1

Introduction and data manipulation

1.1. Why ordination?

When we investigate variation of plant or animal communities across a range of different environmental conditions, we usually find not only large differences in species composition of the studied communities, but also a certain consistency or predictability of this variation. For example, if we look at the variation of grassland vegetation in a landscape and describe the plant community composition using vegetation samples, then the individual samples can be usually ordered along one, two or three imaginary axes. The change in the vegetation composition is often small as we move our focus from one sample to those nearby on such a hypothetical axis.

This gradual change in the community composition can often be related to differing, but partially overlapping demands of individual species for environmental factors such as the average soil moisture, its fluctuations throughout the season, the ability of species to compete with other ones for the available nutrients and light, etc. If the axes along which we originally ordered the samples can be identified with a particular environmental factor (such as moisture or richness of soil nutrients), we can call them a soil moisture gradient, a nutrient availability gradient, etc. Occasionally, such gradients can be identified in a real landscape, e.g. as a spatial gradient along a slope from a riverbank, with gradually decreasing soil moisture. But more often we can identify such axes along which the plant or animal communities vary in a more or less smooth, predictable way, yet we cannot find them in nature as a visible spatial gradient and neither can we identify them uniquely with a particular measurable environmental factor. In such cases, we speak about **gradients of species composition change**.

The variation in biotic communities can be summarized using one of a wide range of statistical methods, but if we stress the continuity of change

Figure 1-1. Summarizing grassland vegetation composition with ordination: ordination diagram from correspondence analysis.

in community composition, the so-called **ordination methods** are the tools of trade. They have been used by ecologists since the early 1950s, and during their evolution these methods have radiated into a rich and sometimes confusing mixture of various techniques. Their simplest use can be illustrated by the example introduced above. When we collect recordings (samples) representing the species composition of a selected quadrat in a vegetation stand, we can arrange the samples into a table where individual species are represented by columns and individual samples by rows. When we analyse such data with an ordination method (using the approaches described in this book), we can obtain a fairly representative summary of the grassland vegetation using an ordination diagram, such as the one displayed in Figure 1-1.

The rules for reading such ordination diagrams will be discussed thoroughly later on (see Chapter 10), but even without their knowledge we can read much from the diagram, using the idea of continuous change of composition along the gradients (suggested here by the diagram axes) and the idea that **proximity implies similarity**. The individual samples are represented

1.1. Why ordination? 3

in Figure 1-1 by grey circles. We can expect that two samples that lie near to each other will be much more similar in terms of list of occurring species and even in the relative importance of individual species populations, compared to samples far apart in the diagram.

The triangle symbols represent the individual plant species occurring in the studied type of vegetation (not all species present in the data were included in the diagram). In this example, our knowledge of the ecological properties of the displayed species can aid us in an **ecological interpretation of the gradients** represented by the diagram axes. The species preferring nutrient-rich soils (such as <u>Urtica dioica, Aegopodium podagraria</u>, or <u>Filipendula ulma</u>ria) are located at the right side of the diagram, while the species occurring mostly in soils poor in available nutrients are on the left side (<u>Viola palustris, Carex echinata</u>, or <u>Nardus stricta</u>). The horizontal axis can therefore be informally interpreted as a gradient of nutrient availability, increasing from the left to the right side. Similarly, the species with their points at the bottom of the diagram are from the species in the upper part of the diagram (such as <u>Achillea millefolium, Trisetum flavescens</u>, or <u>Veronica chama</u>edrys). The second axis, therefore, represents a gradient of soil moisture.

As you have probably already guessed, the proximity of species symbols (triangles) with respect to a particular sample symbol (a circle) indicates that these species are likely to occur more often and/or with a higher (relative) abundance than the species with symbols more distant from the sample.

Our example study illustrates the most frequent use of ordination methods in community ecology. We can use such an analysis to summarize community patterns and compare the suggested gradients with our independent knowledge of environmental conditions. But we can also test statistically the predictive power of such knowledge; i.e. address the questions such as 'Does the community composition change with the soil moisture or are the identified patterns just a matter of chance?' These analyses can be done with the help of **constrained ordination methods** and their use will be illustrated later in this book.

However, we do not need to stop with such exploratory or simple confirmatory analyses and this is the focus of the rest of the book. The rich toolbox of various types of regression and analysis of variance, including analysis of repeated measurements on permanent sites, analysis of spatially structured data, various types of hierarchical analysis of variance (ANOVA), etc., allows ecologists to address more complex, and often more realistic questions. Given the fact that the populations of different species occupying the same environment often share similar strategies in relation to the environmental factors, it would be

very profitable if one could ask similar complex questions for the whole biotic communities. In this book, we demonstrate that this can be done and we show the reader how to do it.

1.2. Terminology

The terminology for multivariate statistical methods is quite complicated. There are at least two different sets of terminology. One, more general and abstract, contains purely statistical terms applicable across the whole field of science. In this section we give the terms from this set in italics and mostly in parentheses. The other represents a mixture of terms used in ecological statistics with the most typical examples coming from the field of community ecology. This is the set on which we will focus, using the former just to refer to the more general statistical theory. In this way, we use the same terminology as the CANOCO software documentation.

In all cases, we have a data set with the **primary data**. This data set contains records on a collection of observations – **samples** (*sampling units*).* Each sample comprises values for multiple **species** or, less often, the other kinds of descriptors. The primary data can be represented by a rectangular matrix, where the rows typically represent individual samples and the columns represent individual variables (species, chemical or physical properties of the water or soil, etc.).[†]

Very often our primary data set (containing the *response variables*) is accompanied by another data set containing the *explanatory variables*. If our primary data represent community composition, then the explanatory data set typically contains measurements of the soil or water properties (for the terrestrial or aquatic ecosystems, respectively), a semi-quantitative scoring of human impact, etc. When we use the *explanatory variables* in a model to predict the primary data (like community composition), we might divide them into two different groups. The first group is called, somewhat inappropriately, the **environmental variables** and refers to the variables that are of prime interest (in the role of predictors) in our particular analysis. The other group represents the **covariables** (often referred to as *covariates* in other statistical approaches), which are

^{*} There is an inconsistency in the terminology: in classical statistical terminology, **sample** means a collection of sampling units, usually selected at random from the population. In community ecology, sample is usually used for a description of a sampling unit. This usage will be followed in this text. The general statistical packages use the term **case** with the same meaning.

[†] Note that this arrangement is transposed in comparison with the tables used, for example, in traditional vegetation analyses. The classical vegetation tables have individual taxa represented by rows and the columns represent the individual samples or community types.

Cambridge University Press 052181409X - Multivariate Analysis of Ecological Data using CANOCO Jan Leps and Petr Smilauer Excerpt More information

1.2. Terminology 5

also explanatory variables with an acknowledged (or hypothesized) influence on the *response variables*. We want to account for (subtract, partial-out) such an influence **before** focusing on the influence of the variables of prime interest (i.e. the effect of environmental variables).

As an example, let us imagine a situation where we study the effects of soil properties and type of management (hay cutting or pasturing) on the species composition of meadows in a particular area. In one analysis, we might be interested in the effect of soil properties, paying no attention to the management regime. In this analysis, we use the grassland composition as the species data (i.e. primary data set, with individual plant species as individual response variables) and the measured soil properties as the environmental variables (explanatory variables). Based on the results, we can make conclusions about the preferences of individual plant species' populations for particular environmental gradients, which are described (more or less appropriately) by the measured soil properties. Similarly, we can ask how the management type influences plant composition. In this case, the variables describing the management regime act as environmental variables. Naturally, we might expect that the management also influences the soil properties and this is probably one of the ways in which management acts upon the community composition. Based on such expectation, we may ask about the influence of the management regime beyond that mediated through the changes of soil properties. To address such a question, we use the variables describing the management regime as the environmental variables and the measured soil properties as the covariables.*

One of the keys to understanding the terminology used by the CANOCO program is to realize that the data referred to by CANOCO as the **species data** might, in fact, be any kind of data with variables whose values we want to **predict**. For example, if we would like to predict the quantities of various metal ions in river water based on the landscape composition in the catchment area, then the individual ions would represent the individual 'species' in CANOCO terminology. If the **species data** really represent the species composition of a community, we describe the composition using various abundance measures, including counts, frequency estimates, and biomass estimates. Alternatively, we might have information only on the presence or absence of species in individual samples. The quantitative and presence-absence variables may also occur as *explanatory variables*. These various kinds of data values are treated in more detail later in this chapter.

^{*} This particular example is discussed in the Canoco for Windows manual (Ter Braak & Šmilauer, 2002), section 8.3.1.

Response variable(s)	Predictor(s)	
	Absent	Present
is one are many	 distribution summary indirect gradient analysis 	 regression models sensu lato direct gradient analysis
	 cluster analysis 	• discriminant analysis (CVA)

Table 1-1. The types of the statistical models

CVA, canonical variate analysis; DCA, detrended correspondence analysis; NMDS, non-metric multidimensional scaling; PCA, principal components analysis.

1.3. Types of analyses

If we try to describe the behaviour of one or more response variables, the appropriate statistical modelling methodology depends on whether we study each of the response variables separately (or many variables at the same time), and whether we have any explanatory variables (predictors) available when we build the model.

Table 1-1 summarizes the most important statistical methodologies used in these different situations.

If we look at a single response variable and there are no predictors available, then we can only summarize the distributional properties of that variable (e.g. by a histogram, median, standard deviation, inter-quartile range, etc.). In the case of multivariate data, we might use either the ordination approach represented by the methods of **indirect gradient analysis** (most prominent are the principal components analysis – PCA, correspondence analysis – CA, detrended correspondence analysis – DCA, and non-metric multidimensional scaling – NMDS) or we can try to (hierarchically) divide our set of samples into compact distinct groups (methods of cluster analysis, see Chapter 7).

If we have one or more predictors available and we describe values of a single variable, then we use **regression models** in the broad sense, i.e. including both traditional regression methods and methods of analysis of variance (ANOVA) and analysis of covariance (ANOCOV). This group of methods is unified under the so-called **general linear model** and was recently extended and enhanced by the methodology of **generalized linear models (GLM)** and **generalized additive models (GAM)**. Further information on these models is provided in Chapter 8.

If we have predictors for a set of response variables, we can summarize relations between multiple response variables (typically biological species) and one or several predictors using the methods of **direct gradient analysis**

1.5. Explanatory variables 7

(most prominent are redundancy analysis (RDA) and canonical correspondence analysis (CCA), but there are several other methods in this category).

1.4. Response variables

The data table with response variables^{*} is always part of multivariate analyses. If explanatory variables (see Section 1.5), which may explain the values of the response variables, were not measured, the statistical methods can try to construct hypothetical explanatory variables (groups or gradients).

The response variables (often called species data, based on the typical context of biological community data) can often be measured in a precise (quantitative) way. Examples are the dry weight of the above-ground biomass of plant species, counts of specimens of individual insect species falling into soil traps, or the percentage cover of individual vegetation types in a particular landscape. We can compare different values not only by using the 'greater-than', 'lessthan' or 'equal to' expressions, but also using their ratios ('this value is two times higher than the other one').

In other cases, we estimate the values for the primary data on a simple, semiquantitative scale. Good examples are the various semi-quantitative scales used in recording the composition of plant communities (e.g. original Braun-Blanquet scale or its various modifications). The simplest possible form of data are binary (also called presence-absence or 0/1) data. These data essentially correspond to the list of species present in each of the samples.

If our response variables represent the properties of the chemical or physical environment (e.g. quantified concentrations of ions or more complicated compounds in the water, soil acidity, water temperature, etc.), we usually get quantitative values for them, but with an additional constraint: these characteristics do not share the same units of measurement. This fact precludes the use of some of the ordination methods[†] and dictates the way the variables are standardized if used in the other ordinations (see Section 4.4).

1.5. Explanatory variables

The explanatory variables (also called predictors or independent variables) represent the knowledge that we have about our samples and that we can use to predict the values of the response variables (e.g. abundance of various

^{*} also called dependent variables.

[†] namely correspondence analysis (CA), detrended correspondence analysis (DCA), or canonical correspondence analysis (CCA).

species) in a particular situation. For example, we might try to predict the composition of a plant community based on the soil properties and the type of land management. Note that usually the primary task is not the prediction itself. We try to use 'prediction rules' (derived, most often, from the ordination diagrams) to learn more about the studied organisms or systems.

Predictors can be quantitative variables (concentration of nitrate ions in soil), semi-quantitative estimates (degree of human influence estimated on a 0-3 scale) or factors (nominal or categorical – also categorial – variables). The simplest predictor form is a binary variable, where the presence or absence of a certain feature or event (e.g. vegetation was mown, the sample is located in study area X, etc.) is indicated, respectively, by a 1 or 0 value.

The factors are the natural way of expressing the classification of our samples or subjects: For example, classes of management type for meadows, type of stream for a study of pollution impact on rivers, or an indicator of the presence/absence of a settlement near the sample in question. When using factors in the CANOCO program, we must re-code them into so-called **dummy variables**, sometimes also called **indicator variables** (and, also, binary variables). There is one separate dummy variable for each different value (level) of the factor. If a sample (observation) has a particular value of the factor, then the corresponding dummy variable has the value 1.0 for this sample, and the other dummy variables have a value of 0.0 for the same sample. For example, we might record for each of our samples of grassland vegetation whether it is a pasture, meadow, or abandoned grassland. We need three dummy variables for recording such a factor and their respective values for a meadow are 0.0, 1.0, and 0.0.*

Additionally, this explicit decomposition of factors into dummy variables allows us to create so-called **fuzzy coding**. Using our previous example, we might include in our data set a site that had been used as a hay-cut meadow until the previous year, but was used as pasture in the current year. We can reasonably expect that both types of management influenced the present composition of the plant community. Therefore, we would give values larger than 0.0 and less than 1.0 for both the first and second dummy variables. The important restriction here is that the values must sum to 1.0 (similar to the dummy variables coding normal factors). Unless we can quantify the relative importance of the two management types acting on this site, our best guess is to use values 0.5, 0.5, and 0.0.

^{*} In fact, we need only two (generally *K* – 1) dummy variables to code uniquely a factor with three (generally *K*) levels. But the one redundant dummy variable is usually kept in the data, which is advantageous when visualizing the results in ordination diagrams.

1.6. Handling missing values in data 9

If we build a model where we try to predict values of the response variables ('species data') using the explanatory variables ('environmental data'), we often encounter a situation where some of the explanatory variables affect the species data, yet these variables are treated differently: we do not want to interpret their effect, but only want to take this effect into account when judging the effects of the other variables. We call these variables **covariables** (or, alternatively, **covariates**). A typical example is an experimental design where samples are grouped into logical or physical blocks. The values of response variables (e.g. species composition) for a group of samples might be similar due to their spatial proximity, so we need to model this influence and account for it in our data. The differences in response variables that are due to the membership of samples in different blocks must be removed (i.e. 'partialled-out') from the model.

But, in fact, almost any explanatory variable can take the role of a covariable. For example, in a project where the effect of management type on butterfly community composition is studied, we might have the localities at different altitudes. The altitude might have an important influence on the butterfly communities, but in this situation we are primarily interested in the management effects. If we remove the effect of the altitude, we might get a clearer picture of the influence that the management regime has on the butterfly populations.

1.6. Handling missing values in data

Whatever precautions we take, we are often not able to collect all the data values we need: a soil sample sent to a regional lab gets lost, we forget to fill in a particular slot in our data collection sheet, etc.

Most often, we cannot go back and fill in the empty slots, usually because the subjects we study change in time. We can attempt to leave those slots empty, but this is often not the best decision. For example, when recording sparse community data (we might have a pool of, say, 300 species, but the average number of species per sample is much lower), we interpret the empty cells in a spreadsheet as absences, i.e. zero values. But the absence of a species is very different from the situation where we simply forgot to look for this species! Some statistical programs provide a notion of missing values (it might be represented as a word 'NA', for example), but this is only a notational convenience. The actual statistical method must deal further with the fact that there are missing values in the data. Here are few options we might consider:

1. We can remove the samples in which the missing values occur. This works well if the missing values are concentrated in a few samples. If we have,

for example, a data set with 30 variables and 500 samples and there are 20 missing values from only three samples, it might be wise to remove these three samples from our data before the analysis. This strategy is often used by general statistical packages and it is usually called 'case-wise deletion'.

- 2. On the other hand, if the missing values are concentrated in a few variables that are not deemed critical, we might remove the variables from our data set. Such a situation often occurs when we are dealing with data representing chemical analyses. If 'every thinkable' cation concentration was measured, there is usually a strong correlation among them. For example, if we know the values of cadmium concentration in air deposits, we can usually predict the concentration of mercury with reasonable precision (although this depends on the type of pollution source). Strong correlation between these two characteristics implies that we can make good predictions with only one of these variables. So, if we have a lot of missing values in cadmium concentrations, it might be best to drop this variable from our data.
- 3. The two methods of handling missing values described above might seem rather crude, because we lose so much of our data that we often collected at considerable expense. Indeed, there are various **imputation** methods. The simplest one is to take the average value of the variable (calculated, of course, only from the samples where the value is not missing) and replace the missing values with it. Another, more sophisticated one, is to build a (multiple) regression model, using the samples where the value of a variable for samples where the values of the other variables (predictors in the regression model) are not missing. This way, we might fill in all the holes in our data table, without deleting any samples or variables. Yet, we are deceiving ourselves we only duplicate the information we have. The degrees of freedom we lost initially cannot be recovered.

If we then use such supplemented data in a statistical test, this test makes an erroneous assumption about the number of degrees of freedom (number of independent observations in our data) that support the conclusion made. Therefore, the significance level estimates are not quite correct (they are 'overoptimistic'). We can alleviate this problem partially by decreasing the statistical weight for the samples where missing values were estimated using one or another method. The calculation can be quite simple: in a data set with 20 variables, a sample with missing values replaced for five variables gets a weight 0.75 (=1.00 - 5/20). Nevertheless, this solution is not perfect. If we work only with a subset of the variables (for example, during a stepwise