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1 Single period models

Summary

In this chapter we introduce some basic definitions from finance and investigate the
problem of pricing financial instruments in the context of a very crude model. We
suppose the market to be observed at just two times: zero, when we enter into a
financial contract; andT , the time at which the contract expires. We further suppose
that the market can only be in one of a finite number of states at timeT . Although
simplistic, this model reveals the importance of the central paradigm of modern
finance: the idea of a perfect hedge. It is also adequate for a preliminary discussion
of the notion of ‘complete market’ and its importance if we are to find a ‘fair’ price
for our financial contract.

The proofs in §1.5 can safely be omitted, although we shall from time to time
refer back to the statements of the results.

1.1 Some definitions from finance

Financial market instruments can be divided into two types. There are theunderlying
stocks – shares, bonds, commodities, foreign currencies; and theirderivatives, claims
that promise some payment or delivery in the future contingent on an underlying
stock’s behaviour. Derivatives can reduce risk – by enabling a player to fix a price
for a future transaction now – or they can magnify it. A costless contract agreeing to
pay off the difference between a stock and some agreed future price lets both sides
ride the risk inherent in owning a stock, without needing the capital to buy it outright.

The connection between the two types of instrument is sufficiently complex and
uncertain that both trade fiercely in the same market. The apparently random nature
of the underlying stocks filters through to the derivatives – they appear random
too.

Derivatives Our central purpose is to determine how much one should be willing to pay for
a derivative security. But first we need to learn a little more of the language of
finance.

1



2 single period models

Definition 1.1.1 A forward contractis an agreement to buy (or sell) an asset on a
specified future date, T , for a specified price, K . The buyer is said to hold thelong
position, the seller theshortposition.

Forwards are not generally traded on exchanges. It costs nothing to enter into a
forward contract. The ‘pricing problem’ for a forward is to determine what value
of K should be written into the contract. Afutures contractis the same as a forward
except that futuresare normally traded on exchanges and the exchange specifies
certain standard features of the contract and a particular form of settlement.

Forwards provide the simplest examples of derivative securities and the math-
ematics of the corresponding pricing problem will also be simple. A much richer
theory surrounds the pricing ofoptions. An option gives the holder theright, but not
theobligation, to do something. Options come in many different guises. Black and
Scholes gained fame for pricing a European call option.

Definition 1.1.2 A European call optiongives the holder the right, but not the
obligation, to buy an asset at a specified time, T , for a specified price, K .
A European put optiongives the holder the right tosell an asset for a specified

price, K , at time T .

In generalcall refers to buying andput to selling. The termEuropeanis reserved for
options whose value to the holder at the time,T , when the contract expires depends
on the state of the market only at timeT . There are other options, for example
American options or Asian options, whose payoff is contingent on the behaviour of
the underlying over the whole time interval [0, T ], but the technology of this chapter
will only allow meaningful discussion of European options.

Definition 1.1.3 The time, T , at which the derivative contract expires is called the
exercise dateor thematurity. The price K is called thestrike price.

The pricing
problem

So what is the pricing problem for a European call option? Suppose that a company
has to deal habitually in an intrinsically risky asset such as oil. They may for example
know that in three months time they will need a thousand barrels of crude oil. Oil
prices can fluctuate wildly, but by purchasing European call options,with strikeK
say, the company knows themaximumamount of money that it will need (in three
months time) in order to buy a thousand barrels. One can think of the option as
insurance against increasing oil prices. The pricing problem is now to determine,
for given T and K , how much the company should be willing to pay for such
insurance.

For this example there is an extra complication: it costs money to store oil. To
simplify our task we are first going to price derivatives based on assets that can
be held without additional cost, typically company shares. Equally we suppose that
there is no additional benefit to holding the shares, that is no dividends are paid.
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Figure 1.1 Payoff at maturity of (a) a forward purchase, (b) a European call and (c) a European put with
strike K as a function of ST .

Assumption Unless otherwise stated, the underlying asset can be held without
additional cost or benefit.

This assumption will be relaxed in Chapter 5.
Suppose then that our company enters into a contract that gives them the right, but

not the obligation, to buy one unit of stock for priceK in three months time. How
much should they pay for this contract?

Payoffs As a first step, we need to know what the contract will be worth at the expiry date.
If at the time when the option expires (three months hence) the actual price of the
underlying stock isST andST > K then the option will be exercised. The option is
then said to bein themoney: an asset worthST can be purchased for justK . The value
to the company of the option is then(ST −K ). If, on the other hand,ST < K , then it
will be cheaper to buy the underlying stock on the open market and so the option will
not be exercised. (It is this freedomnot to exercise that distinguishes options from
futures.) The option is then worthless and is said to beout of the money. (If ST = K
the option is said to beat the money.) Thepayoffof the option at timeT is thus

(ST − K )+ � max{(ST − K ),0} .
Figure 1.1 shows the payoff at maturity of three derivative securities: a forward

purchase, a European call and a European put, each as a function of stock price at
maturity. Before embarking on the valuationat time zeroof derivative contracts, we
allow ourselves a short aside.

Packages We have presented the European call option as a means of reducing risk. Of course
it can also be used by a speculator as a bet on an increase in the stock price. In
fact by holdingpackages, that is combinations of the ‘vanilla’ options that we have
described so far, we can take rather complicated bets. We present just one example;
more can be found in Exercise 1.
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Example 1.1.4 (A straddle) Suppose that a speculator is expecting a large move
in a stock price, but does not know in which direction that move will be. Then a
possible combination is astraddle. This involves holding a European call and a
European put with the same strike price and maturity.

Explanation: The payoff of this straddle is(ST − K )+ (from the call) plus(K −
ST )+ (from the put), that is,|ST − K |. Although the payoff of this combination is
always positive, if, at the expiry time, the stock price is too close to the strike price
then the payoff will not be sufficient to offset the cost of purchasing the options and
the investor makes a loss. On the other hand, large movements in price can lead to
substantial profits. �

1.2 Pricing a forward

In order to solve our pricing problems, we are going to have to make some
assumptions about the way in which markets operate. To formulate these we begin
by discussing forward contracts in more detail.

Recall that a forward contract is an agreement to buy (or sell) an asset on a
specified future date for a specified price. Suppose then that I agreeto buy an asset
for priceK at timeT . The payoff at timeT is justST − K , whereST is the actual
asset price at timeT . The payoff could be positive or it could be negative and, since
the cost of entering into a forward contract is zero, this is also my total gain (or loss)
from the contract. Our problem is to determine the fair value ofK .

Expectation
pricing

At the time when the contract is written, we don’t knowST , we can only guess at
it, or, more formally, assign a probability distribution to it. A widely used model
(which underlies the Black–Scholes analysis of Chapter 5) is that stock prices are
lognormally distributed. That is, there are constantsν andσ such that thelogarithm
of ST/S0 (the stock price at timeT divided by that at time zero, usually called the
return) is normally distributed with meanν and varianceσ 2. In symbols:

P

[
ST
S0

∈ [a,b]

]
= P

[
log

(
ST
S0

)
∈ [loga, logb]

]

=
∫ logb

loga

1√
2πσ

exp

(
− (x − ν)

2

2σ 2

)
dx.

Notice that stock prices, and thereforea andb, should be positive, so that the integral
on the right hand side is well defined.

Our first guess might be thatE[ST ] should represent a fair price to write into our
contract. However, it would be a rare coincidence for this to be the market price. In
fact we’ll show that the cost of borrowing is the key to our pricing problem.

The risk-free
rate

We need a model for thetime value of money: a dollar now is worth more than a
dollar promised at some later time. We assume a market for these future promises
(thebondmarket) in which prices are derivable from some interest rate. Specifically:
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Time value of money We assume that for any timeT less than some horizonτ
the value now of a dollar promised atT is e−rT for some constantr > 0. The
rater is then thecontinuously compoundedinterest rate for this period.

Such a market, derived from say US Government bonds, carries no risk of default –
the promise of a future dollar will always be honoured. To emphasise this we will
often refer tor as therisk-free interest rate. In this model, by buying or selling cash
bonds, investors can borrow money for the same risk-free rate of interest as they can
lend money.

Interest rate markets are not this simple in practice, but that is an issue that we
shall defer.

Arbitrage
pricing

We now show that it is therisk-free interest rate, or equivalently the price of a cash
bond, and not our lognormal model that forces the choice of the strike price,K , upon
us in our forward contract.

Interest rates will be different for different currencies and so, for definiteness,
suppose that we are operating in the dollar market, where the (risk-free) interest rate
is r .

• Suppose first thatK > S0erT . The seller, obliged to deliver a unit of stock for $K at
timeT , adopts the following strategy: she borrows $S0 at time zero (i.e. sells bonds
to the value $S0) and buys one unit of stock. At timeT , she must repay $S0erT , but
she has the stock to sell for $K , leaving her acertainprofit of $(K − S0erT ).

• If K < S0erT , then the buyer reverses the strategy. She sells a unit of stock at time
zero for $S0 and buys cash bonds. At timeT , the bonds deliver $S0erT of which she
uses $K to buy back a unit of stock leaving her with acertainprofit of $(S0erT −K ).
Unless K= S0erT , one party is guaranteed to make a profit.

Definition 1.2.1 An opportunity to lock into a risk-free profit is called anarbitrage
opportunity.

The starting point in establishing a model in modern finance theory is to specify
that there is no arbitrage. (In fact there are people who make their living entirely
from exploiting arbitrage opportunities, but such opportunities do not exist for a
significant length of time before market prices move to eliminate them.) We have
proved the following lemma.

Lemma 1.2.2 In the absence of arbitrage, the strike price in a forward contract
with expiry date T on a stock whose value at time zero is S0 is K = S0erT , where r
is the risk-free rate of interest.

The priceS0erT is sometimes called thearbitrage price. It is also known as the
forward priceof the stock.
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Remark: In our proof of Lemma 1.2.2, the buyer sold stock that she may not own.
This is known asshort selling. This can, and does, happen: investors can ‘borrow’
stock as well as money. �

Of course forwards are a very special sort of derivative. The argument above won’t
tell us how to value an option, but the strategy of seeking a price that does not provide
either party with a risk-free profit will be fundamental in what follows.

Let us recap what we have done. In order to price the forward, we constructed a
portfolio, comprising one unit of underlying stock and−S0 cash bonds, whose value
at the maturity timeT isexactlythat of the forward contract itself. Such a portfolio is
said to be aperfect hedgeor replicating portfolio. This idea is the central paradigm
of modern mathematical finance and will recur again and again in what follows.
Ironically we shall use expectation repeatedly, but as a tool in the construction of a
perfect hedge.

1.3 The one-step binary model

We are now going to turn to establishing the fair price for European call options,
but in order to do so we first move to asimplermodel for the movement of market
prices. Once again we suppose that the market is observed at just two times, that at
which the contract is struck and the expiry date of the contract. Now, however, we
shall suppose that there are just two possible values for the stock price at timeT . We
begin with a simple example.

Pricing a
European
call

Example 1.3.1 Suppose that the current price in Japanese Yen of a certain stock is
�2500. A European call option, maturing in six months time, has strike price�3000.
An investor believes that with probability one half the stock price in six months time
will be�4000and with probability one half it will be�2000. He therefore calculates
the expected value of the option (when it expires) to be�500. The riskless borrowing
rate in Japan is currently zero and so he agrees to pay�500for the option. Is this a
fair price?

Solution: In the light of the previous section, the reader will probably have guessed
that the answer to this question is no. Once again, we show that one party to this
contract can make a risk-free profit. In this case it is the seller of the contract. Here
is just one of the many possible strategies that she could adopt.

Strategy: At time zero, sell the option, borrow�2000 and buy a unit of stock.

• Suppose first that at expiry the price of the stock is�4000; then the contract will be
exercised and so she must sell her stock for�3000. She then holds�(−2000+3000).
That is�1000.

• If, on the other hand, at expiry the price of the stock is�2000, then the option will
not be exercised and so she sells her stock on the open market for just�2000. Her
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x + 0.9x = 0

x + 1.8x  = 30

x

x2

1

2

21

1 2

(x , x )1

Figure 1.2 The seller of the contract in Example 1.3.1 is guaranteed a risk-free profit if she can buy any
portfolio in the shaded region.

net cash holding is then�(−2000+ 2000). That is, she exactly breaks even.

Either way, our seller has a positive chance of making a profit withno riskof making
a loss.The price of the option is too high.

So what is the right price for the option?
Let’s think of things from the point of view of the seller. WritingST for the price

of the stock when the contract expires, she knows that at timeT she needs�(ST −
3000)+ in order to meet the claim against her. The idea is to calculate how much
money she needs at time zero, to be held in a combinationof stocks and cash, to
guarantee this.

Suppose then that she uses the money that she receives for the option to buy a
portfolio comprisingx1 Yen andx2 stocks. If the price of the stock is�4000 at
expiry, then the timeT value of the portfolio isx1erT + 4000x2. The seller of the
option requires this to be at least�1000. That is, since interest rates are zero,

x1 + 4000x2 ≥ 1000.

If the price is�2000 she just requires the value of the portfolio to be non-negative,

x1 + 2000x2 ≥ 0.

A profit is guaranteed (without risk) for the seller if(x1, x2) lies in the interior of
the shaded region in Figure 1.2. On the boundary of the region, there is a positive
probability of profit and no probability of loss at all points other than the intersection
of the two lines. The portfolio represented by the point(x1, x2) will provide exactly
the wealth required to meet the claim against her at timeT .

Solving the simultaneous equations gives that the seller can exactly meet the claim
if x1 = −1000 andx2 = 1/2. The cost of building this portfolio at time zero is
�(−1000+ 2500/2), that is�250. For any price higher than�250, the seller can
make a risk-free profit.
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If the option price islessthan�250, then thebuyercan make a risk-free profit by
‘borrowing’ the portfolio(x1, x2) and buying the option. In the absence of arbitrage
then, the fair price for the option is�250. �

Notice that just as for our forward contract, we did not use the probabilities that we
assigned to the possible market movements to arrive at the fair price. We just needed
the fact that we couldreplicate the claim by this simple portfolio. The seller can
hedgethe contingent claim�(ST − 3000)+ using theportfolio consisting of�x1

andx2 units of stock.

Pricing
formula for
European
options

One can use exactly the same argument to prove thefollowing result.

Lemma 1.3.2 Suppose that the risk-free dollar interest rate (to a time horizon
τ > T ) is r . Denote the time zero (dollar) value of a certain asset by S0. Suppose
that the motion of stock prices is such that the value of the asset at time T will be
either S0u or S0d. Assume further that

d < erT < u.

At time zero, the market price of a European option with payoff C(ST ) at the maturity
T is (

1− de−rT

u− d

)
C (S0u)+

(
ue−rT − 1

u− d

)
C (S0d) .

Moreover, the seller of the option can construct a portfolio whose value at time T is
exactly(ST − K )+ by using the money received for the option to buy

φ � C (S0u)− C (S0d)

S0u− S0d
(1.1)

units of stock at time zero and holding the remainder in bonds.

The proof is Exercise 4(a).

1.4 A ternary model

There were several things about the binary model that were very special. In particular
we assumed that we knew that the asset price would be one of just two specified
values at timeT . Whatif we allow threevalues?

We can try to repeat the analysis of §1.3. Again the seller would like to replicate
the claim at timeT by a portfolio consisting of�x1 andx2 stocks. This time there
will be three scenarios to consider, corresponding to the three possible values ofST .
If interest rates are zero, this gives rise to the three inequalities

x1 + SiT x2 ≥ (SiT − 3000)+, i = 1,2,3,

whereSiT are the possible values ofST . The picture is now something like that in
Figure 1.3.
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x + S x = (S – 3000)
T

i i i

21 T +

x2

x1

Figure 1.3 If the stock price takes three possible values at time T , then at any point where the seller of
the option has no risk of making a loss, she has a strictly positive chance of making a profit.

In order to beguaranteedto meet the claim at timeT , the seller requires(x1, x2)

to lie in the shaded region, but at any point in that region, she has a strictly positive
probability of making a profit and zero probability of making a loss. Any portfolio
from outside the shaded region carries a risk of a loss. There is no portfolio that
exactlyreplicates the claim and there is no unique ‘fair’ price for the option.

Our market is notcomplete. That is, there are contingent claims that cannot be
perfectly hedged.

Bigger
models

Of course we are tying our hands in our efforts to hedge a claim. First, we are
only allowing ourselves portfolios consisting of the underlying stock and cash
bonds. Real markets are bigger than this. If we allow ourselves to trade in a third
‘independent’ asset, then our analysis leads to three non-parallel planes inR3.
Thesewill intersect in a single point representing a portfolio that exactly replicates
the claim. This then raises a question: when is there arbitrage in larger market
models? We shall answer this question for a single period model in the next
section. The second constraint that we have placed upon ourselves is that we are
not allowed to adjust our portfolio between the time of the selling of the contract
and its maturity. In fact, as we see in Chapter 2, if we consider the market to
be observable at intermediate times between zero andT , and allow our seller to
rebalance her portfolio at such times (without changing its value), then wecanallow
any number of possible values for the stock price at timeT and yet still replicate
each claim at timeT by a portfolio consisting of just the underlying and cash
bonds.

1.5 A characterisation of no arbitrage

In our binary setting it was easy to find the right price for an option simply by solving
a pair of simultaneous equations. However, the binary model is very special and,
after our experience with the ternary model, alarm bells may be ringing. The binary
model describes the evolution of just one stock (and one bond). One solution to our
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difficulties with the ternary model was to allow trade in another ‘independent’ asset.
In this section we extend this idea to larger market models and characterise those
models for which there are a sufficient number of independent assets that any option
has a fair price. Other than Definition 1.5.1 and the statement of Theorem 1.5.2, this
section can safely be omitted.

A market
with N
assets

Our market will now consist of a finite (but possibly large) number of tradable
assets. Again we restrict ourselves to single period models, in which the market
is observable only at time zero and a fixed future timeT . However, the extension
to multiple time periods exactly mirrors that for binary models that we describe in
§2.1.

Suppose then that there areN tradable assets in the market. Their prices at time
zero are given by the column vector

S0 =
(
S1

0, S
2
0, . . . , S

N
0

)t
�



S1

0

S2
0
...

SN0


 .

Notation For vectors and matrices we shall use the superscript ‘t ’ to denote
transpose.

Uncertainty about the market is represented by a finite number of possible states in
which the market might be at timeT that we label 1,2, . . . ,n. The security values
at timeT are given by anN × n matrix D = (Di j ), where the coefficientDi j is
the value of thei th security at timeT if the market is in statej . Our binary model
corresponds toN = 2 (the stock and a riskless cash bond) andn = 2 (the two states
being determined by the two possible values ofST ).

In this notation, a portfolio can be thought of as a vectorθ = (θ1, θ2, . . . , θn)t ∈
RN , whose market value at time zero is the scalar productS0 · θ = S1

0θ1 + S2
0θ2 +

· · · + SN0 θN . The value of the portfolio at timeT is a vector inRn whosei th entry is
the value of the portfolio if the market is in statei . We can write the value at timeT
as




D11θ1 + D21θ2 + · · · + DN1θN

D12θ1 + D22θ2 + · · · + DN2θN

...

D1nθ1 + D2nθ2 + · · · + DNnθN


 = Dtθ.
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Notation For a vectorx ∈ Rn we write x ≥ 0, or x ∈ Rn+, if x =
(x1, . . . , xn) and xi ≥ 0 for all i = 1, . . . ,n. We write x > 0 to mean
x ≥ 0, x 
= 0. Notice thatx > 0 does not requirex to be strictly positive in
all its coordinates. We writex � 0, or x ∈ Rn++, for vectors inRn that are
strictly positive inall coordinates.

In this notation, anarbitrage is a portfolioθ ∈ RN with either

S0 · θ ≤ 0, Dtθ > 0 or S0 · θ < 0, Dtθ ≥ 0.

Arbitrage
pricing

The key to arbitrage pricing in this model is the notion of a state price vector.

Definition 1.5.1 A state price vectoris a vectorψ ∈ Rn++ such that S0 = Dψ .

To see why this terminology is natural, we first expand this to obtain




S1
0

S2
0
...

SN0


 = ψ1




D11

D21
...

DN1


+ ψ2




D12

D22
...

DN2


+ · · · + ψn




D1n

D2n
...

DNn


 . (1.2)

The vector,D(i ), multiplyingψi is the security price vector if the market is in state
i . We can think ofψi as the marginal cost at time zero of obtaining an additional
unit of wealth at the end of the time period if the system is in statei . In other
words, if at the end of the time period, the market is in statei , then the value of
our portfolio increases by one for each additionalψi of investment at time zero. To
see this, suppose that we can find vectors

{
θ(i ) ∈ RN

}
1≤i≤n such that

θ(i ) · D( j ) =
{

1 if i = j,
0 otherwise.

That is, the value of the portfolioθ(i ) at timeT is the indicator function that the
market is in statei . Then, using equation (1.2), the cost of purchasingθ(i ) at time
zero is preciselyS0 · θ(i ) =

(∑n
j=1ψ j D

( j )
) · θ(i ) = ψi . Such portfolios{θ(i )}1≤i≤n

are calledArrow–Debreu securities.
We shall find a convenient way to think about the state price vector in §1.6, but

first, here is the key result.

Theorem 1.5.2 For the market model described above there is no arbitrage if
and only if there is a state price vector.
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R

R

1

n

K

M

Figure 1.4 There is no arbitrage if and only if the regions K and M of Theorem 1.5.2 intersect only at the
origin.

This result, due to Harrison & Kreps (1979), is the simplest form of what is often
known as the Fundamental Theorem of Asset Pricing. The proof is an application of
a Hahn–Banach Separation Theorem, sometimes called theSeparating Hyperplane
Theorem. We shall also need theRiesz Representation Theorem. Recall thatM ⊆ Rd

is aconeif x ∈ M impliesλx ∈ M for all strictly positive scalarsλ and that alinear
functionalonRd is a linear mappingF : Rd → R.

Theorem 1.5.3 (Separating Hyperplane Theorem) Suppose M and K are closed
convex cones inRd that intersect precisely at the origin. If K isnota linear subspace,
then there is a non-zero linear functional F such that F(x) < F(y) for each x∈ M
and each non-zero y∈ K.

This version of the Separating Hyperplane Theorem can be found in Duffie (1992).

Theorem 1.5.4 (Riesz Representation Theorem) Any bounded linear functional on
Rd can be written as F(x) = v0 · x. That is F(x) is the scalar product of some fixed
vectorv0 ∈ Rd with x.

Proof of Theorem 1.5.2: We taked = 1+ n in Theorem 1.5.3 and set

M =
{(−S0 · θ, Dtθ

)
: θ ∈ RN

}
⊆ R × Rn = R1+n,

K = R+ × Rn
+.

Note thatK is a cone and not a linear space,M is a linear space. Evidently, there
is no arbitrage if and only ifK andM intersect precisely at the origin as shown in
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Figure 1.4. We must prove thatK ∩ M = {0} if and only if there is a state price
vector.

(i) Suppose first that K∩ M = {0}. From Theorem 1.5.3, there is a linear
functionalF : Rd → R such thatF(z) < F(x) for all z ∈ M and non-zerox ∈ K .

The first step is to show thatF must vanish onM . We exploit the fact thatM
is a linear space. First observe thatF(0) = 0 (by linearity of F) and 0∈ M , so
F(x) ≥ 0 for x ∈ K andF(x) > 0 for x ∈ K\{0}. Fix x0 ∈ K with x0 
= 0. Now
take an arbitraryz ∈ M . ThenF(z) < F(x0), but also, sinceM is a linear space,
λF(z) = F(λz) < F(x0) for all λ ∈ R. This can only hold ifF(z) = 0. z ∈ M was
arbitrary and soF vanishes onM as required.

We now use this actually to construct explicitly the state price vector fromF .
First we use the Riesz Representation Theorem to writeF asF(x) = v0 · x for some
v0 ∈ Rd. It is convenient to writev0 = (α, φ) whereα ∈ R andφ ∈ Rn. Then

F(v, c) = αv + φ · c for any(v, c) ∈ R × Rn = Rd.

SinceF(x) > 0 for all non-zerox ∈ K , we must haveα > 0 andφ � 0 (consider a
vector along each of the coordinate axes). Finally, sinceF vanishes onM ,

−αS0 · θ + φ · Dtθ = 0 for all θ ∈ RN .

Observing thatφ · Dtθ = (Dφ) · θ , this becomes

−αS0 · θ + (Dφ) · θ = 0 for all θ ∈ RN,

which implies that−αS0 + Dφ = 0. In other words,S0 = D(φ/α). The vector
ψ = φ/α is a state price vector.

(ii) Suppose now that there is a state price vector,ψ . We must prove thatK∩M =
{0}. By definition,S0 = Dψ and so for any portfolioθ ,

S0 · θ = (Dψ) · θ = ψ · (Dtθ). (1.3)

Suppose that for some portfolioθ , (−S0 · θ, Dtθ) ∈ K . Then Dtθ ∈ Rn+ and
−S0 · θ ≥ 0. But sinceψ � 0, if Dtθ ∈ Rn+, thenψ · (Dtθ) ≥ 0 which, by
equation (1.3), tells us thatS0 · θ ≥ 0. Thus it must be thatS0 · θ = 0 and Dtθ = 0.
That is,K ∩ M = {0}, as required. �

1.6 The risk-neutral probability measure

The state price vector then is the key to arbitrage pricing for our multiasset market
models. Although we have an economic interpretation for it, in order to pave the
way for the full machinery of probability and martingales we must think about it in
a different way.

Recall that all the entries ofψ are strictly positive.
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State prices
and
probability

Writing ψ0 = ∑n
i=1ψi , we can think of

ψ �
(
ψ1

ψ0
,
ψ2

ψ0
, . . . ,

ψn

ψ0

)t
(1.4)

as a vector ofprobabilitiesfor being in different states. It is important to emphasise
that they may have nothing to do with our view of how the markets will move. First
of all,

What isψ0?
Suppose that as in our binary model (where we had a risk-free cash bond) the

market allowspositive riskless borrowing. In this general setting we just suppose
that we can replicate such a bond by a portfolioθ for which

Dtθ =




1
1
...

1


 ,

i.e. the value of the portfolio at timeT is one, no matter what state the market is
in. Using the fact thatψ is a state price vector, we calculate that the cost of such a
portfolio at time zero is

S0 · θ = (Dψ) · θ = ψ · (Dtθ) =
n∑
i=1

ψi = ψ0.

That isψ0 represents the discount on riskless borrowing. In our notation of §1.2,
ψ0 = e−rT .

Expectation
recovered

Now under the probability distribution given by the vector (1.4), the expected value
of the i th security at timeT is

E
[
SiT

] = n∑
j=1

Di j
ψ j

ψ0
= 1

ψ0

n∑
j=1

Di jψ j = 1

ψ0
Si0,

where in the last equality we have usedS0 = Dψ . That is

Si0 = ψ0E
[
SiT

]
, i = 1, . . . ,n. (1.5)

Any security’s price is its discounted expected payoffunder the probability distribu-
tion (1.4). The same must be true of any portfolio. This observation gives us a new
way to think about the pricing of contingent claims.

Definition 1.6.1 We shall say that a claim, C, at time T isattainableif it can be
hedged. That is, if there is a portfolio whose value at time T is exactly C.

Notation When we wish to emphasise the underlying probability measure,
Q, we writeEQ for the expectation operator.
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Theorem 1.6.2 If there is no arbitrage, the unique time zero price of an attainable
claim C at time T isψ0EQ[C] where the expectation is with respect to any
probability measureQ for which Si0 = ψ0EQ[SiT ] for all i andψ0 is the discount on
riskless borrowing.

Remark: Notice that it is crucial that the claim is attainable (see Exercise 11).�

Proof of Theorem 1.6.2: By Theorem 1.5.2 there is a state price vector and this leads
to the probability measure (1.4) satisfyingSi0 = ψ0E

[
SiT

]
for all i . Since the claim

can be hedged, there is a portfolioθ such thatθ ·ST = C. In the absence of arbitrage,
the time zero price of the claim is the cost of this portfolio at time zero,

θ · S0 = θ · (ψ0E[ST ]) = ψ0

N∑
i=1

θiE[SiT ] = ψ0E[θ · ST ].

The same value is obtained if the expectation is calculated for any vector of
probabilities,Q, such thatSi0 = ψ0EQ

[
SiT

]
since, in the absenceof arbitrage, there

is only one riskless borrowing rate and this completes the proof. �

Risk-neutral
pricing

In this language, our arbitrage pricing result says that if we can find a probability
vector for which the time zero value of each underlying security is its discounted
expected value at timeT then we can find the time zero value of anyattainable
contingent claim by calculating its discounted expectation. Notice that we use the
sameprobability vector, whatever the claim.

Definition 1.6.3 If our market can be in one of n possible states at time T , then
any vector, p= (p1, p2, . . . , pn) � 0, of probabilities for which each security’s
price is its discounted expected payoff is called arisk-neutral probability measureor
equivalent martingale measure.

The termequivalentreflects the condition thatp � 0; cf. Definition 2.3.12. Our
simple form of the Fundamental Theorem of Asset Pricing (Theorem 1.5.2) says
that in a market with positive riskless borrowing there is no arbitrage if and only if
there is an equivalent martingale measure. We shall refer to the process of pricing by
taking expectations with respect to a risk-neutral probability measure asrisk-neutral
pricing.

Example 1.3.1 revisited Let us return to our very first example of pricing a European
call option and confirm that the above formula really does give us the arbitrage price.

Here we have just two securities, a cash bond and the underlying stock. The
discount on borrowing isψ0 = e−rT , but we are assuming that the Yen interest
rate is zero, soψ0 = 1. The matrix of security values at timeT is given by

D =
(

1 1
4000 2000

)
.
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Writing p for the risk-neutral probability that the security price vector is(1,4000)t ,
if the stock price is to be equal to its discounted expected payoff,pmust solve

4000p+ 2000(1− p) = 2500,

which givesp = 0.25. The contingent claim is�1000 if the stock price at expiry
is �4000 and zero otherwise. The expected value of the claim under the risk-neutral
probability, and therefore (since interest rates are zero) the price of the option, is then
�0.25× 1000= �250, as before.

An advantage of this approach is that, armed with the probabilityp, it is now
a trivial matter to price all European options on this stock with the same expiry
date (six months time) by taking expectations with respect to thesameprobability
measure. For example, for a European put option with strike price�3500, the price
is

�E
[
(K − ST )+

] = �0.75× 1500= �1125.

Our original argument would lead to a new set of simultaneous equations for each
new claim. �

Complete
markets

We now have a prescriptionfor the arbitrage price of a claim if one exists, that is if
the claim is attainable. But we must be a little cautious. Arbitrage prices only exist
for attainable claims – even though the prescription may continue to make sense.

Definition 1.6.4 A market is said to becompleteif every contingent claim is
attainable, i.e. if every possible derivative claim can be hedged.

Proposition 1.6.5 A market consisting of N tradable assets, evolving according
to a single period model in which at the end of the time period the market is one of
n possible states, is complete if and only if N≥ n and the rank of the matrix, D, of
security prices is n.

Proof: Any claim in our market can be expressed as a vectorv ∈ Rn. A hedge for
that claim will be a portfolioθ = θ(v) ∈ RN for which Dtθ = v. Finding such aθ
amounts to solvingn equations inN unknowns. Thus a hedging portfolio exists for
everychoice ofv if and only if N ≥ n and the rank ofD is n, as required. �

Notice in particular that our single period binary model is complete.
Suppose that our market is complete and arbitrage-free and letQ andQ′ be any

two equivalent martingale measures. By completeness every claim is attainable, so
for everyrandom variableX, using that there is only one risk-free rate,

EQ [X] = EQ′
[X] .

In other wordsQ = Q′. So in a complete arbitrage-free market the equivalent
martingale measure isunique.
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The main
results so far

Let us summarise the results for our single period markets. They will be reflected
again and again in what follows.

Results for single period models
• The market is arbitrage-free if and only if there exists a martingale measure,

Q.
• The market is complete if and only ifQ is unique.
• The arbitrage price of an attainable claimC is e−rTEQ [C] .

Martingale measures are a powerful tool. However, in an incomplete market, if a
claimC is not attainable different martingale measures can give different prices. The
arbitrage-free notion offair price only makes sense if we canhedge.

Trading in
two different
markets

We must sound just one more note of caution. It is important in calculatingthe
risk-neutral probabilities that all the assets being modelled are tradable in the same
market. We illustrate with an example.

Example 1.6.6 Suppose that in the US dollar markets the current Sterling
exchange rate is1.5 (so that £100costs$150). Consider a European call option that
offers the holder the right to buy £100 for $150at time T . The riskless borrowing
rate in the UK is u and that inthe US is r. Assuming a single period binary model in
which the exchange rate at the expiry time is either1.65 or 1.45, find the fair price
of this option.

Solution: Now we have a problem. The exchange rate isnot tradable. Nor, indollar
markets, is a Sterling cash bond – it is a tradable instrument, but in Sterling markets.
However, the product of the twois a dollar tradable and we shall denote the value of
this product bySt at timet .

Now, since the riskless interest rate in the UK isu, the time zero price of a Sterling
cash bond, promising to pay£1 at timeT , ise−uT and, of course, at timeT the bond
price is one. Thus we haveS0 = e−uT150 andST = 165 orST = 145.

Let p be the risk-neutral probability thatST = 165. Then, since the discounted
price (in thedollar market) of our ‘asset’ at timeT must have expectationS0, we
obtain

150e−uT = e−rT (165p+ 145(1− p)) ,

which yields

p = 150e(r−u)T − 145

20
.

The price of the option is the discounted expected payoff with respect to this
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probability which gives

V0 = e−rT15p = 3

4

(
150e−uT − 145e−rT

)
.

�

Exercises

1 What view about the market is reflected in each of the following strategies?

(a) Bullish vertical spread:Buy one European call and sell a second one with the
same expiry date, but a larger strike price.

(b) Bearish vertical spread:Buy one European call and sell a second one with the
same expiry date but a smaller strike price.

(c) Strip:Buy one European call and two European puts with the same exercise date
and strike price.

(d) Strap:Buy two European calls and one European put with the same exercise date
and strike price.

(e) Strangle:Buy a European call and a European put with the same expiry date but
different strike prices (consider all possible cases).

2 A butterfly spreadrepresents the complementary bet to the straddle. It has the
following payoff at expiry:

Payoff

STE E1 2

Find a portfolio consisting of European calls and puts, all with the same expiry date,
that has this payoff.

3 Suppose that the price of a certain asset has the lognormal distribution. That is
log(ST/S0) is normally distributed with meanν and varianceσ 2. CalculateE[ST ].

4 (a) Prove Lemma 1.3.2.
(b) What happens if we drop the assumption thatd < erT < u?

5 Suppose that at current exchange rates,£100 is worthe160. A speculator believes
that by the end of the year there is a probability of 1/2 that the pound will have fallen
to e1.40, and a 1/2 chance that it will have gained to be worthe2.00. He therefore
buys a European put option that will give him the right (but not the obligation) to
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sell£100 fore1.80 at the end of the year. He payse20 for this option. Assume that
the risk-free interest rate is zero across the Euro-zone. Using a single period binary
model, either construct a strategy whereby one party is certain to make a profit or
prove that this is the fair price.

6 How should we modify the analysis of Example 1.3.1 if we are pricing an option
based on a commodity such as oil?

7 Show that if there is no arbitrage in the market, then any portfolio constructed at time
zero that exactly replicates a claimC at timeT has the same value at time zero.

8 Put–call parity:Denote byCt andPt respectively the prices at timet of a European
call and a European put option, each with maturityT and strikeK . Assume that the
risk-free rate of interest is constant,r , and that there is no arbitrage in the market.
Show that for eacht ≤ T ,

Ct − Pt = St − Ke−r (T−t).

9 Use risk-neutral pricing to value the option in Exercise 5. Check your answer by
constructing a portfolio that exactly replicates the claim at the expiry of the contract.

10 What is the payoff of a forward at expiry? Use risk-neutral pricing to solve the pricing
problem for a forward contract.

11 Consider theternary model for the underlying of §1.4. How many equivalent
martingale measures are there? If there are two different martingale measures, do
they give the same price for a claim? Are therearbitrage opportunities?

12 Suppose that the value of a certain stock at timeT is a random variable with
distribution P. Note we arenot assuming a binary model. An option written on
this stock has payoffC at timeT . Consider a portfolio consisting ofφ units of the
underlying andψ units of bond, held until timeT , and writeV0 for its value at time
zero. Assuming that interest rates are zero, show that the extra cash required by the
holder of this portfolio to meet the claimC at timeT is

� � C − V0 − φ (ST − S0) .

Find expressions for the values ofV0 andφ (in terms ofE [ST ], E [C], var [ST ] and
cov(ST ,C)) that minimise

E
[
�2],

and check that for these valuesE [�] = 0.
Prove that for a binary model, any claimC dependslinearly onST −S0. Deduce that
in this case we can findV0 andφ such that� = 0.
When the model isnot complete, the parameters that minimiseE

[
�2

]
correspond

to finding the best linear approximation toC (based onST − S0). The corresponding
value of the expectation is a measure of theintrinsic risk in the option.
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13 Exchange rate forward:Suppose that the riskless borrowing rate in the UK isu
and that in the USA isr . A dollar investor wishes to set the exchange rate,CT , in
a forward contract in which the two parties agree to exchangeCT dollars for one
pound at timeT . If a pound is currentlyC0 dollars, what is the fair value ofCT?

14 The option writer in Example 1.6.6 sells adigital option to a speculator. This amounts
to a bet that the asset price will go up. The payoff is a fixed amount of cash if the
exchange rate goes to $165 per£100, and nothing if it goes down. If the speculator
pays $10 for this bet, what cash payout should the option writer be willing to write
into the option? You may assume that interest rates are zero.

15 Suppose now that the seller of the option in Example 1.6.6operates in the Sterling
markets. Reexpress the market in terms of Sterling tradables and find the corre-
sponding risk-neutral probabilities. Are they the same asthe risk-neutral probabilities
calculated by the dollar trader? What is the dollar cost at time zero of the option as
valued by the Sterling trader?
This is an example ofchange of numeraire. The dollar trader uses the dollar bond as
the reference risk-free asset whereas the Sterling trader uses a Sterling bond.




