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1

Foundations

In this chapter, we assemble a number of ideas and techniques that will
eventually be fitted together to achieve our aim. Their only common feature
is that they are needed to prove the prime number theorem, so the chapter
has no single unifying theme. However, each section of the chapter is devoted
to a very clearly defined topic. Some of these ideas are analytic, others
number-theoretic, but there would be no advantage in trying to keep the
two strands apart: they reinforce each other in a fruitful partnership.

Our objective is to find a formula that approximates 7(z), the number of
primes not greater than xz. We start, in section 1.1, by identifying some can-
didates as suggested by numerical evidence. We also give a brief account of
the long history leading to the successful proof of the prime number theorem.

The term “arithmetic function” is used for a sequence defined using num-
ber-theoretic properties in some way. A great deal of number theory consists
of the study of such functions. Now we can express 7(z) as the partial
sum Y. .. up(n), where up is the arithmetic function defined as follows:

1 if n is prime,
0 otherwise.

up(n) = {

Typically, arithmetic functions appear to be very irregular, but this is smooth-
ed out by addition, and one can hope to find an estimate for their partial
sums. This identifies our problem as one of a certain type.

We go on to describe two essential techniques for rewriting and estimat-
ing discrete sums, Abel summation and integral estimation. Both are used
constantly in all that follows.

After this, we are in a position to describe the first real progress towards
the prime number theorem, achieved by Chebyshev in 1850. Chebyshev
recognised that an estimation of 7(z) can be deduced from an estimation of
0(z) =3 ¢ ple1 108 p (Where P[z] denotes the set of primes not greater than

1



2 Foundations

z), and showed that the latter sum can be estimated by a comparatively
short (but ingenious) argument. In this way, he demonstrated that 7(z) lies
between cx/logz and Cz/logz for two constants ¢, C.

Finally, we introduce a concept that will permeate the rest of our study to
the extent that it could serve as a subtitle for this book. A Dirichlet series
is a series of the form Y 7 | a(n)/n®, in which s is a complex variable. The
case a(n) = 1 defines the Riemann zeta function. Every arithmetic function
has a corresponding Dirichlet series; multiplication of the series corresponds
to “convolution” of the arithmetic functions. Our “fundamental theorems”
in chapter 3 will derive information about the partial sums of a(n) from the
nature of the function defined by the series, with the prime number theorem
appearing as a special case.

1.1 Counting prime numbers

As the reader surely knows, prime numbers are those that have no positive
divisors except 1 and the number itself. The special significance of prime
numbers is due to the following fact, which we will assume known:

Every positive integer is expressible as a product of primes. The expression
s unique if the primes are listed in increasing order.

Effectively, this means that the primes are the basic “atoms” in the mul-
tipicative system of integers. (If n is itself prime, we are regarding it as a
“product” of one prime, itself.)

The first result on the number of primes was already known to Euclid.
Here it is, with Euclid’s beautiful proof.

Proposition 1.1.1 There are infinitely many prime numbers.

Proof Choose finitely many primes p1,p2,...,pn. We will show that they
cannot constitute the total set of primes. Consider the number

N=pps...pn+1.

Then N is not a multiple of any p;, because it clearly leaves remainder 1
when divided by p;. However, by the above statement, IV is expressible as
a product of primes. Let ¢ be any one of these. Then ¢ is a further prime,
different, from all the p;, which therefore indeed fail to constitute the total
set. of primes. O
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Note This reasoning actually shows a bit more: if the primes are listed as
P1, P2, . . in increasing order, then pp41 < p1p2...pn + 1.

With this settled, it is natural to ask how many prime numbers there are
up to any given number. This is the topic of our study. Let us give it some
notation:

w(x) = the number of primes not greater than z.

This notation is standard in number theory; there is no real danger of con-
fusion with the number . It will suit our purposes to regard w(z) as a
function of a real variable x. As such a function, it is, of course, constant
between primes and jumps by 1 at each prime.

The first impression given by the sequence of primes

2,3,5,7,11,...,101,103,107, 109,113,127, .. .,163, 167,173,179, . ..

is one of extreme irregularity. There are bunches, gaps and relatively uniform
stretches. It would appear to be a daunting task to find a simple expression
that approximates to 7(z) for all large enough z. The only simple observa-
tion is that the primes tend to become more sparse as one goes on. However,
an examination of the numerical values of 7(z) suggests that a reasonable
approximation is given by z/(logz), a considerably better one by
x
logez — 1’
and a still better one by the “logarithmic integral”, defined as follows:

1
li(z) = — dt.
i(x) /2 Tog dt

Some of these numerical values are as follows (given to the nearest integer):

n w(n) Togn  fogn i li(n)
1,000 168 145 169 177

10,000 1,229 1,086 1,218 1,246
50,000 5,133 4,621 5,002 5,166
100,000 9,592 8,686 9,512 9,630
500,000 41,538 38,103 41,246 41,607
1,000,000 78,498 72,382 78,031 78,628
10,000,000 664,579 620,421 661,459 664,918

By the year 1800, long before the age of computers, mathematicians had
performed the remarkable feat of calculating these figures by hand up to
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n = 400,000. In the age of computers, it has of course become much easier
to calculate values of 7(z). Some readers will be interested in doing so on
their own computer: various methods for this are discussed in appendix F.

Let us formulate precisely the conjecture suggested by these figures. Given
two functions f(z), g(z), both tending to infinity as 2 — oo, we write

f(x) ~ g(x) as ¢ — 0o
to mean that

f(z)

—= =1 as T — 0o.
g(z)

Our conjecture is the statement
w(x) ~ li{z) as £ — 0o.

In fact, as we will show in section 1.5,

r r

gz ™ loga;—l ~ li(z) as r — 0o,
so at this level it is equivalent to state the conjecture using any of the three
functions.

The conjecture is in fact true. The statement w(z) ~ li(z) is called the
prime number theorem. It is indisputably one of the most celebrated the-
orems in mathematics. Ways of proving it, together with related results,
more precise versions and generalizations, form the subject of this book. Of
course, numerical evidence of the above type can never constitute a proof of
the general statement.

An informal interpretation of the theorem is that the “average density”
of primes around a large number z approximates to 1/(logz), or that the
“probability” of n being prime is (in some sense) 1/(logn).

Let us return to the historical trail (for a much more detailed histori-
cal account, see [Nar]). Legendre, in 1798, postulated the approximations
z/(logz) and z/(logz—1). He suggested (wrongly) that an even better ap-
proximation would be given by z/(logx — A), with A = 1.0836. Meanwhile,
Gauss proposed li(x). It seems that Gauss recorded his conjecture around
1793 (at the age of 14!) but did not communicate it to anyone until 1849.

The search for a proof remained one of the main areas of mathematical en-
deavour during the rest of the nineteenth century. In 1850, a giant stride was
made by Chebyshev, who showed, by essentially number-theoretic methods,
that there are constants ¢ and C (not very far from 1) such that

cli(z) < w(z) < Cli(x)
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for all large enough 2. However, no refinement of his methods seemed to
offer any hope of proving the desired limit.

A completely different approach was proposed by Riemann in 1859. His
starting point was a remarkable identity already discovered by Euler in 1737,
expressing the “zeta function”

as an infinite product involving the primes. Riemann considered this as a
function of a complex variable s, defined by the above formula for Re s > 1.
He showed how to extend the definition of the function to the rest of the com-
plex plane and outlined a programme showing how, if certain properties of
the extended zeta function could be established, the prime number theorem
would follow. His paper was a bold imaginitive leap; it was hardly an obvi-
ous idea to use the theorems of complex analysis to count prime numbers!
However, Riemann was not able to justify all his steps, and one of them,
the “Riemann hypothesis”, has remained unsolved to this day, regarded by
many as the most important unsolved problem in mathematics.

It was not until 1896 that Riemann’s programme was successfully com-
pleted. It was then done so independently by the French mathematician
Jacques Hadamard and the Belgian Charles-Jean de la Vallée Poussin. They
were able to bypass the Riemann hypothesis and establish other properties
of the zeta function that were sufficient for the purpose. Hadamard lived
until 1963 (aged 97) and de la Vallée Poussin until 1962 (aged 95): their
mathematical labours cannot have done any harm to their health!

Further variations and modifications of their methods were developed by
Mertens, Landau and others, but to this day the simplest, and most powerful,
proofs of the prime number theorem rely on the zeta function and complex
analysis, as suggested by Riemann. In chapters 1-3, we present a version
(and a variant) that benefits from a century of “tidying up”, but which still
recognisably owes its existence to Riemann.

After the successful outcome of Riemann’s programme, it remained a mat-
ter of great interest to ask whether the theorem could after all be proved
by number-theoretic methods, without complex analysis. This was eventu-
ally achieved in 1949, again independently by two people, A. Selberg and P.
Erdés. Proofs of this sort are called “elementary” as opposed to “analytic”.
However, “elementary” does not mean “simple”! Half a century later, known
proofs of this sort are still more complicated than analytic ones and are less
successful in providing error estimates or in delivering other theorems of the
same sort. A version is presented in chapter 6.
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Exercises

1 Let n > 1 and let E = {30n +r : 0 < r < 29}. For which values of
r is 30n + r not a multiple of 2, 3 or 5 7 By considering the possible
positions of multiples of 7, show that E contains at most seven primes
(seven cases, no short cuts!).

2 Show that, for any n > 2, there is eventually a gap of length at least
n between successive primes. [Hint: Consider n!+2 or p1pa ... pn +2.]

3 Let the primes be listed, in order, as p1,p2,... . Use Euclid’s proof
to show by induction that p, < 22" for each n. Deduce that

w(z) > loglogx .
log 2

1.2 Arithmetic functions

Formally, an arithmetic function is simply a sequence, with real or complex
values. A sequence is, of course, a function on the set N of positive integers.
To emphasize that we are thinking of them as functions, we shall usually use
notation like a(n), rather than a,,, for the value corresponding to the integer
n. The term “arithmetic function” is used especially when a(n) is defined
using number-theoretic properties in some way. A large part of number
theory consists, in one way or another, of the study of these functions.

We list some examples. First, two very simple ones, mainly to establish
the notation we will use:

u(n) =1 foralln  (the “unit function”);
1 ifn=j
e (m) _{ 0 ifnj.
Next, given any subset E of N (for example, the set P of primes), define

1 ifnek,
un(n) =4 4 ifn¢ E.

Clearly, u itself is the case £ = N. Third, three more obviously number-
theoretic examples:

7(n) = the number of (positive) divisors of n, including 1 and n;
w(n) = the number of prime divisors of n;

Q(n) = the number of prime factors of n, counted with repetitions.
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(This notation is more or less standard, though some writers use d instead
of 7.) Note that 7(1) =1 and w(1) = Q(1) = 0. For n > 1, these functions
can easily be described in terms of the prime factorization of n, as follows.

Proposition 1.2.1 Suppose that n > 1, with prime factorization

m
_ kj
n= ||pj.
=1

Then

m m

) = +1, wn)=m, Qn) =3 k.

=1 =1

Proof The expressions for w(n) and Q(n) are just the definition. Divisors
of n are of the form H;’;l p;j , where, for each j, the possible values of r;
are 0,1,...,%;. This gives the expression for 7(n). O

In particular, if p is prime, then 7(p¥) = k+ 1, w(p*) = 1 and Q(p*) = .
To give another example, since 72 = 22.32, we have 7(72) = 12, w(72) =2
and Q(72) = 5.

Given arithmetic functions a,b, we denote the pointwise product by ab, so
that (ab)(n) = a(n)b(n). Obviously, au = a for any a.

Summation functions. Given an arithmetic function a(n), its summa-
tion function A(x) is defined by

A(z) = Z a(n).
n<z
It is useful to regard A(z) as a function of a real variable z. As such a func-
tion, it is, of course, constant between integers and has a jump discontinuity
at each integer where a(n) # 0. Clearly, w(x) is the summation function of
up(n) (note: in particular cases, the established notation will not usually
allow a notational device like the substitution of A for a).

Individual values of arithmetic functions may fluctuate wildly — as in most
of the examples just given. However, in many cases summation smooths out
the fluctuation, and it may be possible to find an asymptotic expression for
the summation function for large z. In the case of 7(n) and w(n), the first
step is to apply a bit of “lateral thinking” to obtain alternative expressions
for the summation functions, as in the next result. The notation [2] means
the largest integer not greater than z. We shall use the notation P[z] to
mean the set of primes not greater than z (but there is no generally agreed
notation for this). Also, j|n means that j divides into n.
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Proposition 1.2.2 Write S;(z) = >, ., 7(n) and S,(x) = >, ., w(n).

Then
so-gl. so- 3 [

i<z pcPla] P

Proof Clearly, S;(z) is the number of ordered pairs (j,n) such that j|n and
n < z. For fixed j (instead of fixed n), the number of such pairs is the
number of multiples rj not greater than 2. This number is obviously [z/j].
The stated expression follows.

The argument for S, (z) is similar, counting the number of pairs (p,n) as
above, but with p prime. O

The “double counting” principle seen in this proof is often useful. We
shall see later how the identities in 1.2.2 can be used to derive asymptotic
expressions for S, (x) and S, (x), and similar results will be obtained for
some other arithmetic functions. Since 7 (z) is itself a summation function,
our main objective, the prime number theorem, is a result of exactly this
type. But, as the reader may suspect, this case will cost us a lot more effort
than most of the others.

Multiplicative functions. We denote by (m,n) the greatest common
divisor of m and n. An arithmetic function a is said to be

completely multiplicative if a(mn) = a(m)a(n) for all m, n;
multiplicative if a(mn) = a(m)a(n) whenever (m,n) = 1.

Clearly, if a is multiplicative and not identically zero, then a(l) = 1. Also,
a is fully determined by the values a(p*) for prime p, since if the prime
factorization of n is [T, pfj , then a(n) = [T}, a(pfj ). Of course, if a is
completely multiplicative, then a(p*) = a(p)¥, and the function is already
fully determined by the values a(p).

We list some examples.

(i) For any s, let a(n) = n®. Then a is completely multiplicative.

(if) e1 is completely multiplicative, but e; is not multiplicative for j > 2,
since e;(1) = 0.

(iif) 7 is multiplicative. This follows from 1.2.1, since if (m,n) = 1, then
m and n have different prime divisors. It is not completely multi-
plicative, since 7(2) = 2, 7(4) = 3.

(iv) wp is not multiplicative, since up(1) = 0.

(v) Neither w nor € is multiplicative; however, we have Q(mn) =
Q(m) + Q(n), and similarly for w when (m,n) = 1.
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(vi) Liouwville’s function is defined by A(n) = (—1)%™). It is completely
multiplicative, by the statement in (v).
(vii) Let
0 if niseven
x(n) = 1 ifn=1 (mod4)
-1 ifn=-1 (mod4).

By considering the different cases, one checks easily that x is com-
pletely multiplicative.

As the reader may already know, there are many further interesting arith-
metic functions. Some will make their appearance in later sections.

Exercises
1 Find the smallest n such that: (i) Q(n) = 4, (i) w(n) = 4, (iii)
T(n) = 4.
2 Show that Ziozl 7(n) = 111 without calculating individual values of
T(n).

Calculate 27121 w(n) without calculating individual values of w(n).
Show that 7(n) is odd if and only if » is a square.

Show that, for any n > 2,
24 < 7(n) < 2% < .

[You may assume that k + 1 < 2* for all k > 0.]
6 Let S be the set of squares. Show that ug is multiplicative.
Let a(n) = (—1)» ! for n > 1. Show that a is multiplicative.
Prove that, for any £ > 0, we have 7(n)/n® — 0 as n — oo. [Again

use k+1 < 2% For each prime p < 21/¢, show that there is a constant
C, such that k+1 < C,p?* for all k.]

1.3 Abel summation
Discrete version

Abel summation, in its various forms, will be a very basic tool in all that
follows, so we will describe it rather thoroughly. It is the process of expressing
a sum of products > a(r)f(r) in terms of partial sums of the a(r)’s and
differences of the f(r)’s. Our choice of notation reflects the different roles
played by a(r) and f(r). The process is exactly analogous to integration by
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parts for functions, and indeed it is sometimes called “summation by parts”
or “partial summation”. As already mentioned, a central theme in analytic
number theory is the estimation of partial sums (rather than individual
values) of arithmetic functions. This explains why Abel summation is so
often appropriate. Throughout the following, we assume that a(r), f(r) are
given numbers (real or complex) for r > 1, and write A(n) = >, a(r)
for n > 1 (also A(0) = 0). If we have another sequence b(r), then B(n) is
defined similarly. The basic result is very simple, as follows.

Proposition 1.3.1 For integers n >m > 0,

n

n—1
Y alr)fr) =Y A@f() = fir + D]+ A(n) f(n) — A(m) f(m).

r=m+1

In particular,

n n—1
Yo a(r)f(r) =D APf() = flr + D]+ A) f ().
r=1 r=1

Proof The proof looks nicer if we write A, and f, instead of A(r) and f{(r)!
For all r > 1, we have a, = A, — A,_1 (recall 49 = 0). Hence

n

Z a?‘fr = (Am+1 - Am)fm+1 + (Am+2 - Am+1)fm+2 +---

r=m+1
st (An - An—l)fn
n—1
= _Amfm+1 + Z Ar(fr - fr+1) + Anfn (11)
r=m-+1
n—1
=—Anfm+ Z Ar(fr - fr+1) + An fn. (1-2)
The second statement is the case m = 0. O

This simple identity has numerous corollaries and applications.

Corollary 1.3.2 Suppose that f(r) is real and non-negative, and decreases
with . Suppose that a(r), b(r) are such that A(r) < CB(r) for all r. Then

n

> alr)fr) <CY br)f(r).

r=1

Proof This follows at once from 1.3.1, because f(r) — f(r + 1) and f(n) are
non-negative. [l
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Note Taking a(r) = 1in 1.3.1, we obtain an expression for ., f(r) itself:

> )= Zr[f( ) = fr+ D]+ nfn).

Next, we describe some applications to infinite series.

Proposition 1.3.3 Suppose that A(n)f(n) — 0 as n — oco. Then if one of
the series

o0

> a(r)f(r)  and ZA () — fr +1)]

r=1

converges, then so does the other, to the same sum.

Proof Recall that the sum of a series means the limit as n — oo of the sum
of n terms. Given this, the statement follows at once from 1.3.1. O

Note that by taking limits in the first statement in 1.3.1, we have also

Y a = Al — flr + )] — A(m) f(m).
r=m-+1 r=m

Proposition 1.3.4 (Dirichlet’s test for convergence) Suppose that:
(i) |A()| < C forallr,
(i) f(r) = 0asr— oo,

(i) > ooty |f(r) — f(r +1)| is convergent.

Then .2, a(r)f(r) converges, say to S, where

|5|<CZ|f for+ 1)

Condition (ii2) can be replaced by: (iiia) f(r) is non-negative and decreasing.

We then have |S| < Cf(1).
Proof By the comparison test for series, Y .-, A(r)[f(r) — f(r +1)] is con-
vergent, with the sum S satisfying the stated inequality. Also, clearly,

A(r)f(r) = 0 as r — oo. The statement follows, by 1.3.3. Under condition
(iiia), we have

Zlf for+1 |—Z[f for+1]=f(1) = f(n+1),

sothat Y o2 [f(r) — f(r +1)| = f(1). 0
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Note that, under the conditions of this result, > -2, A(r) [f(r)— f(r+1)]
is absolutely convergent, while >~ | a(r) f(r) may well not be.

In particular, condition (i) implies that, for all real s > 0, the series
>~ a(r)/r® converges, say to S, where |S| < C. Later, we shall be consider-
ing series of this type for complez s; these are more easily handled by the
continuous version of Abel summation, discussed below.

Abel summation is often used to give estimations of partial sums, given
information about other partial sums. The next example illustrates this.

Example 1 Given that |}, a(r)/r| < C for all n, to show that [A(n)| <
(2n —1)C for all n.

Write a(r)/r = b(r). Then we have |B(n)| < C for all n and, by 1.3.1,
An) = Zrb(r) =—B(1)—B(2)—---— B(n—1) + nB(n).

The stated inequality is now clear.

Continuous version

Given an arithmetic function a(r), its summation function A(z) is defined
for all positive, real x, not just integers. Meanwhile, in products of the type
we are considering, the numbers f(r) (as our notation already suggests) are
often the values at integers of a function f(x) of a real variable. When
this happens, we can replace the discrete sums in the above expressions by
integrals, using the elementary fact that f(r + 1) — f(r) = f:+1 F'@)dt
(this remains valid when f is complex-valued: for clarification, see appendix
A). The resulting identity, in its various forms, is sometimes called Abel’s
summation formula. Tt is very useful, because integrals are often easier to
evaluate than discrete sums.

Throughout the following, the numbers a(r) (for integers r > 1) are as-
sumed given, and A(z) = >, ., a(r). We start by giving the continuous
equivalent of the first expression in 1.3.1. The similarity with integration by
parts is even more apparent.

Theorem 1.3.5 Let y < x, and let f be a function (with real or complex
values) having a continuous derivative on [y, x]. Then
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Proof Let m,n be integers such that n <z <n+landm <y <m+ 1.
Then (treating the symbols < and < with due respect) we have

n

Yo alnfry= Y aln)fr).

y<r<z r=m+1

We use identity (1.1) from the proof of 1.3.1. Since A(t) = A(r) forr <t <
r + 1, we have

r+1
}:_A M) — Fr +1)] }:44 /5 f1t) dt

r=m-+1 r=m-+1
-5 [T
r=m-+1
=- At)f'(t) dt
m—+1

(Note that the integral of A(t) f'(¢) on [r,7+1] is not affected by the possibly
new value of A(¢) at the single point r +1.) Also, A(t) = A(n) forn <t <z,
80

A@) () ~ AW f0) = AW - f] = [ At
and similarly
m—+1
A(m)f(m+1) — Aly) f(y) = Am)[f(m + 1) — f{y)] = / At) f'(t) dt.
Using these identities to substitute for A(m)f(m +1) and A(n)f(n) in (1.1),

we obtain the stated identity. Ol

Most of the time we shall apply the formula to sums starting at r = 1.
Two variant forms for this case are given in the next result.

Proposition 1.3.6 Let f have a continuous derivative on [1,z]. Then:

() Y a(r)fr) = A(2)f(2) —/w At) f'(t) dt

r<z

@ Y a)f /A

r<z

Proof (i) Take y = 1in 1.3.5. Then A(y) f(y) = a(1) f(1), while the sum on
the left is 3>, ,.<, a(r) f(r). When combined, this gives the required sum.

(i) This follows, because ), a(r) f(z) = A(z) f(2). O
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Sometimes we will be interested in a function f that is undefined at 1
(typically f(t) = 1/logt). The following variant of the formula deals with
this situation.

Proposition 1.3.7 If f has a continuous derivative on [2,z] and a(1) =0,
then

S al)f() =A@ ) - [ oL

2<r<z

Proof Taking y = 2 in 1.3.5, we have
> alnfr) =a@f@)+ Y a()f(r)

2<r<z 2<r<z
=a(2)f(2) + A(2)f(z) — A(2)f(2) - /2 A f'(t) dt.
Since a(1) = 0, we have A(2) = a(2), so the statement follows. O

To assist in the process of getting used to these formulae, we list a number
of particular cases (with general a(r) but specific f(#)). We remark that
when similar expressions appear in later sections, the notation will often be
n instead of . The reader may like to write out and compare some of the
corresponding discrete expressions.

(i) Zm:@+/j%dt;

r z
r<z

(if) Z a(r)logr = A(z)logz — A(y) logy —/ @ dt;
y<r<z Yy

(iii) éra(r) =zA(z) — /1 A(t) dt;

() (@ —ralr) = /1 AW @

r<z
) _ Alz) ° A
r  logz +/2 t(log t)2

. a(r
(v) ifa(l)=0,then Y og
2<r<z

Example 2 To estimate S(z) = >, ., a(r)/r, given that |A(x)| < Cx for
all z. By (i), we have B

[S(x)| < C+/ % dt = C(logz + 1).
1

Continuous Abel summation has applications to infinite series exactly
analogous to those of discrete Abel summation, as follows.
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Proposition 1.3.8 Suppose that f has o continuous derivative on [1,00),
and that A(z)f(xz) = 0 as z — oo. Then

o0

St =- | T AW f @) d,

r=1

in the sense that if either side converges, then so does the other, to the same
value. Further, we then have

S el i) = —A@f@) - [ A0S dr

>

Proof The first statement follows from 1.3.6(i) on considering limits as z
tends to oo. The second statement follows similarly from 1.3.5, or by sub-
tracting the identity in 1.3.6(i). 1

Usually we will use this in the direction of deducing convergence of the
series from that of the integral, as in the following corollary.
Corollary 1.3.9 Suppose that:
(i) |A(@t)| < C for all t,
(i) f{t) >0 ast— oo,
(Giii) [ |f'(t)| dt is convergent (say to I).
Then > 2, a(r) f(r) is convergent (say to S), and |S| < C1I.

Proof This follows from 1.3.8 and the general fact that if [ [g(t)|dt con-
verges (say to J), then so does [~ g(t)dt, with value not greater than J in
modulus. (Again, this remains valid in the complex case.) O

So we have, for example (given condition (i)):

> alr At
Z%—/l %dt.

n=1

Except when f(t) is real and decreasing, the integral estimate for S| in
1.3.9 is usually more useful than the discrete one of 1.3.4, because it is easier
to evaluate the integral than the discrete sum.

Finally, we apply Abel’s formula to some specific choices of a(r). As
yet, our repertoire of arithmetic functions is very limited, but two cases
are well worth mentioning. First, take a(r) = 1 for all », so that the sum
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2r<ea(r)f(r) issimply >°, ., f(r). Then A(z) = [z], and the two identities

r<z
in 1.3.6 become

S £ = [l () - / "5 dt,

r<z

S [f(@) - £0) = / ") dt.

r<z

Second, consider sums of the form > pp,; f(p). Recall that up(r) is
1 for » prime, 0 otherwise. With this notation, the stated sum can be

rewritten > . up(r)f(r). Clearly, - . up(r) = n(z), so by 1.3.6(i),
> f0) = X urt)f0) = x@f@) - [ w0 ar
peP[z] r<z !
Since 7(t) = 0 for t < 2, we can amend the interval of integration to [2, z].

Example 3 To estimate S(z) =3, ., log(z/r).
By the second of the formulae just given for the case a(r) = 1,

il
S(x) =) (logz —logr) = = dt.
2 og ogr /1 :

To estimate this, write t = [t] + {t}, where 0 < {¢t} < 1. Then

[T,
s@ = [ S d= -1 - @),

where

q(a:)z/fﬂdt,

t
so that

0 < g(z) g/ %dt:logm.
1

Exercises
1 Express Zpep[m](l/p) in terms of 7(x).

2 Let S(z) =", <, a(r)logr. Show that if 0 < A(z) < C for all > 1,
then |S(z)| < Clogz for all z > 1. (Use either discrete or continuous
Abel summation, or both!)
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Suppose that |a(r)| < 1 and |A(n)| < C for all n. Using the appro-
priate integral expression, together with the fact that |A(¢)| < t for
1 <t < C, show that

o0

>

r=1

<logC + 1.

Assume (or prove) that if B(n) — B as n — 0o, then
1
E[B(l) +---+Bn)]—»> B asn— oo.

Now suppose that Y - a(r)/r is convergent. Write a(r)/r = b(r).
Use discrete Abel summation to give an expression for A(n) in terms
of B(n), and deduce that A(n)/n — 0 as n — oo.

Suppose that [A(t)| < C for all ¢, and that f(¢) is differentiable and
decreasing and tends to 0 as t — oo. Prove that, for all z > 1,

> alr)f(r)| <20f(2).

>

Prove that:
(a) if |A(z)| < Cx/(logz)® for all x > 2, then Y .o a(r)/r is
convergent;
(b) if a(r) > 0 for all » and A(z) > Cz/logx for all z > 2, then
o2 a(r)/r is divergent.
Let b(r) = a(r) logr. Show that:
(a) if |A(2)| < Cz for all # > 1, then |B(z)| < Cz(logz + 1) for
allz > 1;
(b) if a(1) =0 and |B(z)| < Czlogz for all z > 2, then |A(z)| <
C(z +1i(z)) for all z > 2.

Prove that, for any real z > 1,

3 .11
r2 —gx 22’
>
Show that for any real , the partial sums  ._, sinrz are bounded

for all n (use an identity for cos(r — })z — cos(r + 1)z). Deduce that
the series 77 | Lsinrz is convergent.
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1.4 Estimation of sums by integrals; Euler’s summation formula
Basic integral estimation

The use of an integral to estimate a discrete sum is a very useful technique,
which we shall apply repeatedly. In its simplest form, the relationship is
described in the following result.

Proposition 1.4.1 Suppose that f is a decreasing function on [m,n], where
m,n are integers. Then

n

f(m+1)+---+f(n)§/ f) dt < f(m)+ -+ f(n—1).

The opposite inequality applies if f is increasing.

Proof Suppose that f(t) is decreasing. For r — 1 <t < r, we have f(r) <
f(#) < f(r —1). So, by integration on this interval of length 1,

o< [ s o,

By adding these inequalities for r = m + 1,...,n, we obtain the statement.

f(t)

m m+l m+2 n

(This statement is well illustrated by the picture. The integral is the area
under the curve, while the two sums are the total area of the small and big
rectangles respectively.) O

For 2 > 1 (not necessarily an integer), write

sw= 3 10, 1) = [ s

1<r<z

Taking m = 1 in 1.4.1, we obtain, in the case when f(t) is decreasing,

f(2)+---+f(n)S/lnf(t)dtSf(1)+---+f(n—1),
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in other words,
S(n) — f(1) <I(n) < S(n—1), (L.3)

or, equivalently,
I(n+1) < S(n) < I(n) + f(1), (14)

with opposite inequalities when f(t) is increasing. This shows how I(n)
can be used to give bounds for S(n) when n is an integer. We shall often
require estimates for S(z) in terms of I(x) when z is not an integer. Slightly
different statements are appropriate for decreasing and increasing functions,
as follows.

Proposition 1.4.2 Suppose that f(t) is non-negative and decreasing for all
t > 1, and define S(x), I(x) as above. Then for all z > 1,

I(@) < S(x) < I@) + (1)

Proof Suppose that n < z < n+1, where n is an integer. Then S(z) = S(n)
and I(n) < I(z) < I(n + 1). The statement now follows from (1.4). O

Example 1 Let S(z) =3, 1. Since

1
/ —dt =logz,
Lt

we have logz < S(z) <logz + 1.

Proposition 1.4.3 Suppose that f(t) is non-negative and increasing for
t > 1. Define S(z), I(z) as above. Then for oll x > 1, we have S(z) =
I{z) + r(z), where |r(z)| < f(=).

Proof We now have S(n) — f(n) < I(n) < S(n) — f(1) (the reverse of
(1.3)). Let n <& <n+ 1. Then

S(z) = 5(n) <I(n) + f(n) < I(z) + f(=).
Since f(t) is increasing and z —n < 1, we have f: f@) dt < f(x), and hence
I(z) <I(n) + f(z) < S(n) — f(1) + f(z) < 5(2) + f(2). O

Note Of course, similar results apply if the sum and integral both start at
0 instead of 1 (in 1.4.2, f(1) is then replaced by f(0)).
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Example 2 Let S(z) =) . logr. Then

r<z
T

I(x) :/ logtdt =zlogz —xz +1,
1

and |S(z) — I(z)| <logz.

Even when we know S(n) explicitly, as we do when f(t) =t¢, 1.4.3 gives a
quick route to the estimation of S(z) for non-integral z.

Returning to the case where f(¢) is decreasing, we derive the “integral
test” for convergence of an infinite series.

Proposition 1.4.4 Let f(t) be decreasing and non-negative for all t > 1.
Then the series > .o, f(r) is convergent if and only if the integral floo f(t)dt
is convergent. If the sum of the series is S and the value of the integral is I,
then I <S<I+ f(1).

Further, if we write

sS@=Xf0, re=[ joa
r>z z
then for integers n,
I'(n+1) <5*(n) < I"(n),
and for general x,

I'(z) — f(z) < 5*(2) < I"(2) + f(2).

Proof Note that convergence of the series (or integral) means that S(n) (or
I(n)) tends to a limit as n — oo. Both S(n) and I(n) increase with n, so
they tend to a limit if and only if they are bounded above. By (1.3),

S(n)— f(1) <I(n) < S(n—1).

If the integral converges to I, then I(n) < I for all n, hence S(n) < I+ f(1).
So S(n) = S, where S < I + f(1). Conversely, if the series converges to S,
then I(n) < S(n) < S for all n, so I(n) = I, where I < S.

By 1.4.1 again, for integers n, p with n < p,

p+1 P
/ f(t)dtéf(n+1)+~~~+f(p)£/ £(t) dt.

n+1

By letting p — oo, we obtain the stated inequalities for S*(n). Now let
n <z <n+1 Then S*(z) = S*(n) > I*(n+1). Now

n+1
I(n+1) = I*(z) - / £(8) dt,





