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1 Time series analysis and simultaneous
equation econometric models (1974)

Arnold Zellner and Franz C. Palm

1 Introduction

In this chapter we take up the analysis of dynamic simultaneous equation
models (SEMs) within the context of general linear multiple time series
processes such as studied by Quenouille (1957). As noted by Quenouille,
if a set of variables is generated by a multiple time series process, it
is often possible to solve for the processes generating individual vari-
ables, namely the “final equations” of Tinbergen (1940), and these are
in the autoregressive-moving average (ARMA) form. ARMA processes
have been studied intensively by Box and Jenkins (1970). Further, if a
general multiple time series process is appropriately specialized, we obtain
a usual dynamic SEM in structural form. By algebraic manipulations, the
associated reduced form and transfer function equation systems can be
derived. In what follows, these equation systems are presented and their
properties and uses are indicated.

It will be shown that assumptions about variables being exogenous,
about lags in structural equations of SEMs, and about serial correlation
properties of structural disturbance terms have strong implications for
the properties of transfer functions and final equations that can be tested.
Further, we show how large sample posterior odds and likelihood ratios
can be used to appraise alternative hypotheses. In agreement with Pierce
and Mason (1971), we believe that testing the implications of structural
assumptions for transfer functions and, we add, final equations is an
important element in the process of iterating in on a model that is rea-
sonably in accord with the information in a sample of data. To illustrate
these general points and to provide applications of the above methods,
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4 Arnold Zellner and Franz C. Palm

a dynamic version of a SEM due to Haavelmo (1947) is analyzed using
US post-Second World War quarterly data.

The plan of the chapter is as follows. In section 2, a general multiple
time series model is specified, its final equations are obtained, and their
properties set forth. Then the implications of assumptions needed to
specialize the multiple time series model to become a dynamic SEM
for transfer functions and final equations are presented. In section 3,
the algebraic analysis is applied to a small dynamic SEM. Quarterly US
data are employed in sections 4 and 5 to analyze the final and transfer
equations of the dynamic SEM. Section 6 provides a discussion of the
empirical results, their implications for the specification and estimation
of the structural equations of the model, and some concluding remarks.

2 General formulation and analysis of a system of
dynamic equations

As indicated by Quenouille (1957), a linear multiple time series process
can be represented as follows:1

H(L) zt = F(L) et , t = 1, 2, . . . , T,
p×p p×1 p×p p×1 (2.1)

where z′
t = (z1t , z2t , . . . , zpt) is a vector of random variables, e′

t =
(e1t , e2t , . . . , e pt) is a vector of random errors, and H(L) and F(L) are
each p × p matrices, assumed of full rank, whose elements are finite poly-
nomials in the lag operator L, defined as Lnzt = zt−n. Typical elements
of H(L) and F(L) are given by hi j = ∑ri j

l=0 hi j l Ll and fi j = ∑qi j

l=0 fi j l Ll .
Further, we assume that the error process has a zero mean, an identity
covariance matrix and no serial correlation, that is:

Eet = 0, (2.2)

for all t and t′,

Eete′
t ′ = δtt ′ I, (2.3)

where I is a unit matrix and δtt ′ is the Kronecker delta. The assumption
in (2.3) does not involve a loss of generality since correlation of errors
can be introduced through the matrix F(L).

The model in (2.1) is a multivariate autoregressive-moving average
(ARMA) process. If H(L) = H0, a matrix of degree zero in L, (2.1) is a

1 In (2.1), zt is assumed to be mean-corrected, that is zt is a deviation from a population
mean vector. Below, we relax this assumption.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521814073 - The Structural Econometric Time Series Analysis Approach
Edited by Arnold Zellner and Franz C. Palm
Excerpt
More information

http://www.cambridge.org/0521814073
http://www.cambridge.org
http://www.cambridge.org


Time series analysis 5

moving average (MA) process; if F(L) = F0, a matrix of degree zero in L,
it is an autoregressive (AR) process. In general, (2.1) can be expressed as:

r∑
l=0

Hl Ll zt =
q∑

l=0

Fl Ll et , (2.4)

where Hl and Fl are matrices with all elements not depending on L,
r = maxi,jri j and q = maxi,jqi j .

Since H(L) in (2.1) is assumed to have full rank, (2.1) can be solved
for zt as follows:

zt = H−1(L)F(L)et , (2.5a)

or

zt = [H∗(L)/|H(L)|]F(L)et , (2.5b)

where H∗(L) is the adjoint matrix associated with H(L) and |H(L)| is the
determinant which is a scalar, finite polynomial in L. If the process is to
be invertible, the roots of | H(L) |= 0 have to lie outside the unit circle.
Then (2.5) expresses zt as an infinite MA process that can be equivalently
expressed as the following system of finite order ARMA equations:

|H(L)|zt = H∗(L)F(L)et . (2.6)

The ith equation of (2.6) is given by:

|H(L)|zit = α′
i et , i = 1, 2, . . . , p, (2.7)

where α′
i is the ith row of H∗(L)F(L).

The following points regarding the set of final equations in (2.7) are of
interest:
(i) Each equation is in ARMA form, as pointed out by Quenouille

(1957, p. 20). Thus the ARMA processes for individual variables
are compatible with some, perhaps unknown, joint process for a set
of random variables and are thus not necessarily “naive,” “ad hoc”
alternative models.

(ii) The order and parameters of the autoregressive part of each equa-
tion, |H(L)| zit , i = 1, 2, . . . , p, will usually be the same.2

(iii) Statistical methods can be employed to investigate the form and
properties of the ARMA equations in (2.7). Given that their forms,
that is the degree of |H(L)| and the order of the moving average

2 In some cases in which |H(L)| contains factors in common with those appearing in all
elements of the vectors α′

i , e.g. when H is triangular, diagonal or block diagonal, some
cancelling will take place. In such cases the statement in (ii) has to be qualified.
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6 Arnold Zellner and Franz C. Palm

errors, have been determined, they can be estimated and used for
prediction.

(iv) The equations of (2.7) are in the form of a restricted “seemingly
unrelated” autoregressive model with correlated moving average
error processes.3

The general multiple time series model in (2.1) can be specialized
to a usual dynamic simultaneous equation model (SEM) if some prior
information about H and F is available. That is, prior information may
indicate that it is appropriate to regard some of the variables in zt as
being endogenous and the remaining variables as being exogenous, that
is, generated by an independent process. To represent this situation, we
partition (2.1) as follows:(

H11 H12

H21 H22

) (
yt
xt

)
=

(
F11 F12

F21 F22

) (
e1t

e2t

)
. (2.8)

If the p1 × 1 vector yt is endogenous and the p2 × 1 vector xt is exogenous,
this implies the following restrictions on the submatrices of H and F:

H21 ≡ 0, F21 ≡ 0, and F12 ≡ 0. (2.9)

With the assumptions in (2.9), the elements of e1t do not affect the ele-
ments of xt and the elements of e2t affect the elements of yt only through
the elements of xt. Under the hypotheses in (2.9), (2.8) is in the form
of a dynamic SEM with endogenous variable vector yt and exogenous
variable vector xt generated by an ARMA process. The usual structural
equations, from (2.8) subject to (2.9), are:4

H11(L)
p1×p1

yt
p1×1

+ H12(L)
p1×p2

xt
p2×1

= F11(L)
p1×p1

e1t
p1×1

, (2.10)

while the process generating the exogenous variables is:

H22(L)
p2×p2

xt
p2×1

= F22(L)
p2×p2

e2t
p2×1

, (2.11)

with p1 + p2 = p.

Analogous to (2.4), the system (2.10) can be expressed as:
r∑

l=0

H11l Ll yt +
r∑

l=0

H12l Ll xt =
q∑

l=0

F11l Ll e1t , (2.12)

where H11l, H12l and F11l are matrices the elements of which are coeffi-
cients of Ll. Under the assumption that H11 0 is of full rank, the reduced

3 See Nelson (1970) and Akaike (1973) for estimation results for systems similar to (2.7).
4 Hannan (1969, 1971) has analysed the identification problem for systems in the form of

(2.10).
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Time series analysis 7

form equations, which express the current values of endogenous variables
as functions of the lagged endogenous and current and lagged exogenous
variables, are:

yt = −
r∑

l=1

H−1
110 H11l Ll yt −

r∑
l=0

H−1
110 H12l Ll xt

+
q∑

l=0

H−1
110 F11l Ll e1t . (2.13)

The reduced form system in (2.13) is a system of p1 stochastic difference
equations of maximal order r.

The “final form” of (2.13), Theil and Boot (1962), or “set of fun-
damental dynamic equations” associated with (2.13), Kmenta (1971),
which expresses the current values of endogenous variables as functions
of only the exogenous variables, is given by:

yt = −H−1
11 (L)H12(L)xt + H−1

11 (L)F11(L)e1t . (2.14)

If the process is invertible, i.e. if the roots of |H11(L)| = 0 lie outside
the unit circle, (2.14) is an infinite MA process in xt and e1t. Note that
(2.14) is a set of “rational distributed lag” equations, Jorgenson (1966),
or a system of “transfer function” equations, Box and Jenkins (1970).
Also, the system in (2.14) can be brought into the following form:

|H11(L)|yt = −H∗
11(L)H12(L)xt + H∗

11(L)F11(L)e1t , (2.15)

where H∗
11(L) is the adjoint matrix associated with H11(L) and |H11(L)|

is the determinant of H11(L). The equation system in (2.15), where each
endogenous variable depends only on its own lagged values and on the
exogenous variables, with or without lags, has been called the “sepa-
rated form,” Marschak (1950), “autoregressive final form,” Dhrymes
(1970), “transfer function form,” Box and Jenkins (1970), or “funda-
mental dynamic equations,” Pierce and Mason (1971).5 As in (2.7),
the p1 endogenous variables in yt have autoregressive parts with iden-
tical order and parameters, a point emphasized by Pierce and Mason
(1971).

Having presented several equation systems above, it is useful to con-
sider their possible uses and some requirements that must be met for
these uses. As noted above, the final equations in (2.7) can be used to
predict the future values of some or all variables in zt, given that the forms
of the ARMA processes for these variables have been determined and that

5 If some of the variables in xt are non-stochastic, say time trends, they will appear the final
equations of the system.
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8 Arnold Zellner and Franz C. Palm

parameters have been estimated. However, these final equations cannot
be used for control and structural analysis. On the other hand, the reduced
form equations (2.13) and transfer equations (2.15) can be employed for
both prediction and control but not generally for structural analysis except
when structural equations are in reduced form (H110 ≡ I in (2.12)) or in
final form [H11 ≡ I in (2.10)]. Note that use of reduced form and transfer
function equations implies that we have enough prior information to dis-
tinguish endogenous and exogenous variables. Further, if data on some
of the endogenous variables are unavailable, it may be impossible to use
the reduced form equations whereas it will be possible to use the transfer
equations relating to those endogenous variables for which data are avail-
able. When the structural equation system in (2.10) is available, it can be
employed for structural analysis and the associated “restricted” reduced
form or transfer equations can be employed for prediction and control.
Use of the structural system (2.10) implies not only that endogenous and
exogenous variables have been distinguished, but also that prior informa-
tion is available to identify structural parameters and that the dynamic
properties of the structural equations have been determined. Also, struc-
tural analysis of the complete system in (2.10) will usually require that
data be available on all variables.6 For the reader’s convenience, some of
these considerations are summarized in table 1.1.

Aside from the differing data requirements for use of the various equa-
tion systems considered in table 1.1, it should be appreciated that before
each of the equation systems can be employed, the form of its equations
must be ascertained. For example, in the case of the structural equation
system (2.10), not only must endogenous and exogenous variables be
distinguished, but also lag distributions, serial correlation properties of
error terms, and identifying restrictions must be specified. Since these are
often difficult requirements, it may be that some of the simpler equation
systems will often be used although their uses are more limited than those
of structural equation systems. Furthermore, even when the objective of
an analysis is to obtain a structural equation system, the other equation
systems, particularly the final equations and transfer equations, will be
found useful. That is, structural assumptions regarding lag structures,
etc. have implications for the forms and properties of final and trans-
fer equations that can be checked with data. Such checks on structural
assumptions can reveal weaknesses in them and possibly suggest alterna-
tive structural assumptions more in accord with the information in the
data. In the following sections we illustrate these points in the analysis of
a small dynamic structural equation system.

6 This requirement will not be as stringent for partial analyses and for fully recursive models.
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Time series analysis 9

Table 1.1 Uses and requirements for various equation systems

Uses of equation systems

Structural Requirements for use of
Equation system Prediction Control analysis equation systems

1. Final equationsa (2.7) yes no no Forms of ARMA processes
and parameter estimates

2. Reduced form
equations (2.13)

yes yes no Endogenous–exogenous
classification of variables,
forms of equations, and
parameter estimates

3. Transfer equationsb

(2.15)
yes yes no Endogenous–exogenous

classification of variables,
forms of equations, and
parameter estimates

4. Final form equationsc

(2.14)
yes yes no Endogenous–exogenous

classification of variables,
forms of equations, and
parameter estimates

5. Structural equations
(2.10)

yes yes yes Endogenous–exogenous
variable classification,
identifying information,d

forms of equations, and
parameter estimates

Notes:
a This is Tinbergen’s (1940) term.
b These equations are also referred to as “separated form” or “autoregressive final form”
equations.
c As noted in the text, these equations are also referred to as “transfer function,” “funda-
mental dynamic,” and “rational distributed lag” equations.
d That is, information in the form of restrictions to identify structural parameters.

3 Algebraic analysis of a dynamic version of
Haavelmo’s model

Haavelmo (1947) formulated and analyzed the following static model
with annual data for the United States, 1929–41:

ct = αyt + β + ut , (3.1a)

rt = µ(ct + xt) + v + wt (3.1b)

yt = ct + xt − rt (3.1c)

where ct, yt and rt are endogenous variables, xt is exogenous, ut and wt

are disturbance terms, and α, β, µ and v are scalar parameters. The
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10 Arnold Zellner and Franz C. Palm

definitions of the variables, all on a price-deflated, per capita basis, are:
ct = personal consumption expenditures,
yt = personal disposable income,
rt = gross business saving, and
xt = gross investment.7

Equation (3.1a) is a consumption relation, (3.1b) a gross business sav-
ing equation, and (3.1c) an accounting identity.

In Chetty’s (1966, 1968) analyzes of the system (3.1) employing
Haavelmo’s annual data, he found the disturbance terms highly auto-
correlated, perhaps indicating that the static nature of the model is not
appropriate. In view of this possibility, (3.1) is made dynamic in the fol-
lowing way:

ct = α(L)yt + β + ut , (3.2a)

rt = µ(L)(ct + xt) + v + wt (3.2b)

yt = ct + xt − rt (3.2c)

In (3.2a), α(L) is a polynomial lag operator that serves to make ct a
function of current and lagged values of income. Similarly, µ(L) in (3.2b)
is a polynomial lag operator that makes rt depend on current and lagged
values of ct + xt, a variable that Haavelmo refers to as “gross disposable
income.” On substituting for rt in (3.2b) from (3.2c), the equations for
ct and yt are:

ct = α(L)yt + β + ut , (3.3a)

yt = [1 − µ(L)](ct + xt) − v − wt . (3.3b)

With respect to the disturbance terms in (3.3), we assume:(
ut

−wt

)
=

(
f11(L) f12(L)
f21(L) f22(L)

) (
e1t

e2t

)
, (3.4)

where the fi j (L) are polynomials in L, e1t and e2t have zero means, unit
variances, and are contemporaneously and serially uncorrelated.

Letting z′
t = (ct , yt , xt), the general multiple time series model for zt,

in the matrix form (2.1), is:

H(L)
3×3

zt
3×1

= θ
3×1

+ F(L)
3×3

et
3×1

, (3.5)

7 In Haavelmo’s paper, gross investment, xt, is defined equal to “government expenditures
+ transfers − all taxes + gross private capital formation,” while gross business saving,
rt, is defined equal to “depreciation and depletion charges + capital outlay charged to
current expense + income credited to other business reserves − revaluation of business
inventories + corporate savings”.
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Time series analysis 11

where e′
t = (e1t , e2t , e3t) satisfies (2.2)–(2.3) and θ′ = (θ1, θ2, θ3) is a vec-

tor of constants. In explicit form, (3.5) is:

 h11(L) h12(L) h13(L)

h21(L) h22(L) h23(L)
h31(L) h32(L) h33(L)





 ct

yt

xt




=

 θ1

θ2

θ3


 +


 f11(L) f12(L) f13(L)

f21(L) f22(L) f23(L)
f31(L) f32(L) f33(L)





 e1t

e2t

e3t


 . (3.6)

To specialize (3.6) to represent the dynamic version of Haavelmo’s
model in (3.3) with xt exogenous, we must have θ1 = β, θ2 = v,

h11(L) ≡ 1 h12(L) ≡ −α(L) h13(L) ≡ 0
h21(L) ≡ −[1 − µ(L)] h22(L) ≡ 1 h23(L) ≡ −[1 − µ(L)]
h31(L) ≡ 0 h32(L) ≡ 0 h33(L)

(3.7a)

and

f13(L) ≡ f23(L) ≡ f31(L) ≡ f32(L) ≡ 0. (3.7b)

Utilizing the conditions in (3.7), (3.6) becomes:

 1 h12(L) 0

h21(L) 1 h23(L)
0 0 h33(L)





 ct

yt

xt




=

 θ1

θ2

θ3


 +


 f11(L) f12(L) 0

f21(L) f22(L) 0
0 0 f33(L)





 e1t

e2t

e3t


 . (3.8)

Note that the process on the exogenous variable is h33(L)xt = f 33(L)e3t +
θ3 and the fact that xt is assumed exogenous requires that h31(L) ≡
h32(L) ≡ 0 and that F(L) be block diagonal as shown in (3.8).

In what follows, we shall denote the degree of hi j (L) by ri j and the
degree of fi j (L) by qi j .

From (3.8), the final equations for ct and yt are given by:

(1 − h12h21)h33ct = θ ′
1 + ( f11 − f21h12)h33e1t

+ ( f12 − f22h12)h33e2t + f33h12h23e3t (3.9)

and

(1 − h12h21)h33 yt = θ ′
2 + ( f21 − f11h21)h33e1t

+ ( f22 − f12h21)h33e2t − f33h23e3t , (3.10)
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