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1 Single period models

1.1

Derivatives

Summary

In this chapter we introduce some basic definitions from finance and investigate the
problem of pricing financial instruments in the context of a very crude model. We
suppose the market to be observed at just two times: zero, when we enter into a
financial contract; and, the time at which the contract expires. We further suppose
that the market can only be in one of a finite number of states atTinAdthough
simplistic, this model reveals the importance of the central paradigm of modern
finance: the idea of a perfect hedge. It is also adequate for a preliminary discussion
of the notion of ‘complete market’ and its importance if we are to find a ‘fair’ price
for our financial contract.

The proofs in 81.5 can safely be omitted, although we shall from time to time
refer back to the statements of the results.

Some definitions from finance

Financial market instruments can be divided into two types. There atmtterlying
stocks — shares, bonds, commaodities, foreign currencies; andéngiativesclaims
that promise some payment or delivery in the future contingent on an underlying
stock’s behaviour. Derivatives can reduce risk — by enabling a player to fix a price
for a future transaction now — or they can magnify it. A costless contract agreeing to
pay off the difference between a stock and some agreed future price lets both sides
ride the risk inherent in owning a stock, without needing the capital to buy it outright.
The connection between the two types of instrument is sufficiently complex and
uncertain that both trade fiercely in the same market. The apparently random nature
of the underlying stocks filters through to the derivatives — they appear random
too.

Our central purpose is to determine how much one should be willing to pay for
a derivative security. But first we need to learn a little more of the language of
finance.
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Definition 1.1.1 A forward contracts an agreement to buy (or sell) an asset on a
specified future date, T, for a specified price, K. The buyer is said to holdnige
position, the seller thehortposition.

Forwards are not generally traded on exchanges. It costs nothing to enter into a
forward contract. The ‘pricing problem’ for a forward is to determine what value
of K should be written into the contract. fétures contracts the same as a forward
except that futuresire normally traded on exchanges and the exchange specifies
certain standard features of the contract and a particular form of settlement.
Forwards provide the simplest examples of derivative securities and the math-
ematics of the corresponding pricing problem will also be simple. A much richer
theory surrounds the pricing options An option gives the holder théght, but not
the obligation to do something. Options come in many different guises. Black and
Scholes gained fame for pricing a European call option.

Definition 1.1.2 A European call optiomives the holder the right, but not the
obligation, to buy an asset at a specified time, T, for a specified price, K.

A European put optiogives the holder the right teell an asset for a specified
price, K, attime T.

In generakall refers to buying angutto selling. The ternEuropearnis reserved for
options whose value to the holder at the tifiewhen the contract expires depends
on the state of the market only at tinfe There are other options, for example
American options or Asian options, whose payoff is contingent on the behaviour of
the underlying over the whole time interval [D], but the technology of this chapter
will only allow meaningful discussion of European options.

Definition 1.1.3 The time, T, at which the derivative contract expires is called the
exercise dater thematurity. The price K is called thetrike price

So what is the pricing problem for a European call option? Suppose that a company
has to deal habitually in an intrinsically risky asset such as oil. They may for example
know that in three months time they will need a thousand barrels of crude oil. Oil
prices can fluctuate wildly, but by purchasing European call optiith, strike K

say, the company knows tleaximumamount of money that it will need (in three
months time) in order to buy a thousand barrels. One can think of the option as
insurance against increasing oil prices. The pricing problem is now to determine,
for given T and K, how much the company should be willing to pay for such
insurance.

For this example there is an extra complication: it costs money to store oil. To
simplify our task we are first going to price derivatives based on assets that can
be held without additional cost, typically company shares. Equally we suppose that
there is no additional benefit to holding the shares, that is no dividends are paid.
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1.1 SOME DEFINITIONS FROM FINANCE

Payoff

@) (b) (©
Payoff at maturity of (a) a forward purchase, (b) a European call and (c) a European put with
strike K as a function of Sy.

Assumption Unless otherwise stated, the underlying asset can be held without
additional cost or benefit.

This assumption will be relaxed in Chapter 5.

Suppose then that our company enters into a contract that gives them the right, but
not the obligation, to buy one unit of stock for prigein three months time. How
much should they pay for this contract?

As a first step, we need to know what the contract will be worth at the expiry date.
If at the time when the option expires (three months hence) the actual price of the
underlying stock isSt andSy > K then the option will be exercised. The option is
then said to b& the moneyan asset wortlsr can be purchased for jukt. The value

to the company of the option is thé8; — K). If, on the other handsr < K, then it

will be cheaper to buy the underlying stock on the open market and so the option will
not be exercised. (It is this freedonot to exercise that distinguishes options from
futures.) The option is then worthless and is said tobieof the money(If S = K

the option is said to bat the money Thepayoffof the option at timeT is thus

(Sr — K)4 £ max{(Sr — K), 0}.

Figure 1.1 shows the payoff at maturity of three derivative securities: a forward
purchase, a European call and a European put, each as a function of stock price at
maturity. Before embarking on the valuatiahtime zeroof derivative contracts, we
allow ourselves a short aside.

We have presented the European call option as a means of reducing risk. Of course
it can also be used by a speculator as a bet on an increase in the stock price. In
fact by holdingpackagesthat is combinations of the ‘vanilla’ options that we have
described so far, we can take rather complicated bets. We present just one example;
more can be found in Exercise 1.



1.2

Expectation
pricing

The risk-free
rate

SINGLE PERIOD MODELS

Example 1.1.4 (A straddle) Suppose that a speculator is expecting a large move
in a stock price, but does not know in which direction that move will be. Then a
possible combination is atraddle This involves holding a European call and a
European put with the same strike price and maturity.

Explanation: The payoff of this straddle i§Sr — K), (from the call) plus(K —

Sr)+ (from the put), that is|Sr — K. Although the payoff of this combination is
always positive, if, at the expiry time, the stock price is too close to the strike price
then the payoff will not be sufficient to offset the cost of purchasing the options and
the investor makes a loss. On the other hand, large movements in price can lead to
substantial profits. |

Pricing a forward

In order to solve our pricing problems, we are going to have to make some
assumptions about the way in which markets operate. To formulate these we begin
by discussing forward contracts in more detail.

Recall that a forward contract is an agreement to buy (or sell) an asset on a
specified future date for a specified price. Suppose then that | tgleey an asset
for price K at timeT. The payoff at timeT is justSy — K, whereSy is the actual
asset price at tim&. The payoff could be positive or it could be negative and, since
the cost of entering into a forward contract is zero, this is also my total gain (or loss)
from the contract. Our problem is to determine the fair valui of

At the time when the contract is written, we don’t kn@&y, we can only guess at

it, or, more formally, assign a probability distribution to it. A widely used model
(which underlies the Black—Scholes analysis of Chapter 5) is that stock prices are
lognormally distributedThat is, there are constantando such that théogarithm

of St/ (the stock price at tim& divided by that at time zero, usually called the
return) is normally distributed with mean and variance 2. In symbols:

P [% € [a, b]] =P [Iog (%) € [loga, Iogb]}

_/Iogb 1 exp(—(x_v)2>dx
B loga ~2mo 202 .

Notice that stock prices, and theref@arandb, should be positive, so that the integral
on the right hand side is well defined.

Our first guess might be th&{ Sr] should represent a fair price to write into our
contract. However, it would be a rare coincidence for this to be the market price. In
fact we'll show that the cost of borrowing is the key to our pricing problem.

We need a model for théme value of moneya dollar now is worth more than a
dollar promised at some later time. We assume a market for these future promises
(thebondmarket) in which prices are derivable from some interest rate. Specifically:
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1.2 PRICING A FORWARD

Time value of money We assume that for any tinleless than some horizan
the value now of a dollar promised tise™'T for some constant > 0. The
rater is then thecontinuously compoundexterest rate for this period.

Such a market, derived from say US Government bonds, carries no risk of default —
the promise of a future dollar will always be honoured. To emphasise this we will
often refer tar as therisk-free interest rateln this model, by buying or selling cash
bonds, investors can borrow money for the same risk-free rate of interest as they can
lend money.

Interest rate markets are not this simple in practice, but that is an issue that we
shall defer.

We now show that it is thesk-free interest rateor equivalently the price of a cash
bond, and not our lognormal model that forces the choice of the strike priagyon
us in our forward contract.

Interest rates will be different for different currencies and so, for definiteness,
suppose that we are operating in the dollar market, where the (risk-free) interest rate
isr.

Suppose first tha > ST, The seller, obliged to deliver a unit of stock foK $at

time T, adopts the follwing strategy: she borrowsS} at time zero (i.e. sells bonds

to the value %) and buys one unit of stock. At timB, she must repay%e' T, but

she has the stock to sell foK$ leaving her aertainprofit of 3K — Se'T).

If K < €T, then the buyer reverses the strategy. She sells a unit of stock at time
zero for $ and buys cash bonds. At tinfe the bonds deliver %€ T of which she

uses K to buy back a unit of stock leaving her witfcartainprofit of §( S’ T — K).

Unless K= €T, one party is guaranteed to make a profit

Definition 1.2.1 An opportunity to lock into a risk-free profit is called arbitrage
opportunity.

The starting point in establishing a model in modern finance theory is to specify
that there is no arbitrage. (In fact there are people who make their living entirely
from exploiting arbitrage opportunities, but such opportunities do not exist for a
significant length of time before market prices move to eliminate them.) We have
proved the following lemma.

Lemma1.2.2 In the absence of arbitrage, the strike price in a forward contract
with expiry date T on a stock whose value at time zergis & = ST, where r
is the risk-free rate of interest.

The price €T is sometimes called tharbitrage price It is also known as the
forward priceof the stock.



Pricing a
European
call

1.3

SINGLE PERIOD MODELS

Remark: In our proof of Lemma 1.2.2, the buyer sold stock that she may not own.
This is known asshort selling This can, and does, happen: investors can ‘borrow’
stock as well as money. ]

Of course forwards are a very special sort of derivative. The argument above won't
tell us how to value an option, but the strategy of seeking a price that does not provide
either party with a risk-free profit will be fundamental in what follows.

Let us recap what we have done. In order to price the forward, we constructed a
portfolio, comprising one unit of underlying stock ardy cash bonds, whose value
at the maturity timel is exactlythat of the forward contract itself. Such a portfolio is
said to be gerfect hedger replicating portfolia This idea is the central paradigm
of modern mathematical finance and will recur again and again in what follows.
Ironically we shall use expectation repeatedly, but as a tool in the construction of a
perfect hedge.

The one-step binary model

We are now going to turn to establishing the fair price for European call options,
but in order to do so we first move tosimplermodel for the movement of market
prices. Once again we suppose that the market is observed at just two times, that at
which the contract is struck and the expiry date of the contract. Now, however, we
shall suppose that there are just two possible values for the stock price at.tiwke

begin with a simple example.

Example 1.3.1 Suppose that the current price in Japanese Yen of a certain stock is
¥2500Q A European call option, maturing in six months time, has strike p¥i860Q

An investor believes that with probability one half the stock price in six months time
will be ¥4000and with probability one half it will b&2000Q He therefore calculates

the expected value of the option (when it expires) t&580. The riskless borrowing
rate in Japan is currently zero and so he agrees to &p0for the option. Is this a

fair price?

Solution: In the light of the previous section, the reader will probably have guessed
that the answer to this question is no. Once again, we show that one party to this
contract can make a risk-free profit. In this case it is the seller of the contract. Here
is just one of the many possible strategies that she could adopt.

Strategy: Attime zero, sell the option, borrow 2000 and buy a unit of stock.

Suppose first that at expiry the price of the stock¥#000; then the contract will be
exercised and so she must sell her stocRA8000. She then holdg(—2000+3000.
That is¥1000.

If, on the other hand, at expiry the price of the stock000, then the option will
not be exercised and so she sells her stock on the open market f&2060. Her
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\ %]

x+1.8, = 30
X+ 0.9%,= 0

The seller of the contract in Example 1.3.1 is guaranteed a risk-free profit if she can buy any

portfolio in the shaded region.

net cash holding is the¥(—2000+ 2000. That is, she exactly breaks even.

Either way, our seller has a positive chance of making a profit méthiskof making
a loss.The price of the option is too high.

So what is the right price for the option?

Let’s think of things from the point of view of the seller. Writirss for the price
of the stock when the contract expires, she knows that atTirmbe need¥ (St —
3000 in order to meet the claim against her. The idea is to calculate how much
money she needs at time zero, to be held in a combinati®tocks and cash, to
guarantee this.

Suppose then that she uses the money that she receives for the option to buy a
portfolio comprisingx; Yen andx, stocks. If the price of the stock 4000 at
expiry, then the tim& value of the portfolio is;€ T + 4000k,. The seller of the
option requires this to be at leagt000. That is, since interest rates are zero,

X1 + 4000, > 1000
If the price is¥2000 she just requires the value of the portfolio to be non-negative,
X1 + 2000« > 0.

A profit is guaranteed (without risk) for the seller(if1, x2) lies in the interior of
the shaded region in Figure 1.2. On the boundary of the region, there is a positive
probability of profit and no probability of loss at all points other than the intersection
of the two lines. The portfolio represented by the paiit, X2) will provide exactly
the wealth required to meet the claim against her at fime

Solving the simultaneous equations gives that the seller can exactly meet the claim
if X1 = —1000 andXx, = 1/2. The cost of building this portfolio at time zero is
¥(—1000+ 2500/2), that is¥250. For any price higher thas250, the seller can
make a risk-free profit.
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If the option price idessthan¥250, then thdouyercan make a risk-free profit by
‘borrowing’ the portfolio(X1, X2) and buying the option. In the absence of arbitrage
then, the fair price for the option ¥250. |

Notice that just as for our forward contract, we did not use the probabilities that we
assigned to the possible market movements to arrive at the fair price. We just needed
the fact that we couldeplicate the claim by this simple portfolio. The seller can
hedgethe contingent clain®(Sy — 3000 using theportfolio consisting of¥x;

andx, units of stock.

One can use exactly the same argument to provéottaving result.

Lemma1.3.2 Suppose that the risk-free dollar interest rate (to a time horizon
T > T)isr. Denote the time zero (dollar) value of a certain asset fySBppose

that the motion of stock prices is such that the value of the asset at time T will be
either Su or Sd. Assume further that

d<€eT <u.

At time zero, the market price of a European option with pay¢8;Q at the maturity

Tis 1—de'T ue' T —1
<—> C (Su) + (—) C (Sd).
u—d u—d

Moreover, the seller of the option can construct a portfolio whose value at time T is
exactly(Sr — K)4 by using the money received for the option to buy

o2 C(SW —C(Sd)
Sou — Sd
units of stock at time zero and holding the remainder in bonds.

(1.1)

The proof is Exercise 4(a).

A ternary model

There were several things about the binary model that were very special. In particular
we assumed that we knew that the asset price would be one of just two specified
vaues at timeT . Whatif we allow threevalues?

We can try to repeat the analysis of 81.3. Again the seller would like to replicate
the claim at timeT by a portfolio consisting o¥x; andx, stocks. This time there
will be three scenarios to consider, corresponding to the three possible valges of
If interest rates are zero, this gives rise to the three inequalities

x1+ Sz > (Sp —3000,, =123

WhereS'T are the possible values & . The picture is now something like that in
Figure 1.3.
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1.5 ACHARACTERISATION OF NO ARBITRAGE

X+§ %= (§-3000)

If the stock price takes three possible values at time T, then at any point where the seller of
the option has no risk of making a loss, she has a strictly positive chance of making a profit.

In order to beguaranteedo meet the claim at time&, the seller requireéxs, X2)
to lie in the shaded region, but at any point in that region, she has a strictly positive
probability of making a profit and zero probability of making a loss. Any portfolio
from outside the shaded region carries a risk of a loss. There is no portfolio that
exactlyreplicates the claim and there is no unique ‘fair’ price for the option.

Our market is notomplete That is, there are contingent claims that cannot be
perfectly hedged.

Of course we are tying our hands in our efforts to hedge a claim. First, we are
only allowing ourselves portfolios consisting of the underlying stock and cash
bonds. Real markets are bigger than this. If we allow ourselves to trade in a third
‘independent’ asset, then our analysis leads to three non-parallel plarig% in
Thesewill intersect in a single point representing a portfolio that exactly replicates
the claim. This then raises a question: when is there arbitrage in larger market
models? We shall answer this question for a single period model in the next
section. The second constraint that we have placed upon ourselves is that we are
not allowed to adjust our portfolio between the time of the selling of the contract
and its maturity. In fact, as we see in Chapter 2, if we consider the market to
be observable at intermediate times between zeroTgnand allow our seller to
rebalance her portfolio at such times (without changing its value), thesawallow

any number of possible values for the stock price at timand yet still replicate
each claim at timeT by a portfolio consisting of just the underlying and cash
bonds.

A characterisation of no arbitrage

In our binary setting it was easy to find the right price for an option simply by solving

a pair of simultaneous equations. However, the binary model is very special and,
after our experience with the ternary model, alarm bells may be ringing. The binary
model describes the evolution of just one stock (and one bond). One solution to our
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difficulties with the ternary model was to allow trade in another ‘independent’ asset.
In this section we extend this idea to larger market models and characterise those
models for which there are a sufficient number of independent assets that any option
has a fair price. Other than Definition 1.5.1 and the statement of Theorem 1.5.2, this
section can safely be omitted.

Our market will now consist of a finite (but possibly large) number of tradable
assets. Again we restrict ourselves to single period models, in which the market
is observable only at time zero and a fixed future timheHowever, the extension
to multiple time periods exactly mirrors that for binary models that we describe in
§2.1.

Suppose then that there dxetradable assets in the market. Their prices at time
zero are given by the column vector

Notation For vectors and matrices we shall use the supersdfipt denote
transpose.

Uncertainty about the market is represented by a finite number of possible states in
which the market might be at time that we label 12, ... , n. The security values
at timeT are given by arN x n matrix D = (Djj), where the coefficienD;; is
the value of theth security at timeT if the market is in statg. Our binary model
corresponds ttN = 2 (the stock and a riskless cash bond) and 2 (the two states
being determined by the two possible valuesey.

In this notation, a portfolio can be thought of as a veétet (91, 6o, ... ,6n)! €
RN, whose market value at time zero is the scalar pro@yet) = St61 + 62 +
R S(S\‘GN. The value of the portfolio at tim& is a vector inR™ whoseith entry is
the value of the portfolio if the market is in statée can write the value at time
as

D1161 + D2162 + - - - 4+ DN16N

D1201 + D226 + - - - 4+ DN26N
= D'.

Din61 + Danb2 + - - - + DnnbN
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Notation ~ For a vectorx € R" we writex > 0, orx € R, if x =
(X1,..., %) andx; > Oforalli = 1,...,n. We writex > 0 to mean
x > 0, x # 0. Notice thatx > 0 does not requir& to be strictly positive in
all its coordinates. We writg > 0, orx € R}, for vectors inR" that are
strictly positive inall coordinates.

In this notation, ararbitrageis a portfoliod € RN with either

%:0<0, D=0 o S-6<0, D'9>0.

Arbitrage The key to arbitrage pricing in this model is the notion of a state price vector.
pricing
Definition 1.5.1 A state price vectos a vectory € R}, such that §= D).

To see why this terminology is natural, we first expand this to obtain

1
% D11 D12 D1n

SO D21 D22 Don

: =Y : + Y2 : +-+Yn : . (1.2)
%\I Dn1 Dn2 Dnn

The vector,D®, multiplying v; is the security price vector if the market is in state
i. We can think ofy; as the marginal cost at time zero of obtaining an additional
unit of wealth at the end of the time period if the system is in stati other
words, if at the end of the time period, the market is in statdhen the value of
our portfolio increases by one for each additiotialof investment at time zero. To

see this, suppose that we can find vec{erd € RN}, . such that

i i 1 ifi=j
. ph = ’
o { 0 otherwise.
That is, the value of the portfolié() at time T is the indicator function that the
market is in stateé. Then, using equatipn (1._2), the cost of purcha:ﬁﬁg at time
zero is precisely - 6©) = (3-]_; ¢jDD) - 6©) = ;. Such portfoliog6}1<i <n
are calledArrow—Debreu securities
We shall find a convenient way to think about the state price vector in §1.6, but

first, here is the key result.

Theorem 1.5.2 For the market model described above there is no arbitrage if
and only if there is a state price vector.
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n

R

There is no arbitrage if and only if the regions K and M of Theorem 1.5.2 intersect only at the
origin.

This result, due to Harrison & Kreps (1979), is the simplest form of what is often
known as the Fundamental Theorem of Asset Pricing. The proof is an application of
a Hahn—Banach Separation Theorem, sometimes calleSeparating Hyperplane
TheoremWe shall also need tHRiesz Representation TheoreRecall thatv < R¢

is aconeif x € M impliesix € M for all strictly positive scalara and that dinear
functionalonRY is a linear mapping: RY — R.

Theorem 1.5.3 (Separating Hyperplane Theorem) Suppose M and K are closed
convex cones iRRY that intersect precisely at the origin. If K i®ta linear subspace,
then there is a non-zero linear functional F such thaixl-< F(y) for each xe M
and each non-zero g K.

This version of the Separating Hyperplane Theorem can be found in Duffie (1992).
Theorem 1.5.4 (Riesz Representation Theorem) Any bounded linear functional on

RY can be written as Fx) = vg - . That is Kx) is the scalar product of some fixed
vectorvg € RY with x.

Proof of Theorem 1.5.2: We taked = 1+ nin Theorem 1.5.3 and set
M={(-%-6.D'):0 e RN c R x R" = R™",
K =Rs x RY}.

Note thatK is a cone and not a linear spadé,is a linear space. Evidently, there
is no arbitrage if and only iK and M intersect precisely at the origin as shown in
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Figure 1.4. We must prove th&& N M = {0} if and only if there is a state price
vector.

(i) Suppose first that Kt M = {0}. From Theorem 1.5.3, there is a linear
functional F: RY — R such thatF (z) < F(x) for all ze M and non-zerx € K.

The first step is to show thda must vanish orM. We exploit the fact thaM
is a linear space. First observe that0) = 0 (by linearity of F) and 0 € M, so
F(x) > 0forx € K andF(x) > 0 forx € K\{0}. Fix xp € K with xg # 0. Now
take an arbitrarg € M. ThenF(2) < F(Xp), but also, sinceM is a linear space,
AF(2) = F(A2) < F(xp) forall » € R. This can only hold ifF (z) = 0.z € M was
arbitrary and sd- vanishes oM as required.

We now use this actually to construct explicitly the state price vector fram
First we use the Riesz Representation Theorem to s F (X) = vg - X for some
vo € RY. Itis convenient to writep = (@, ¢) wherea € R and¢ € R". Then

Flv,c)=av+¢-C forany(v,c) e R x R" = RY,

SinceF (x) > 0 for all non-zerax € K, we must haver > 0 and¢ > 0 (consider a
vector along each of the coordinate axes). Finally, slbhaanishes oM,

—aS-0+¢-Do=0 forallg e RN
Observing that - D'6 = (D¢) - 6, this becomes
—aS-0+(D¢)-6 =0 forallg e RN,

which implies that—-a S + D¢ = 0. In other words S = D(¢/a). The vector
Y = ¢/a is a state price vector.

(i) Suppose now that there is a state price veatorWe must prove thak "M =
{0}. By definition,S = D+ and so for any portfoli®,

S0 =(Dy)-0 =y - (D). (1.3)

Suppose that for some portfoli, (- - 6, D'¢) € K. ThenD'¢ e R} and
—S -6 > 0. Butsincey >» 0, if D'60 € R, theny - (D'9) > 0 which, by
equation (1.3), tells us th&, - & > 0. Thus it must be thaf - § = 0 and D'6 = 0.
That is,K N M = {0}, as required. O

The risk-neutral probability measure

The state price vector then is the key to arbitrage pricing for our multiasset market
models. Although we have an economic interpretation for it, in order to pave the
way for the full machinery of probability and martingales we must think about it in
a different way.

Recall that all the entries af are strictly positive.
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Writing o = >, ¥i, we can think of

A (V1 Y2 ¥n\!
==, —, ..., — 1.4
v (wo Yo 1/fo) (1.4)

as a vector oprobabilitiesfor being in different states. It is important to emphasise
that they may have nothing to do with our view of how the markets will move. First
of all,

What isvo?

Suppose that as in our binary model (where we had a risk-free cash bond) the
market allowspositive riskless borrowingin this general setting we just suppose
that we can replicate such a bond by a portfélimr which

1
Dlo=| |,
1
i.e. the value of the portfolio at tim& is one, no matter what state the market is

in. Using the fact that/ is a state price vector, we calculate that the cost of such a
portfolio at time zero is

n
S$-0=Dy)-0=v-(D'9) =) i = o
i=1
That is o represents the discount on riskless borrowihg our notation of 81.2,
Yyo=¢e"T.

Now under the probability distribution given by the vector (1.4), the expected value
of theith security at timeT is

. n w] 1 n 1 .
E = Djj — = — Diivi = —8,,
[Sr] ; i = Vo ; ivi 7o S
where in the last equality we have us&d= D+. That is
S =voE[S;], i=1....n (1.5)

Any security’s price is its discounted expected paynéfer the probability distribu-
tion (1.4). The same must be true of any portfolio. This observation gives us a new
way to think about the pricing of contingent claims.

Definition 1.6.1 We shall say that a claim, C, at time T astainablef it can be
hedged. That is, if there is a portfolio whose value at time T is exactly C.

Notation When we wish to emphasise the underlying probability measufe,
Q, we writeEQ for the expectation operator.
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1.6 THE RISK-NEUTRAL PROBABILITY MEASURE

Theorem 1.6.2 If there is no arbitrage, the unique time zero price of an attainable
claim C at time T isyoEQ[C] where the expectation is with respect to any
probability measure for which $ = yoEQ[S] for all i and vy is the discount on
riskless borrowing.

Remark: Notice that it is crucial that the claim is attainable (see Exercise 111

Proof of Theorem 1.6.2: By Theorem 1.5.2 there is a state price vector and this leads
to the probability measure (1.4) satisfyigg = yoE [S;] for all i. Since the claim
can be hedged, there is a portfafiguch that - St = C. In the absence of arbitrage,
the time zero price of the claim is the cost of this portfolio at time zero,

N .
0-S =0 (YoE[ST]) = yo Yy _ HiE[S] = yoE[0 - Sr].
i=1

The same value is obtained if the expectation is calculated for any vector of
probabilities,Q, such that§) = YoEQ [Slr] since, in the absenc# arbitrage, there
is only one riskless borrowing rate and this completes the proof. |

In this language, our arbitrage pricing result says that if we can find a probability
vector for which the time zero value of each underlying security is its discounted
expected value at tim& then we can find the time zero value of aattainable
contingent claim by calculating its discounted expectation. Notice that we use the
sameprobability vector, whatever the claim.

Definition 1.6.3 If our market can be in one of n possible states at time T, then
any vector, p= (p1, P2, ..., pn) > 0, of probabilities for which each security’s
price is its discounted expected payoff is callaib&-neutral probability measu
equivalent martingale measure

The termequivalentreflects the condition thap > 0; cf. Definition 2.3.12. Our
simple form of the Fundamental Theorem of Asset Pricing (Theorem 1.5.2) says
that in a market with positive riskless borrowing there is no arbitrage if and only if
there is an equivalent martingale measure. We shall refer to the process of pricing by
taking expectations with respect to a risk-neutral probability measuiskaseutral
pricing.

Example 1.3.1 revisited Let us return to our very first example of pricing a European
call option and confirm that the above formula really does give us the arbitrage price.

Here we have just two securities, a cash bond and the underlying stock. The
discount on borrowing is/p = e 'T, but we are assuming that the Yen interest
rate is zero, s@o = 1. The matrix of security values at tinfeis given by

11
b= (4000 200()'
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Writing p for the risk-neutral probability that the security price vectoflis4000!,
if the stock price is to be equal to its discounted expected paygaffust solve

4000p + 20001 — p) = 2500Q

which givesp = 0.25. The contingent claim i¥1000 if the stock price at expiry
is ¥4000 and zero otherwise. The expected value of the claim under the risk-neutral
probability, and therefore (since interest rates are zero) the price of the option, is then
¥0.25 x 1000= ¥250, as before.

An advantage of this approach is that, armed with the probabhilitif is now
a trivial matter to price all European options on this stock with the same expiry
date (six months time) by taking expectations with respect tes#meprobability
measure. For example, for a European put option with strike pr®00, the price
is

¥E[(K — Sr)+] = ¥0.75 x 1500= ¥1125

Our original argument would lead to a new set of simultaneous equations for each
new claim. a

We now have a prescriptidior the arbitrage price of a claim if one exists, that is if
the claim is attainable. But we must be a little cautious. Arbitrage prices only exist
for attainable claims — even though the prescription may continue to make sense.

Definition 1.6.4 A market is said to beompleteif every contingent claim is
attainable, i.e. if every possible derivative claim can be hedged.

Proposition 1.6.5 A market consisting of N tradable assets, evolving according
to a single period model in which at the end of the time period the market is one of
n possible states, is complete if and only iXNn and the rank of the matrix, D, of
security prices is n.

Proof: Any claim in our market can be expressed as a vectarR". A hedge for
that claim will be a portfolic® = 6(v) € RN for which D'6 = v. Finding such &
amounts to solvingy equations inN unknowns. Thus a hedging portfolio exists for
everychoice ofv if and only if N > n and the rank oD is n, as required. m]

Notice in particular that our single period binary model is complete.

Suppose that our market is complete and arbitrage-free afl deidQ’ be any
two equivalent martingale measures. By completeness every claim is attainable, so
for everyrandom variableX, using that there is only one risk-free rate,

EQ[X] = E? [X].

In other wordsQ = @Q'. So in a complete arbitrage-free market the equivalent
martingale measure imique
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1.6 THE RISK-NEUTRAL PROBABILITY MEASURE

Let us summarise the results for our single period markets. They will be reflected
again and again in what follows.

Results for single period models

e The market is arbitrage-free if and only if there exists a martingale measure,
Q.

e The market is complete if and only@ is unique.

e The arbitrage price of an attainable cla@rise " TEQ [C] .

Martingale measures are a powerful tool. However, in an incomplete market, if a
claimC is not attainable different martingale measures can give different prices. The
arbitrage-free notion dir price only makes sense if we cdmredge

We must sound just one more note of caution. It is important in calculdkiag
risk-neutral probabilities that all the assets being modelled are tradable in the same
market. We illustrate with an example.

Example 1.6.6 Suppose that in the US dollar markets the current Sterling
exchange rate i4.5 (so that £00costs$150). Consider a European call option that
offers the holder the right to buyl©0 for $150 at time T. The riskless borrowing
rate in the UK is u and that ithe US is r. Assuming a single period binary model in
which the exchange rate at the expiry time is eith&5 or 1.45, find the fair price

of this option.

Solution: Now we have a problem. The exchange ratedstradable. Nor, irdollar
markets, is a Sterling cash bond — it is a tradable instrument, but in Sterling markets.
However, the product of the twie a dollar tradable and we shall denote the value of
this product by§ at timet.

Now, since the riskless interest rate in the UKijshe time zero price of a Sterling
cash bond, promising to p#l at timeT, ise~T and, of course, at tim€ the bond
price is one. Thus we hav& = e Y7150 andSy = 165 orSr = 145.

Let p be the risk-neutral probability th&r = 165. Then, since the discounted
price (in thedollar market) of our ‘asset’ at tim& must have expectatiofy, we
obtain

1507 4T = "7 (165p + 1451 — p)),
which yields

150" WT — 145
P= 20 '

The price of the option is the discounted expected payoff with respect to this
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probability which gives

3
Vo=e"T15p = Z(lSOe_“T —1457'T).

Exercises
What view about the market is reflected in each of the following strategies?

(a) Bullish vertical spreadBuy one European call and sell a second one with the
same expiry date, but a larger strike price.

(b) Bearish vertical spreadBuy one European call and sell a second one with the
same expiry date but a smaller strike price.

(c) Strip: Buy one European call and two European puts with the same exercise date
and strike price.

(d) Strap:Buy two European calls and one European put with the same exercise date
and strike price.

(e) Strangle:Buy a European call and a European put with the same expiry date but
different strike prices (consider all possible cases).

A butterfly spreadrepresents the complementary bet to the straddle. It has the
following payoff at expiry:

Payoff

E E s

Find a portfolio consisting of European calls and puts, all with the same expiry date,
that has this payoff.

Suppose that the price of a certain asset has the lognormal distribution. That is
log (Sr/S) is normally distributed with mean and variance 2. CalculateE[ Sr].

(a) Prove Lemma 1.3.2.
(b) What happens if we drop the assumption that €T < u?

Suppose that at current exchange rafé€0 is worth€160. A speculator believes
that by the end of the year there is a probability g2 that the pound will have fallen
to €1.40, and a 12 chance that it will have gained to be wo&R.00. He therefore
buys a European put option that will give him the right (but not the obligation) to
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EXERCISES

sell £100 for€1.80 at the end of the year. He pa§20 for this option. Assume that

the risk-free interest rate is zero across the Euro-zone. Using a single period binary
model, either construct a strategy whereby one party is certain to make a profit or
prove that this is the fair price.

How should we modify the analysis of Example 1.3.1 if we are pricing an option
based on a commodity such as oil?

Show that if there is no arbitrage in the market, then any portfolio constructed at time
zero that exactly replicates a claithat timeT has the same value at time zero.

Put—call parity: Denote byC; and P; respectively the prices at tinieof a European
call and a European put option, each with matufitgand strikeK . Assume that the
risk-free rate of interest is constant,and that there is no arbitrage in the market.
Shaw that for eactt < T,

Ci—P =5 -Ke'T-b,

Use risk-neutral pricing to value the option in Exercise 5. Check your answer by
constructing a portfolio that exactly replicates the claim at the expiry of the contract.

What is the payoff of a forward at expiry? Use risk-neutral pricing to solve the pricing
problem for a forward contract.

Consider theternary model for the underlying of 81.4. How many equivalent
martingale measures are there? If there are two different martingale measures, do
they give the same price for a claim? Are tharbitrage opportunities?

Suppose that the value of a certain stock at timés a random variable with
distribution P. Note we arenot assuming a binary model. An option written on

this stock has payoff at timeT. Consider a portfolio consisting @f units of the
underlying andy units of bond, held until tim& , and writeVy for its value at time

zero. Assuming that interest rates are zero, show that the extra cash required by the
holder of this portfolio to meet the clai@ at timeT is

VE2C-Vo—¢(Sr— ).

Find expressions for the values\d§ and¢ (in terms ofE [Sr], E[C], var[Sr] and
cov(Sr, C)) that minimise
E[w?],

and check that for these valué$w] = 0.

Prove that for a binary model, any claithdependsinearly on St — &. Deduce that
in this case we can findp and¢ such that¥ = 0.

When the model imot complete, the parameters that minimE@I/Z] correspond
to finding the best linear approximation@(based or5r — &). The corresponding
value of the expectation is a measure ofititeinsic riskin the option.
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Exchange rate forwardSuppose that the riskless borrowing rate in the UKl is
and that in the USA is. A dollar investor wishes to set the exchange rétg, in
a forward contract in which the two parties agree to exchabgelollars for one
pound at timeT . If a pound is currentl\Cq dollars, what is the fair value @@ ?

The option writer in Example 1.6.6 selldigital option to a speculator. This amounts

to a bet that the asset price will go up. The payoff is a fixed amount of cash if the
exchange rate goes to $165 400, and nothing if it goes down. If the speculator
pays $10 for this bet, what cash payout should the option writer be willing to write
into the option? You may assume that interest rates are zero.

Suppose now that the seller of the option in Example Jofeéates in the Sterling
markets. Reexpress the market in terms of Sterling tradables and find the corre-
sponding risk-neutral probabilities. Are they the saminasisk-neutral probabilities
calculated by the dollar trader? What is the dollar cost at time zero of the option as
valued by the Sterling trader?

This is an example athange of numeraiteThe dollar trader uses the dollar bond as
the reference risk-free asset whereas the Sterling trader uses a Sterling bond.





