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1. Probability

1.1 Probabilities and Events

Consider an experiment and letS, called thesample space,be the set
of all possible outcomes of the experiment. If there arem possible out-
comes of the experiment then we will generally number them 1 through
m, and soS = {1,2, . . . , m}. However, when dealing with specific ex-
amples, we will usually give more descriptive names to the outcomes.

Example 1.1a (i) Let the experiment consist of flipping a coin, and
let the outcome be the side that lands face up. Thus, the sample space
of this experiment is

S = {h, t},
where the outcome ish if the coin shows heads andt if it shows tails.

(ii) If the experiment consists of rolling a pair of dice – with the out-
come being the pair(i, j), wherei is the value that appears on the first
die andj the value on the second – then the sample space consists of
the following 36 outcomes:

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6).

(iii) If the experiment consists of a race ofr horses numbered 1,2,3,
. . . , r, and the outcome is the order of finish of these horses, then the
sample space is

S = {all orderings of the numbers 1,2,3, . . . , r}.
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For instance, ifr = 4 then the outcome is(1,4,2,3) if the number 1
horse comes in first, number 4 comes in second, number 2 comes in
third, and number 3 comes in fourth.

Consider once again an experiment with the sample spaceS = {1,2, . . . ,
m}. We will now suppose that there are numbersp1, . . . , pm with

pi ≥ 0, i = 1, . . . , m, and
m∑
i=1

pi = 1

and such thatpi is theprobability that i is the outcome of the experi-
ment.

Example 1.1b In Example1.1a(i), thecoin is said to befair or un-
biasedif it is equally likely to land on heads as on tails. Thus, for a fair
coin we would have that

ph = pt = 1/2.

If the coin were biased and heads were twice as likely to appear as tails,
then we would have

ph = 2/3, pt = 1/3.

If an unbiased pair of dice were rolled in Example1.1a(ii), then all pos-
sible outcomes would be equally likely and so

p(i,j) = 1/36, 1≤ i ≤ 6, 1≤ j ≤ 6.

If r = 3 in Example1.1a(iii), then we suppose that we are given the six
nonnegative numbers that sum to 1:

p1,2,3, p1,3,2, p2,1,3, p2,3,1, p3,1,2, p3,2,1,

wherepi,j,k represents the probability that horsei comes in first, horse
j second, and horsek third.

Any set of possible outcomes of the experiment is called anevent.That
is, an event is a subset ofS, the set of all possible outcomes. For any
eventA, we say thatA occurswhenever the outcome of the experiment
is a point inA. If we let P(A) denote the probability that eventA oc-
curs, then we can determine it by using the equation
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P(A) =
∑
i∈A

pi. (1.1)

Note that this implies

P(S) =
∑
i

pi = 1. (1.2)

In words, the probability that the outcome of the experiment is in the
sample space is equal to 1 – which, sinceS consists of all possible out-
comes of the experiment, is the desired result.

Example 1.1c Suppose the experiment consists of rolling a pair of fair
dice. IfA is the event that the sum of the dice is equal to 7, then

A = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
and

P(A) = 6/36= 1/6.

If we letB be the event that the sum is 8, then

P(B) = p(2,6) + p(3,5) + p(4,4) + p(5,3) + p(6,2) = 5/36.

If, in a horse race between three horses, we letA denote the event that
horse number 1 wins, thenA = {(1,2,3), (1,3,2)} and

P(A) = p1,2,3+ p1,3,2.

For any eventA, we letAc, called thecomplementof A, be the event
containing all those outcomes inS that are not inA. That is,Ac occurs
if and only ifA does not. Since

1=
∑
i

pi

=
∑
i∈A

pi +
∑
i∈Ac

pi

= P(A)+ P(Ac),
we see that

P(Ac) = 1− P(A). (1.3)

That is, the probability that the outcome is not inA is 1 minus the prob-
ability that it is inA. The complement of the sample spaceS is the null
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event∅, which contains no outcomes. Since∅ = Sc, we obtain from
Equations (1.2) and (1.3) that

P(∅) = 0.

For any eventsA andB we defineA∪B, called theunionofA andB, as
the event consisting of all outcomes that are inA, or inB, or in bothA
andB. Also, we define theirintersectionAB (sometimes writtenA∩B)
as the event consisting of all outcomes that are both inA and inB.

Example 1.1d Let the experiment consist of rolling a pair of dice. If
A is the event that the sum is 10 andB is the event that both dice land
on even numbers greater than 3, then

A = {(4,6), (5,5), (6,4)}, B = {(4,4), (4,6), (6,4), (6,6)}.
Therefore,

A ∪ B = {(4,4), (4,6), (5,5), (6,4), (6,6)},
AB = {(4,6), (6,4)}.

For any eventsA andB, we can write

P(A ∪ B) =
∑
i∈A∪B

pi,

P(A) =
∑
i∈A

pi,

P(B) =
∑
i∈B

pi.

Since every outcome in bothA andB is counted twice inP(A)+P(B)
and only once inP(A∪B), we obtain the following result, often called
theaddition theorem of probability.

Proposition 1.1.1

P(A ∪ B) = P(A)+ P(B)− P(AB).

Thus, the probability that the outcome of the experiment is either inA

or in B equals the probability that it is inA, plus the probability that it
is inB, minus the probability that it is in bothA andB.
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Example 1.1e Suppose the probabilities that the Dow-Jones stock in-
dex increases today is .54, that it increases tomorrow is .54, and that it
increases both days is .28. What is the probability that it does not in-
crease on either day?

Solution. Let A be the event that the index increases today, and letB

be the event that it increases tomorrow. Then the probability that it in-
creases on at least one of these days is

P(A ∪ B) = P(A)+ P(B)− P(AB)
= .54+ .54− .28= .80.

Therefore, the probability that it increases on neither day is 1− .80 =
.20.

If AB = ∅, we say thatA andB aremutually exclusiveor disjoint.
That is, events are mutually exclusive if they cannot both occur. Since
P(∅) = 0, it follows from Proposition1.1.1that, whenA andB are mu-
tually exclusive,

P(A ∪ B) = P(A)+ P(B).

1.2 Conditional Probability

Suppose that each of two teams is to produce an item, and that the two
items produced will be rated as either acceptable or unacceptable. The
sample space of this experiment will then consist of the following four
outcomes:

S = {(a, a), (a, u), (u, a), (u, u)},

where(a, u)means, for instance, that the first team produced an accept-
able item and the second team an unacceptable one. Suppose that the
probabilities of these outcomes are as follows:

P(a, a) = .54,

P(a, u) = .28,

P(u, a) = .14,

P(u, u) = .04.
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If we are given the information that exactly one of the items produced
was acceptable, what is the probability that it was the one produced by
the first team? To determine this probability, consider the following rea-
soning. Given that there was exactly one acceptable item produced, it
follows that the outcome of the experiment was either(a, u) or (u, a).
Since the outcome(a, u) was initially twice as likely as the outcome
(u, a), it should remain twice as likely given the information that one of
them occurred. Therefore, the probability that the outcome was(a, u)

is 2/3, whereas the probability that it was(u, a) is 1/3.
Let A = {(a, u), (a, a)} denote the event that the item produced by

the first team is acceptable, and letB = {(a, u), (u, a)} be the event that
exactly one of the produced items is acceptable. The probability that the
item produced by the first team was acceptable given that exactly one of
the produced items was acceptable is called theconditional probability
of A given thatB has occurred; this is denoted as

P(A|B).
A general formula forP(A|B) is obtained by an argument similar to the
one given in the preceding. Namely, if the eventB occurs then, in order
for the eventA to occur, it is necessary that the occurrence be a point
in bothA andB; that is, it must be inAB. Now, since we know that
B has occurred, it follows thatB can be thought of as the new sample
space, and hence the probability that the eventAB occurs will equal the
probability ofAB relative to the probability ofB. That is,

P(A|B) = P(AB)

P(B)
. (1.4)

Example 1.2a A coin is flipped twice. Assuming that all four points
in the sample spaceS = {(h, h), (h, t), (t, h), (t, t)} are equally likely,
what is the conditional probability that both flips land on heads, given
that

(a) the first flip lands on heads, and
(b) at least one of the flips lands on heads?

Solution. Let A = {(h, h)} be the event that both flips land on heads;
letB = {(h, h), (h, t)} be the event that the first flip lands on heads; and
let C = {(h, h), (h, t), (t, h)} be the event that at least one of the flips
lands on heads. We have the following solutions:
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P(A|B) = P(AB)

P(B)

= P({(h, h)})
P({(h, h), (h, t)})

= 1/4

2/4

= 1/2

and

P(A|C) = P(AC)

P(C)

= P({(h, h)})
P({(h, h), (h, t), (t, h)})

= 1/4

3/4

= 1/3.

Many people are initially surprised that the answers to parts (a) and (b)
are not identical. To understand why the answers are different, note first
that – conditional on the first flip landing on heads – the second one is
still equally likely to land on either heads or tails, and so the probability
in part (a) is 1/2. On the other hand, knowing that at least one of the flips
lands on heads is equivalent to knowing that the outcome is not(t, t).

Thus, given that at least one of the flips lands on heads, there remain
three equally likely possibilities, namely(h, h), (h, t), (t, h), showing
that the answer to part (b) is 1/3.

It follows from Equation (1.4) that

P(AB) = P(B)P(A|B). (1.5)

That is, the probability that bothA andB occur is the probability that
B occurs multiplied by the conditional probability thatA occurs given
thatB occurred; this result is often called themultiplication theorem of
probability.

Example 1.2b Suppose that two balls are to be withdrawn, without
replacement, from an urn that contains 9 blue and 7 yellow balls. If each
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ball drawn is equally likely to be any of the balls in the urn at the time,
what is the probability that both balls are blue?

Solution. Let B1 andB2 denote, respectively, the events that the first
and second balls withdrawn are blue. Now, given that the first ball with-
drawn is blue, the second ball is equally likely to be any of the remaining
15 balls, of which 8 are blue. Therefore,P(B2|B1) = 8/15. AsP(B1) =
9/16, we see that

P(B1B2) = 9

16

8

15
= 3

10
.

The conditional probability ofA given thatB has occurred is not gener-
ally equal to the unconditional probability ofA. In other words, knowing
that the outcome of the experment is an element ofB generally changes
the probability that it is an element ofA. (What if A andB are mutu-
ally exclusive?) In the special case whereP(A|B) is equal toP(A), we
say thatA is independentof B. Since

P(A|B) = P(AB)

P(B)
,

we see thatA is independent ofB if

P(AB) = P(A)P(B). (1.6)

The relation in (1.6) is symmetric inA andB. Thus it follows that, when-
everA is independent ofB, B is also independent ofA – that is,A and
B areindependent events.

Example 1.2c Suppose that, with probability .52, the closing price of
a stock is at least as high as the close on the previous day, and that the
results for succesive days are independent. Find the probability that the
closing price goes down in each of the next four days, but not on the
following day.

Solution. LetAi be the event that the closing price goes down on day
i. Then, by independence, we have

P(A1A2A3A4A
c
5) = P(A1)P(A2)P(A3)P(A4)P(A

c
5)

= (.48)4(.52) = .0276.
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1.3 Random Variables and Expected Values

Numerical quantities whose values are determined by the outcome of
the experiment are known asrandom variables.For instance, the sum
obtained when rolling dice, or the number of heads that result in a series
of coin flips, are random variables. Since the value of a random variable
is determined by the outcome of the experiment, we can assign proba-
bilities to each of its possible values.

Example 1.3a Let the random variableX denote the sum when a pair
of fair dice are rolled. The possible values ofX are 2,3, . . . ,12, and
they have the following probabilities:

P {X = 2} = P {(1,1)} = 1/36,

P {X = 3} = P {(1,2), (2,1)} = 2/36,

P {X = 4} = P {(1,3), (2,2), (3,1)} = 3/36,

P {X = 5} = P {(1,4), (2,3), (3,2), (4,1)} = 4/36,

P {X = 6} = P {(1,5), (2,4), (3,3), (4,2), (5,1)} = 5/36,

P {X = 7} = P {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = 6/36,

P {X = 8} = P {(2,6), (3,5), (4,4), (5,3), (6,2)} = 5/36,

P {X = 9} = P {(3,6), (4,5), (5,4), (6,3)} = 4/36,

P {X =10} = P {(4,6), (5,5), (6,4)} = 3/36,

P {X =11} = P {(5,6), (6,5)} = 2/36,

P {X =12} = P {(6,6)} = 1/36.

If X is a random variable whose possible values arex1, x2, . . . , xn, then
the set of probabilitiesP {X = xj } (j = 1, . . . , n) is called theproba-
bility distribution of the random variable. SinceX must assume one of
these values, it follows that

n∑
j=1

P {X = xj } = 1.

Definition If X is a random variable whose possible values arex1, x2,

. . . , xn, then theexpected valueof X, denoted byE[X], is defined by
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E[X] =
n∑
j=1

xjP {X = xj }.

Alternative names forE[X] are theexpectationor themeanof X.
In words,E[X] is a weighted average of the possible values ofX,

where the weight given to a value is equal to the probability thatX as-
sumes that value.

Example 1.3b Let the random variableX denote the amount that we
win when we make a certain bet. FindE[X] if there is a 60% chance
that we lose 1, a 20% chance that we win 1, and a 20% chance that we
win 2.

Solution.
E[X] = −1(.6)+ 1(.2)+ 2(.2) = 0.

Thus, the expected amount that is won on this bet is equal to 0. A bet
whose expected winnings is equal to 0 is called afair bet.

Example 1.3c A random variableX, which is equal to 1 with proba-
bility p and to 0 with probability 1−p, is said to be aBernoulli random
variable with parameterp. Its expected value is

E[X] = 1(p)+ 0(1− p) = p.
A useful and easily established result is that, for constantsa andb,

E[aX + b] = aE[X] + b. (1.7)

To verify Equation(1.7), letY = aX + b. SinceY will equal axj + b
whenX = xj, it follows that

E[Y ] =
n∑
j=1

(axj + b)P {X = xj }

=
n∑
j=1

axjP {X = xj } +
n∑
j=1

bP {X = xj }

= a
n∑
j=1

xjP {X = xj } + b
n∑
j=1

P {X = xj }

= aE[X] + b.
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An important result is that the expected value of a sum of random vari-
ables is equal to the sum of their expected values.

Proposition 1.3.1 For random variablesX1, . . . , Xk,

E

[ k∑
j=1

Xj

]
=

k∑
j=1

E[Xj ].

Example 1.3d Considern independent trials, each of which is a suc-
cess with probabilityp. The random variableX, equal to the total num-
ber of successes that occur, is called abinomial random variable with
parametersn andp. We can determine its expectation by using the
representation

X =
n∑
j=1

Xj,

whereXj is defined to equal 1 if trialj is a success and to equal 0 other-
wise. Using Proposition 1.3.1, we obtain that

E[X] =
n∑
j=1

E[Xj ] = np,

where the final equality used the result of Example 1.3c.

The random variablesX1, . . . , Xn are said to beindependentif probabil-
ities concerning any subset of them are unchanged by information as to
the values of the others.

Example 1.3e Suppose thatk balls are to be randomly chosen from a
set ofN balls, of whichn are red. If we letXi equal 1 if theith ball cho-
sen is red and 0 if it is black, thenX1, . . . , Xn would be independent if
each selected ball is replaced before the next selection is made, but they
would not be independent if each selection is made without replacing
previously selected balls. (Why not?)

Whereas the average of the possible values ofX is indicated by its ex-
pected value, its spread is measured by its variance.
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Definition Thevarianceof X, denoted by Var(X), is defined by

Var(X) = E[(X − E[X])2].

In other words, the variance measures the average square of the differ-
ence betweenX and its expected value.

Example 1.3f Find Var(X) whenX is a Bernoulli random variable
with parameterp.

Solution. BecauseE[X] = p (as shown in Example 1.3c), we see that

(X − E[X])2 =
{
(1− p)2 with probabilityp

p2 with probability 1− p.
Hence,

Var(X) = E[(X − E[X])2]

= (1− p)2p + p2(1− p)
= p − p2.

If a andb are constants, then

Var(aX + b) = E[(aX + b − E[aX + b])2]

= E[(aX − aE[X])2] (by Equation(1.7))

= E[a2(X − E[X])2]

= a2 Var(X). (1.8)

Although it is not generally true that the variance of the sum of ran-
dom variables is equal to the sum of their variances, thisis the case when
the random variables are independent.

Proposition 1.3.2 If X1, . . . , Xk are independent random variables,
then

Var

( k∑
j=1

Xj

)
=

k∑
j=1

Var(Xj ).

Example 1.3g Find the variance ofX, a binomial random variable
with parametersn andp.
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Solution. Recalling thatX represents the number of successes inn in-
dependenttrials (each of which is a success with probabilityp),we can
represent it as

X =
n∑
j=1

Xj,

whereXj is defined to equal 1 if trialj is a success and 0 otherwise.
Hence,

Var(X) =
n∑
j=1

Var(Xj ) (by Proposition 1.3.2)

=
n∑
j=1

p(1− p) (by Example 1.3f )

= np(1− p).

The square root of the variance is called thestandard deviation.As we
shall see, a random variable tends to lie within a few standard deviations
of its expected value.

1.4 Covariance and Correlation

The covariance of any two random variablesX and Y, denoted by
Cov(X, Y ), is defined by

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])].

Upon multiplying the terms within the expectation, and then taking ex-
pectation term by term, it can be shown that

Cov(X, Y ) = E[XY ] − E[X]E[Y ].

A positive value of the covariance indicates thatX andY both tend to
be large at the same time, whereas a negative value indicates that when
one is large the other tends to be small. (Independent random variables
have covariance equal to 0.)

Example 1.4a LetX andY both be Bernoulli random variables. That
is, each takes on either the value 0 or 1. Using the identity



14 Probability

Cov(X, Y ) = E[XY ] − E[X]E[Y ]

and noting thatXY will equal 1 or 0 depending upon whether bothX
andY are equal to 1, we obtain that

Cov(X, Y ) = P {X =1, Y =1} − P {X =1}P {Y =1}.

From this, we see that

Cov(X, Y ) > 0 ⇐⇒ P {X =1, Y =1} > P {X =1}P {Y =1}

⇐⇒ P {X =1, Y =1}
P {X =1} > P {Y =1}

⇐⇒ P {Y =1 | X =1} > P {Y =1}.

That is, the covariance ofX andY is positive if the outcome thatX = 1
makes it more likely thatY = 1 (which, as is easily seen, also implies
the reverse).

The following properties of covariance are easily established. For ran-
dom variablesX andY, and constantc:

Cov(X, Y ) = Cov(Y,X),

Cov(X,X) = Var(X),

Cov(cX, Y ) = cCov(X, Y ),

Cov(c, Y ) = 0.

Covariance, like expected value, satisfies a linearity property – namely,

Cov(X1+X2, Y ) = Cov(X1, Y )+ Cov(X2, Y ). (1.9)

Equation (1.9) is proven as follows:

Cov(X1+X2, Y ) = E[(X1+X2)Y ] − E[X1+X2]E[Y ]

= E[X1Y +X2Y ] − (E[X1] + E[X2])E[Y ]

= E[X1Y ] − E[X1]E[Y ] + E[X2Y ] − E[X2]E[Y ]

= Cov(X1, Y )+ Cov(X2, Y ).
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Equation (1.9) is easily generalized to yield the following useful iden-
tity:

Cov

( n∑
i=1

Xi,

m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov(Xi, Yj ). (1.10)

Equation(1.10)yields a useful formula for the variance of the sum of
random variables:

Var

( n∑
i=1

Xi

)
= Cov

( n∑
i=1

Xi,

n∑
j=1

Xj

)

=
n∑
i=1

n∑
j=1

Cov(Xi,Xj )

=
n∑
i=1

Cov(Xi,Xi)+
n∑
i=1

∑
j 6=i

Cov(Xi,Xj )

=
n∑
i=1

Var(Xi)+
n∑
i=1

∑
j 6=i

Cov(Xi,Xj ). (1.11)

The degree to which large values ofX tend to be associated with large
values ofY is measured by thecorrelationbetweenX andY, denoted
asρ(X, Y ) and defined by

ρ(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

.

It can be shown that
−1≤ ρ(X, Y ) ≤ 1.

If X andY are linearly related by the equation

Y = a + bX,
thenρ(X, Y ) will equal 1 whenb is positive and−1 whenb is negative.

1.5 Exercises

Exercise 1.1 When typing a report, a certain typist makesi errors with
probabilitypi (i ≥ 0), where
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p0 = .20, p1= .35, p2 = .25, p3 = .15.

What is the probability that the typist makes

(a) at least four errors;
(b) at most two errors?

Exercise 1.2 A family picnic scheduled for tomorrow will be post-
poned if it is either cloudy or rainy. If the probability that it will be
cloudy is .40, the probability that it will be rainy is .30, and the proba-
bility that it will be both rainy and cloudy is .20, what is the probabilty
that the picnic will not be postponed?

Exercise 1.3 If two people are randomly chosen from a group of eight
women and six men, what is the probability that

(a) both are women;
(b) both are men;
(c) one is a man and the other a woman?

Exercise 1.4 A club has120 members, of whom 35 play chess, 58 play
bridge, and 27 play both chess and bridge. If a member of the club is
randomly chosen, what is the conditional probability that she

(a) plays chess given that she plays bridge;
(b) plays bridge given that she plays chess?

Exercise 1.5 Cystic fibrosis (CF) is a genetically caused disease. A
child that receives a CF gene from each of its parents will develop the
disease either as a teenager or before, and will not live to adulthood. A
child that receives either zero or one CF gene will not develop the dis-
ease. If an individual has a CF gene, then each of his or her children
will independently receive that gene with probability 1/2.

(a) If both parents possess the CF gene, what is the probability that their
child will develop cystic fibrosis?

(b) What is the probability that a 30-year old who does not have cys-
tic fibrosis, but whose sibling died of that disease, possesses a CF
gene?



Exercises 17

Exercise 1.6 Two cards are randomly selected from a deck of 52 play-
ing cards. What is the conditional probability they are both aces, given
that they are of different suits?

Exercise 1.7 If A andB are independent, show that so are

(a) A andBc;
(b) Ac andBc.

Exercise 1.8 A gambling book recommends the following strategy for
the game of roulette. It recommends that the gambler bet 1 on red. If
red appears (which has probability 18/38 of occurring) then the gam-
bler should take his profit of 1 and quit. If the gambler loses this bet, he
should then make a second bet of size 2 and then quit. LetX denote the
gambler’s winnings.

(a) FindP {X > 0}.
(b) FindE[X].

Exercise 1.9 Four buses carrying 152 students from the same school
arrive at a football stadium. The buses carry (respectively) 39, 33, 46,
and 34 students. One of the 152 students is randomly chosen. LetX

denote the number of students who were on the bus of the selected stu-
dent. One of the four bus drivers is also randomly chosen. LetY be the
number of students who were on that driver’s bus.

(a) Which do you think is larger,E[X] or E[Y ]?
(b) FindE[X] andE[Y ].

Exercise 1.10 Two players play a tennis match, which ends when one
of the players has won two sets. Suppose that each set is equally likely
to be won by either player, and that the results from different sets are
independent. Find (a) the expected value and (b) the variance of the
number of sets played.

Exercise 1.11 Verify that

Var(X) = E[X2] − (E[X])2.
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Hint: Starting with the definition

Var(X) = E[(X − E[X])2],

square the expression on the right side; then use the fact that the ex-
pected value of a sum of random variables is equal to the sum of their
expectations.

Exercise 1.12 A lawyer must decide whether to charge a fixed fee of
$5,000 or take a contingency fee of $25,000 if she wins the case (and 0
if she loses). She estimates that her probability of winning is .30. De-
termine the mean and standard deviation of her fee if

(a) she takes the fixed fee;
(b) she takes the contingency fee.

Exercise 1.13 Let X1, . . . , Xn be independent random variables, all
having the same distribution with expected valueµ and varianceσ 2.

The random variableX̄, defined as the arithmetic average of these
variables, is called thesample mean.That is, the sample mean is
given by

X̄ =
∑n

i=1Xi

n
.

(a) Show thatE[X̄] = µ.
(b) Show that Var(X̄) = σ 2/n.

The random variableS2, defined by

S2 =
∑n

i=1(Xi − X̄)2
n− 1

,

is called thesample variance.

(c) Show that
∑n

i=1(Xi − X̄)2 =
∑n

i=1X
2
i − nX̄2.

(d) Show thatE[S2] = σ 2.

Exercise 1.14 Verify that

Cov(X, Y ) = E[XY ] − E[X]E[Y ].
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Exercise 1.15 Prove:

(a) Cov(X, Y ) = Cov(Y,X);
(b) Cov(X,X) = Var(X);
(c) Cov(cX, Y ) = cCov(X, Y );
(d) Cov(c, Y ) = 0.

Exercise 1.16 If U andV are independent random variables, both hav-
ing variance 1, find Cov(X, Y ) when

X = aU + bV, Y = cU + dV.

Exercise 1.17 If Cov(Xi,Xj ) = ij, find

(a) Cov(X1+X2, X3+X4);
(b) Cov(X1+X2+X3, X2+X3+X4).

Exercise 1.18 Suppose that – in any given time period – a certain stock
is equally likely to go up 1 unit or down 1 unit, and that the outcomes
of different periods are independent. LetX be the amount the stock
goes up (either 1 or−1) in the first period, and letY be the cumulative
amount it goes up in the first three periods. Find the correlation between
X andY.

Exercise 1.19 Can you construct a pair of random variables such that
Var(X) = Var(Y ) = 1 and Cov(X, Y ) = 2?
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