRCA (most common recent ancestor) studies 417, 419
female 422
tolerance, boundaries of 27
tomato, QTL, ORFX 59
traits
genetic basis 52–3
genome/organism/environment system 24–5
see also quantitative trait genes
transcriptional networks, epistasis 121–2
transposons 54
tree structures
coalescent theory 193–215
correlation in branching pattern 207–8
measures of variation in tree size 206–7
nonrecombinant Y-chromosome tree 414
vs. principal components analysis (PCA) 414–15
size and branching pattern, genealogical variation 198–9
see also phylogenetic tree
trematode (Dicrocoelium dendriticum) 382–3
Tribolium beetle, microsporidian Nosema 384
twinning, behavioral genetics 240
variable environments, selection in 226
vesicular stomatitis virus (VSV) 394, 398
Vibrio cholerae
el tor biotype 381
toxin, shared benefits 379–81
Vibrio (Listonella) anguillarum, salmon pathogen 355–7
viral pathogens, shared benefits 379–85
virulence, selection units and evolution of virulence 377–90
horizontal transmission of virulence genes 387
shared benefits 379–85
cholera toxin 379–81
mechanisms 381–5
virulence tradeoffs 379
virulence in uncooperative hosts 385–7
weak selection 222–3
wheat, and human evolution studies 415–17
Wolbachia 386–7
Wright, S. 106–12
 diffusion model of GSI, self-incompatibility (SI) in plants 258–60
 island model, equilibrium migration 203
 model of selection on gene frequency 43–4
 shifting balance theory (SBT) 106–12, 117–18
 modified form 126
Wright–Fisher model, nonoverlapping generations 197
Y-chromosome (NRY) 414, 419–20, 421–2
yeast genome, gene inactivation 120
 yeasts 2-hybrid system, protein networks 121
 expression profiling of natural isolates, DNA microarrays 79–80, 82–6
 gene deletions (ORFs) 53
 gene inactivation, marginal fitness effects 119–21
 PHD1 85
 SSU1 83