The Evolution of Population Biology

This is the third of three volumes published by Cambridge University Press in honor of Richard Lewontin. The first volume, Evolutionary Genetics from Molecules to Morphology, honors Lewontin’s more technical contributions to population and evolutionary genetics, and the second volume, Thinking about Evolution: Historical, Philosophical, and Political Perspectives, honors Lewontin’s contributions to the history and philosophy of biology and to the controversial field of sociobiology. This volume honors his contributions to population biology: the nexus between population genetics and ecology.

This unique collection of essays deals with the foundation and historical development of population biology, and its relationship to population genetics and population ecology on one hand and to the rapidly growing fields of molecular quantitative genetics, genomics, and bioinformatics on the other. Such an interdisciplinary treatment of population biology has never been attempted before. The volume is set in a historical context, but it has an up-to-date coverage of material in various related fields. The areas covered are the foundation of population biology, life history evolution and demography, density- and frequency-dependent selection, recent advances in quantitative genetics and bioinformatics, evolutionary case history of model organisms focusing on polymorphisms and selection, mating system evolution and evolution in the hybrid zones, and applied population biology including conservation, infectious diseases, and human diversity.

The volume brings out the central role of population biology in all aspects of its connection to population genetics and population ecology and it is a must for all graduate students and researchers in population genetics and ecology.

RAMA S. SINGH is a Professor in the Department of Biology at McMaster University.

MARCY K. UYENOYAMA is a Professor in the Department of Biology at Duke University.
The Evolution of Population Biology

Edited by

RAMA S. SINGH
McMaster University

MARCY K. UYENYOYAMA
Duke University
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications of R. C. Lewontin</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxvii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

Part I Historical foundations and perspectives
5

1 Building a science of population biology
 Richard C. Lewontin
2 Toward a population biology, still
 Richard Lewins

Part II Genotypes to phenotypes: new genetic and bioinformatic advances
49

3 Genetic dissection of quantitative traits
 Trudy F. C. Mackay
4 Gene expression profiling in evolutionary genetics
 Daniel L. Hartl, Colin D. Meiklejohn, Cristian I. Castillo-Davis, Duccio Cavalieri, José Maria Ranz, and Jeffrey P. Townsend
5 Population biology and bioinformatics
 G. Brian Golding
6 Beyond beanbag genetics: Wright’s adaptive landscape, gene interaction networks, and the evolution of new genetic systems
 Rama S. Singh and Richard A. Morton

Part III Phenotypes to fitness: genetics and ecology of populations
137

7 Density-dependent selection
 Freddy B. Christiansen
vi

CONTENTS

8 Nonsynonymous polymorphisms and frequency-dependent selection
BRYAN CLARKE 156

9 Why $k = 4N_u$s is silly
JOHN H. GILLESPIE 178

10 Inferences about the structure and history of populations:
coalescents and intraspecific phylogeography
JOHN WAKELEY 193

11 The population genetics of life-history evolution
BRIAN CHARLESWORTH 216

12 Gene–environment complexities: what is interesting to measure and to model?
PETER TAYLOR 233

13 Genus-specific diversification of mating types
MARCY K. UYENOYAMA AND NAOKI TAKEBAYASHI 254

Part IV Genes, organisms, and environment: evolutionary case studies 273

14 Adaptation, constraint, and neutrality: mechanistic case studies with butterflies and their general implications
WARD B. WATT 275

15 Evolution in hybrid zones
DANIEL J. HOWARD, SETH C. BRITCH, W. EVAN BRASWELL, AND JEREMY L. MARSHALL 297

16 Nine relatives from one African ancestor: population biology and evolution of the *Drosophila melanogaster* subgroup species
DANIEL LACHAISE, PIERRE CAPY, MARIE-LOUISE CARIOU, DOMINIQUE JOLY, FRANÇOISE LEMEUNIER, JEAN R. DAVID 315

Part V Applied population biology: biodiversity and food, disease, and health 345

17 Conservation biology: the impact of population biology and a current perspective
PHILIP HEDRICK 347

18 The emergence of modern human mortality patterns
SHRIPAD TULJAPURKAR 366

19 Units of selection and the evolution of virulence
PAUL W. EWALD AND GREGORY M. COCHRAN 377
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Evolutionary genetics and emergence of RNA virus diseases</td>
<td>391</td>
</tr>
<tr>
<td>EDWARD C. HOLMES</td>
<td></td>
</tr>
<tr>
<td>21 A scientific adventure: a fifty years study of human evolution</td>
<td>411</td>
</tr>
<tr>
<td>L. LUCA CAVALI-SFORZA</td>
<td></td>
</tr>
<tr>
<td>22 Geneticists and the biology of race, 1900–1924</td>
<td>428</td>
</tr>
<tr>
<td>WILLIAM B. PROVINE</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>449</td>
</tr>
</tbody>
</table>
Contributors

Braswell, W. E., Department of Biology, New Mexico State University, Las Cruces, NM 88003

Britch, S. C., Department of Biology, New Mexico State University, Las Cruces, NM 88003

Capy, P., Laboratoire Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Cariou, M.-L., Laboratoire Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Castillo-Davis, C. I., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Cavalli-Sforza, L. L., Department of Genetics, Stanford University, Stanford, CA 94305-5120

Charlesworth, B., Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth, King’s Buildings, West Mains Road, Edinburgh EH9 3JN, UK

Christiansen, F. B., Department of Genetics and Ecology, University of Aarhus, Build. 540 DK-8000 Aarhus C, Denmark.

Clarke, B., Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK

Cochran, G. M., Department of Anthropology, University of Utah, Salt Lake City, UT 84112

David, J. R., Laboratoire Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Ewald, P., Department of Biology, University of Louisville, Louisville, KY 40292
LIST OF CONTRIBUTORS

Gillespie, J., Section of Evolution and Ecology, University of California, Davis, CA 95616-8755

Golding, G. B., Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1

Hartl, D., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Hedrick, P., Department of Biology, Arizona State University, Tempe, AZ 85287

Holmes, E., Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Howard, D. J., Department of Biology, New Mexico State University, Las Cruces, NM 88003

Joly, D., Laboratoire Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Lachaise, D., Laboratoire Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Lemeunier, F., Laboratoire Populations, Génétique et Evolution, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France

Levins, R., Department of Population Sciences, School of Public Health, Harvard University, 667 Huntington Avenue, Boston, MA 02115

Lewontin, R. C., Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138

Mackay, T. F., Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614

Marshall, J. L., Department of Biology, The University of Texas at Arlington, Box 19498, 501 South Nedderman Dr., Arlington, TX 76019-0498

Meiklejohn, C. D., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Morton, R., Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1

Provine, W. B., Department of Ecology and Evolutionary Biology, E139 Corson Hall, Cornell University, Ithaca, NY 14853

Ranz, J. M., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Singh, R. S., Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
LIST OF CONTRIBUTORS

Takebayashi, N., Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338

Taylor, P., Program on Critical and Creative Thinking, Graduate College of Education, University of Massachusetts, Boston, MA 02125

Townsend, J. P., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Tuljapurkar, S., Mountain View Research, 2251 Grant Road, Los Altos, CA 94204

Uyenoyama, M. K., Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338

Wakeley, J., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Watt, W. B., Department of Biological Sciences, Stanford University, Stanford, CA 94305
Publications of R. C. Lewontin

75. 1971. A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptation

xxviii PUBLICATIONS OF R. C. LEWONTIN

158. 1985. This week’s citation classic (with J. L. Hubby). *Current Contents/Life Sciences* 43:16.

244. 1996. Letter (On Horton’s essay on genetics and homosexuality). NY Rev. of Books.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
</table>
Preface

Scientists earn their reputation by making special contributions in a variety of ways. Some become known for a discovery that revolutionizes their science. Others are respected as intellectual leaders for significant contributions leading to sustained progress in their field. Still others become known for providing guidance, opportunity, and uniquely inspiring rapport with a large number of graduate students, writers, and research colleagues. A rare few do all the above, and remarkably enough still find time to deal with the broader issues of epistemology, philosophy, history, and sociology of science. Richard Lewontin is one of these rare scientists.

If we are to attach a major discovery or a conceptual breakthrough to Lewontin’s name (like Haldane’s cost of natural selection, Fisher’s fundamental theorem of natural selection, Wright’s shifting-balance theory, or Maynard Smith’s game theory applications), then the successful completion of the genetic variation research program of the Chetverikov–Dobzhansky school will be known as the outstanding highlight of Lewontin’s career. Dobzhansky and his students and collaborators pursued the twin problems of the amount and the adaptive role of genetic variation for nearly 25 years without a satisfactory solution. All estimates of genetic variation were indirect or inadequate as there was no reductionist research program that could allow the study of genetic variation at the level of the gene. Lewontin’s pioneering success in the application of protein electrophoresis to the problem of genetic variation changed the scene radically. The estimation of electrophoretic variation was direct and more useful than anyone had expected. The technique also removed the experimental limitations imposed by genetic incompatibility among species and allowed reliable comparisons of genetic variation among populations and species without any need to make genetic crosses. The impact and the anticipation of the avalanche of future results from the use of electrophoresis were discussed in his well-known book, The Genetic Basis of Evolutionary Change (1974). This book sets out the problem of population genetics in a rationally constructed historical context and is required reading for all aspiring population geneticists.
Evolutionary research requires broad interest and versatility in modeling experimental design, statistics, field biology, and much more. Such breadth allowed Lewontin to be successful, time and again, in designing new experimental systems or suggesting key concepts to answer old questions or pursue new ones. Lewontin became interested in the uniqueness of the phenotype—and the genotype–environment interactions inspired mainly by the Russian biologist I. Schmalhausen’s book *Factors of Evolution*. His doctoral thesis studied fitness as a function of genotype frequency and density and showed that “viability of a genotype is a function of the other genotypes which coexist with it, the result of any particular combination not being predictable on the basis of the viabilities of the coexisting genotypes when tested in isolation.” This was followed by studies of interlocus epistatic interactions in fitnesses and the evolution of naturally occurring inversion polymorphism in *Drosophila*. His mathematical work on linkage disequilibrium provided a new direction for research and results from a series of papers on multilocus fitness effects anticipated discussion on the units of selection. His experimental work on norms of reaction in *Drosophila* was exemplary in exposing the problem of the genetic determination and led to a new appreciation of genotype–environment interaction and phenotypic plasticity. He pointed out the importance of developmental time in fitness, something which is usually forgotten when describing fitness components. His 1972 paper on “Apportionment of human diversity,” pointing out that any genetic difference between races has to be compared with genetic variation within population and races, is a landmark in human genetics and evolution. More recently his laboratory has been a major center for studies of DNA sequence variation. Lewontin has provided training and guidance to a large number of graduate students and postdoctoral fellows. The number is well over one hundred! Many more have worked in Lewontin’s laboratory but have not necessarily coauthored publications with him.

But what makes Lewontin known more in the wider circle of evolutionary biology and in science in general is his role as a critic of how science is done, on the one hand, and his passionate engagements with the issues of science and society, on the other. He has made important contributions and has influenced research workers in the history and philosophy of science and in areas of science and society such as agriculture, social health problems, bioethics, and genetics, and IQ. If you drop Lewontin’s name in any group of biologists, an animated discussion is sure to follow! These discussions are not about science but about its relevance and applications to human affairs. His concern about social issues springs directly from his unique perspective of evolutionary biology. Lewontin’s research program may be reductionist but he is not. He has encouraged and challenged evolutionary biologists to find the most desirable combination of Platonic and Aristotelian traditions in studying nature. Accordingly the mathematical rigor of early population biology must be extended to accommodate interactive, hierarchical, probabilistic,
and historical factors as learned empirically in the field. To him “Context and interaction are of the essence” (Lewontin 1974, p. 318), whether one is talking about interactions between hierarchical levels, between organisms and the environment, or between causes and effects. A reductionist approach to science does not necessitate a reductionist view of the world. No level of analysis is specially privileged for a general understanding of causality. Genetic and environmental effects are interdependent and the phenotypic variance cannot be partitioned into fixed components. Organisms do not fit in preexisting ecological niches but create their own niches. History and contingencies are so important in evolution that looking for adaptive explanations for all organismic traits undermines the role of natural history. These ideas essentially follow from his belief that relationships between organisms and their environments, and likewise, those between groups and hierarchical levels, are governed by forces so weak that the outcomes are neither fixed nor predetermined.

John Maynard Smith has written (first volume of this series, pages 628–640) that “Richard Lewontin has contributed to science not only by his own work on evolutionary theory and molecular variation and by his influence on the many young scientists who have worked with him but also by asking us to think about the relationships between the science we do and the world we do it in.” While you may not agree with Lewontin on all issues (he would be surprised if you did!) one thing is sure – Lewontin has been a colorful personality who has made evolutionary biology rigorous and interesting at the same time. We affectionately dedicate this volume to him.

We sincerely thank Subodh Jain for his encouragement and valuable contribution in the early planning of this volume. At Cambridge University Press, we express our sincere thanks to Ellen Carlin for her enthusiastic support and early work on this project and to Maria Murphy for her supervision in the completion of this project. Thanks are also due to Aaron Thomson, McMaster University, who did the maddening job of checking up references and preparing the manuscripts for final submission.