
Preamble

An ocean data assimilation system in miniature

The pages of this book are filled with the mathematics of oceanic and atmospheric
circulationmodels, observing systemsand variational calculus. Itwould only be natural
to ask: What is going on here, and is it really new? The answers are “regression” and
hence “no”: almost every issue of any marine biology journal contains a variational
ocean data assimilation system in miniature.

P.1 Linear regression in marine biology

The article “Repression of fecundity in the neritic copepod Acartia clausi ex-
posed to the toxic dinoflagellate Alexandrium lusitanicum: relationship between
feeding and egg production”, by Jörg Dutz, appeared in Marine Ecology Progress
Series in 1998. Dinoflagellates are a species of phytoplankton, or small plant-like
creatures. The genusAlexandrium (www.units.it/~mabiolab/set previous.htm,

click on ‘Toxic microalgae’) produces toxins which rise through the food web
to produce paralytic shellfish poisoning in a variety of hydrographical regions,
ranging from temperate to tropical. Zooplankton, or small animal-like creatures
(www.ios.bc.ca/ios/plankton/ios tour/zoop lab/copepod.htm), graze on
these dinoflagellates. The effect of the toxins on the grazers naturally arises.
Dutz (1998) fed toxin-bearing Alexandrium lusitanicum and toxin-free Rhodomonas
baltica (bioloc.coas.oregonstate.edu/baltica.jpg) to females of the copepod
Acartia clausi in controlled amounts, and measured the fecundity or gross growth
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2 Preamble
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Figure P.1.1 Gross growth
efficiency of Acartia clausi
versus food supply. Solid
circles: nontoxic
Rhodomonas baltica; open
circles: toxic Alexandrium
lusitanicum (after Dutz,
1998).

efficiency in terms of total carbon production. He found that the grazers were not
killed, and they continued to lay eggs. However, their fecundity was affected: see
Fig. P.1.1. Note the controlled food concentration (abscissa x) with five values: 200,
400, 800, 1200, and 1600 µgC l−1. Fecundity is not influenced by the supply of
nontoxic Rhodomonas (solid circles), but is clearly reduced as the supply of toxic
Alexandrium (open circles) increases. The gross growth efficiencies (ordinate y) in
the latter case are respectively: 0.23, 0.21, 0.18, 0.14, 0.10 (Dutz, 1998; Table 2). The
error bars indicate Dutz’ maximum and minimum estimates. A straight line clearly fits
the Alexandrium data well. The regression parameters are: a = 0.25, b = 9.2× 10−5,
r2 = 0.997, F1, 3 = 355, P < 0.0005.
A brief review of linear regression is in order. The data are M ordered pairs:

(xm, ym), 1 ≤ m ≤ M . The model is

ym = α + βxm + εm, (P.1.1)

where α and β are unknown constants, while εm is a random variable with mean and
covariance

Eεm = 0, E(εm εn) = σ 2δnm =
{

σ 2, n = m
0, n �= m.

(P.1.2)

The error εm is an admission of measurement error, and of the unrepresentativeness of
a linear relationship. Note that the model consists of an explicit functional form (here, a
linear relationship), together with probabilistic statements (here, mean and covariance)
about the error in the form. We seek an estimate (here, a regression line):

ŷ = a + bx, (P.1.3)

where a and b are to be chosen. As an estimator, let us choose a uniformly weighted
sum of squared errors:

WSSE = σ−2
M∑
m=1
(ym − a − bxm)

2. (P.1.4)
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P.1 Linear regression in marine biology 3

A value for σ may be inferred from the error bars in Fig. P.1.1. It is easily shown that
WSSE is minimal if a and b satisfy the normal equations:(

1 x
x x2

) (
a
b

)
=

(
y
xy

)
, (P.1.5)

where the overbar denotes the arithmetic mean, for example x = M−1 ∑M
m=1 xm . Note

that (P.1.5) is independent of the uniform weight σ−2. These equations are of course
trivially solved for a and b. The following statements may be made about the first and
second moments of the solution:

Ea = α, Eb = β,

E(a − α)2 = x2σ 2

M(x2 − (x)2)
, E(b − β)2 = σ 2

M(x2 − (x)2)
. (P.1.6)

Moreover, a, b and ŷm are normally distributed around α, β and ym respectively. Note
that the error variances in (P.1.6) areO(M−1). In addition to the posterior error estimates
(P.1.6), there are significance test statistics such as the variance-ratio or F test:

F1,M−2 =

M∑
m=1
(ym − y)2

M∑
m=1
(ym − ŷm)

, (P.1.7)

where ŷm ≡ axm + b. The numerator is the total variance of the data; the denominator
is the total variance of the residuals for the regression line (P.1.3). Note that (P.1.7)
is independent of σ 2. The subscripts 1 and M − 2 indicate the number of degrees
of freedom in the denominator and the numerator, respectively. The value of F here
is 355; accordingly the probability P of the null hypothesis (α = β = 0) being true
is less than 0.05%. In other words it is highly credible that grazing on Alexandrium
lusitanicum does repress the fecundity of Acartia clausi.

Exercise P.1.1
An alternative test statistic is provided by the weighted denominator in (P.1.7):

resW SSE = σ−2
M∑
m=1
(ym − ŷm)

2

∼ χ2M , as M → ∞. (P.1.8)

Verify that Eχ2M = M , varχ2M = 2M . Calculate (P.1.8) using Dutz’ data, and draw
conclusions. �

If the data had suggested it, Dutz could have considered quadratic regression:

ym = α + βxm + γ x2m + εm,

Eεm = 0, E(εnεm) = σ 2δnm . (P.1.9)
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4 Preamble

Figure P.1.2 On the left: the parabola of least-squares best fit to four data points,
which are shown as solid circles. The abscissa values for the data (see the tick marks
on the abscissa in the zoom on the right) are ill-chosen. As a result, the least-squares
best fit is clearly ill-conditioned. The abscissa itself would be a more sensible fit to
the data.

The estimate would be

ŷ = a + bx + cx2. (P.1.10)

The estimator would again be (P.1.4), for which the normal equations are
 1 x x2

x x2 x3

x2 x3 x4





a
b
c


 =


 y

xy
x2y


. (P.1.11)

Suppose for simplicity that x = x3 = 0 (these are at our disposal). Then the system
(P.1.11) is ill-conditioned; that is, the solution (a, b, c) is highly sensitive to the inhom-
ogenity on the right-hand side if x4/(x2)2 
 1. This ratio is also at our disposal. Just
such a situation is sketched in Fig. P.1.2. The best fit to the four data points is a deep
parabola, yet the most sensible fit would be the abscissa itself (y = 0). In conclusion,
the stability of the estimate (P.1.10) is controlled by the choice of abscissa values xm ,
1 ≤ m ≤ M .

P.2 Data assimilation checklist

The preceeding elementary application of linear regression in marine biology has every
aspect of an “ocean data assimilation system”: see the following checklist.

Data assimilation checklist

INPUTS
(i) There is an observing system, consisting of measurements of gross growth
efficiency at selected food concentration levels.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521813735 - Inverse Modeling of the Ocean and Atmosphere
Andrew F. Bennett
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521813735


P.2 Data assimilation checklist 5

(ii) There are dynamics, expressed here as (P.1.1), the explicit general solution of
the differential equation

d2y

dx2
= 0, (P.2.1)

plus measurement errors εm , 1 ≤ m ≤ M . The values α, β indicated in (P.1.1)
for the regression constants a, b are the “true” values.

(iii) There is an hypothesis (P.1.2) about the distribution of errors εm around the
true regression line.

(iv) There is an estimator, here the uniformly weighted sum of squared errors
(P.1.4).

(v) There is an optimization algorithm, here the normal equations (P.1.5) which
would, in the general case of N th-order polynomial regression, be robustly
solved using the singular value decomposition.

OUTPUTS
(vi) There is an estimate of the state, here the regression line (P.1.3) with values

of a and b obtained from the normal equations (P.1.5).
(vii) There are estimates of data residuals and dynamical residuals. Here the two

types of residual are indistinguishable; both are in fact given by ym − ŷm .
(viii) There are posterior error statistics, here the means and variances (P.1.6) for

a − α and b − β.
(ix) There is an assessment of the array or observing system. Here it is the

conditioning of the normal matrix, and is determined by the choices of food
concentrations xm , 1 ≤ m ≤ M .

(x) There are test statistics, here the F-variable (P.1.7) and χ2-variable (P.1.8).
These indicate the credibility of the hypothetical model, and thus the credibility
of the derived posterior error statistics.

(xi) There are indications for model improvement. Here, however, the indication
is that the linear model is so credible that a quadratic model (P.1.10) is
unnecessary.

Variational assimilation of El Niño data from the tropical Pacific, into a coupled
intermediate model of the ocean and atmosphere, is described in §5.5. The checklist
reads as follows.

INPUTS
(i) The observations are monthly-mean and five-day mean values of Sea Surface
Temperature (SST, or T (1)), the depth of the 20◦ isotherm (Z20) and surface
winds (ua , va), at the TOGA–TAO moorings, from April 1994 to May 1998.

(ii) The dynamics are those of an intermediate coupled model after Zebiak and
Cane (1987); the thermodynamics of the upper oceanic layer and the coupling
through the wind stress are nonlinear. Otherwise the oceanic and atmospheric
dynamics are those of linearized shallow-water waves.
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6 Preamble

(iii) The hypothesis consists of means and autocovariances of errors in the
dynamics, in the initial conditions and in the data.

(iv) The estimator is the combined, space-integrated and time-integrated weighted
squared error.

(v) The optimization algorithm is the iterated, indirect representer algorithm for
solving the nonlinear Euler–Lagrange equations.

OUTPUTS
(vi) There are estimates of space-time fields of surface temperature, currents,

thermocline depths and surface winds.
(vii) There are corresponding space–time fields of minimal residuals in the

dynamics, initial conditions and data.
(viii) There are space–time covariances of errors in the optimal estimates of the

coupled circulation.
(ix) These are assessments of the efficiency of the monthly-mean TOGA–TAO

system for observing the “weak” dynamics of the coupled model, that is,
observing the intermediate dynamics subject to the hypothesized error statistics.

(x) The reduced estimator is a χ2-variable for testing the hypothesized error
moments (they were found to lack credibility).

(xi) The dominance of the minimal residual in the upper-ocean thermodynamic
balance indicates that it would serve no purpose to hypothesize increased
variances for the dynamical errors: the low-resolution intermediate dynamics
should be abandoned in favor of a fully-stratified, high-resolution, Primitive
Equation model.

Variational data assimilation, or generalized inversion of dynamical models and obser-
vations, is really no more than regression analysis. The novelty lies in the mathematical
and physical subtlety of realistic dynamics, in the complexity of the hypotheses about
the multivariate random error fields, and in the sheer size of modern data sets. The
novelty also lies in the emergence of powerful and efficient optimization algorithms,
which allow us to test our models in the same way that all other scientists test theirs.
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Chapter 1

Variational assimilation

Chapter 1 is a minimal course on assimilating data into models using the calculus of
variations. The theory is introduced with a “toy” model in the form of a single linear
partial differential equation of first order. The independent variables are a spatial
coordinate, and time. The well-posedness of the mixed initial-boundary value problem
or “forward model” is established, and the solution is expressed explicitly with the
Green’s function. The introduction of additional data renders the problem ill-posed.
This difficulty is resolved by seeking a weighted least-squares best fit to all the infor-
mation. The fitting criterion is a penalty functional that is quadratic in all the misfits to
the various pieces of information, integrated over space and time as appropriate. The
best-fit or “generalized inverse” is expressed explicitly with the representers for the
penalty functional, and with the Green’s function for the forward model. The behavior
of the generalized inverse is examined for various limiting choices of weights. The
smoothness of the inverse is seen to depend upon the nature of the weights, which
will be subsequently identified as kernel inverses of error covariances. After reading
Chapter 1, it is possible to carry out the first four computing exercises in Appendix A.

1.1 Forward models

1.1.1 Well-posed problems

Mechanics is capturedmathematically by “well-posed problems”. Themechanical laws
for particles, rigid bodies and fields are with few exceptions expressed as ordinary or
partial differential equations; data about the state of themechanical system are provided
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8 1. Variational assimilation

in initial conditions or boundary conditions or both. The collection of general equations
and ancillary conditions constitute a “well-posed problem” if, according to Hadamard
(1952; Book I) or Courant and Hilbert (1962; Ch. III, §6):
(i) a solution exists,

which

(ii) is uniquely determined by the inputs (forcing, initial conditions, boundary
conditions),

and which

(iii) depends continuously upon the inputs.

Classical particles and bodies move smoothly, while classical fields vary smoothly
so only differentiable functions qualify as solutions. The repeatability of classical
mechanics argues for determinism. The classical perception of only finite changes in a
finite time argues for continuous dependence.
Ill-posed problems fail to satisfy at least one of conditions (i)–(iii). They cannot be

solved satisfactorily but can be resolved by generalized inversion, which is the subject
of this chapter. Inevitably, well-posed problems are also known as “forward models”:
given the dynamics (the mechanical laws) and the inputs (any initial values, boundary
values or sources), find the state of the system. In this first chapter, an example of a
forward model is given; the uniqueness of solutions is proved, and an explicit solution
is constructed using the Green’s function. That is, the well-posedness of the forward
model is established.

1.1.2 A “toy” example

The following “toy” example involves an unknown “ocean circulation” u = u(x, t),
where x, t and u are real variables. The “ocean basin” is the interval 0 ≤ x ≤ L , while
the time of interest is 0 ≤ t ≤ T : see Fig. 1.1.1.
The “ocean dynamics” are expressed as a linear, first-order partial differential

equation:

∂u

∂t
+ c

∂u

∂x
= F (1.1.1)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T , where c is a known, constant, positive phase speed. The
inhomogeneity F = F(x, t) is a specified forcing field; later it will become known as
the prior estimate of the forcing. An initial condition is

u(x, 0) = I (x) (1.1.2)

for 0 ≤ x ≤ L , where I is specified. A boundary condition is

u(0, t) = B(t) (1.1.3)

for 0 ≤ t ≤ T , where B is specified.
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1.1 Forward models 9
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Figure 1.1.1 Toy ocean
basin.

1.1.3 Uniqueness of solutions

Todetermine the uniqueness of solutions (Courant andHilbert, 1962) for (1.1.1), (1.1.2)
and (1.1.3), let u1 and u2 be two solutions for the same choices of F, I and B. Define
the difference

v ≡ u1 − u2. (1.1.4)

Then

∂v

∂t
+ c

∂v

∂x
= 0 (1.1.5)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T ;

v(x, 0) = 0 (1.1.6)

for 0 ≤ x ≤ L , and

v(0, t) = 0 (1.1.7)

for 0 ≤ t ≤ T .
Multiplying (1.1.5) by v and integrating over all x yields

d

dt

1

2

L∫
0

v2 dx = −c
[
1

2
v2

]x=L
x=0

= − c

2
v(L , t)2, (1.1.8)

using the boundary condition (1.1.7). Integrating (1.1.8) over time from 0 to t yields

1

2

L∫
0

v2(x, t) dx = 1

2

L∫
0

v2(x, 0) dx − c

2

t∫
0

v2(L , s) ds. (1.1.9)

The right-hand side (rhs) of (1.1.9) is nonpositive, as a consequence of the initial
condition (1.1.6). Hence

v(x, t) = 0, (1.1.10)
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10 1. Variational assimilation

that is,

u1(x, t) = u2(x, t) (1.1.11)

for 0 ≤ x ≤ L and 0 ≤ t ≤ T . So we have established that (1.1.1), (1.1.2) and (1.1.3)
have a unique solution for each choice of F , I and B.

1.1.4 Explicit solutions: Green’s functions

We may construct the solution explicitly, using the Green’s function (Courant and
Hilbert, 1953) or fundamental solution γ for (1.1.1)–(1.1.3).
Let γ = γ (x, t, ξ, τ ) satisfy

−∂γ

∂t
− c

∂γ

∂x
= δ(x − ξ )δ(t − τ ), (1.1.12)

where the δs are Dirac delta functions, and 0 ≤ ξ ≤ L , 0 ≤ τ ≤ T . Also,

γ (L , t, ξ, τ ) = 0 (1.1.13)

for 0 ≤ t ≤ T , and

γ (x, T, ξ, τ ) = 0 (1.1.14)

for 0 ≤ x ≤ L .

Exercise 1.1.1
(a) Verify that

γ (x, t, ξ, τ ) = δ(x − ξ − c(t − τ ))H (τ − t) (1.1.15)

for 0 ≤ x < L , 0 ≤ t ≤ T , where H is the Heaviside unit step function.
(b) Show that

u(ξ, τ ) = uF (ξ, τ ) ≡
T∫
0

dt

L∫
0

dx γ (x, t, ξ, τ )F(x, t)

+
L∫
0

dx γ (x, 0, ξ, τ )I (x)+ c

T∫
0

dt γ (0, t, ξ, τ )B(t). (1.1.16)

�

Relabeling (1.1.16) yields

uF (x, t) =
T∫
0

dτ

L∫
0

dξγ (ξ, τ, x, t)F(ξ, τ )

+
L∫
0

dξγ (ξ, 0, x, t)I (ξ )+ c

T∫
0

dτγ (0, τ, x, t)B(τ ), (1.1.17)
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