This book discusses the classical foundations of field theory, using the language of variational methods and covariance. There is no other book which gives such a comprehensive overview of the subject, exploring the limits of what can be achieved with purely classical notions. These classical notions have a deep and important connection with the second quantized field theory, which is shown to follow on from the Schwinger Action Principle. The book takes a pragmatic view of field theory, focusing on issues which are usually omitted from quantum field theory texts. It uses a well documented set of conventions and catalogues results which are often hard to find in the literature. Care is taken to explain how results arise and how to interpret results physically, for graduate students starting out in the field. Many physical examples are provided, making the book an ideal supplementary text for courses on elementary field theory, group theory and dynamical systems. It will also be a valuable reference for researchers already working in these and related areas.

MARK BURGESS obtained his PhD in theoretical physics from the University of Newcastle Upon Tyne in 1990. He held a Royal Society fellowship at the University of Oslo from 1991 to 1992, and then had a two-year postdoctoral fellowship from the Norwegian Research Council. Since 1994, he has been an associate professor at Oslo University College. Dr Burgess has been invited to lecture at universities and institutes throughout the world, and has published numerous articles, as well as five previous books.
Classical Covariant Fields

MARK BURGESS
Oslo University College
Norway
Contents

Foreword

xix

Part 1: Fields

1 Introduction
1.1 Fundamental and effective field theories
1.2 The continuum hypothesis
1.3 Forces
1.4 Structural elements of a dynamical system

2 The electromagnetic field
2.1 Maxwell’s equations
 2.1.1 Potentials
 2.1.2 Gauge invariance
 2.1.3 4-vectors and \((n + 1)\)-vectors
 2.1.4 The field strength
 2.1.5 Covariant field equations using \(F_{\mu\nu}\)
 2.1.6 Two invariants
 2.1.7 Gauge invariance and physical momentum
 2.1.8 Wave solutions to Maxwell’s equations
2.2 Conservation laws
 2.2.1 Current conservation
 2.2.2 Poynting’s vector and energy conservation
2.3 Electromagnetism in matter
 2.3.1 Dielectrics
 2.3.2 Covariance and relative motion: the Doppler effect
 2.3.3 Refractive index in matter
2.4 Aharonov–Bohm effect

© Cambridge University Press
www.cambridge.org
Contents

3 Field parameters

3.1 Choice of parametrization 33
3.2 Configuration space 34
 3.2.1 Flat and curved space 34
 3.2.2 Vector equations 35
 3.2.3 Coordinate bases 36
 3.2.4 Example: Euclidean space 38
 3.2.5 Example: Minkowski spacetime 40
3.3 Momentum space and waves 42
3.4 Tensor transformations 43
3.5 Properties 45
3.6 Euclidean and Riemannian spacetime 47

4 The action principle

4.1 The action in Newtonian particle mechanics 50
 4.1.1 Variational principle 52
 4.1.2 δS: equation of motion 54
 4.1.3 The Euler–Lagrange equations 54
 4.1.4 δS: continuity 55
 4.1.5 Relativistic point particles 57
4.2 Frictional forces and dissipation 59
4.3 Functional differentiation 60
4.4 The action in covariant field theory 61
 4.4.1 Field equations and continuity 63
 4.4.2 Uniqueness of the action 64
 4.4.3 Limitations of the action principle 66
 4.4.4 Higher derivatives 68
4.5 Dynamical and non-dynamical variations 68
 4.5.1 Scalar fields 68
 4.5.2 Gauge and vector fields 69
 4.5.3 The metric and second-rank tensors 70
4.6 The value of the action 71

5 Classical field dynamics

5.1 Solving the field equations 72
 5.1.1 Free fields 73
 5.1.2 Boundary conditions and causality I 74
 5.1.3 Positive and negative energy solutions 75
 5.1.4 Sources 77
 5.1.5 Interactions and measurements 79
5.2 Green functions and linear response 79
 5.2.1 The inverse problem 79
 5.2.2 Boundary conditions and causality II 82
Contents

5.2.3 Green functions in Fourier momentum space 83
5.2.4 Limitations of the Green function method 84
5.2.5 Green functions and eigenfunction methods 85

5.3 Scalar field Green function 87
5.3.1 The Wightman functions 88
5.3.2 Boundary conditions and poles in the k_0 plane 90
5.3.3 Retarded Green function 91
5.3.4 Advanced Green function 96
5.3.5 Feynman Green function 96
5.3.6 Comment on complex contours 98

5.4 Scalar Green functions in real space 99
5.4.1 The retarded Green function for $n = 3$ as $m \to 0$ 100
5.4.2 The $G^{(4)}$ and G_F for $n = 3$ as $m \to 0$ 101
5.4.3 Frequency-dependent form of G_F and G_i in $n = 3$ 102
5.4.4 Euclidean Green function in $2 + 0$ dimensions 102
5.4.5 Massive case 103

5.5 Schrödinger Green function 104
5.6 Dirac Green functions 106
5.7 Photon Green functions 106
5.8 Principal values and Kramers–Kronig relations 108
5.9 Representation of bound states in field theory 111

6 Statistical interpretation of the field 113
6.1 Fluctuations and virtual processes 113
6.1.1 Fluctuation generators: $G_F(x, x')$ and $G_E(x, x')$ 113
6.1.2 Correlation functions and generating functionals 114
6.1.3 Symmetry and causal boundary conditions 118
6.1.4 Work and dissipation at steady state 119
6.1.5 Fluctuations 121
6.1.6 Divergent fluctuations: transport 126
6.1.7 Fluctuation dissipation theorem 128
6.2 Spontaneous symmetry breaking 130

7 Examples and applications 131
7.1 Free particles 131
7.1.1 Velocity distributions 134
7.2 Fields of bound particles 134
7.3 Interaction between matter and radiation 137
7.3.1 Maxwell’s equations 137
7.3.2 Electromagnetic waves 138
7.3.3 Dispersion and the Faraday effect 139
7.3.4 Radiation from moving charges in $n = 3$: retardation 142
7.4 Resonance phenomena and dampening fields 146
<table>
<thead>
<tr>
<th>7.4.1</th>
<th>Cherenkov radiation</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.2</td>
<td>Cyclotron radiation</td>
<td>148</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Landau damping</td>
<td>150</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Laser cooling</td>
<td>153</td>
</tr>
<tr>
<td>7.5</td>
<td>Hydrodynamics</td>
<td>155</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Navier–Stokes equations</td>
<td>155</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Diffusion</td>
<td>158</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Forced Brownian motion</td>
<td>160</td>
</tr>
<tr>
<td>7.6</td>
<td>Vortex fields in 2 + 1 dimensions</td>
<td>164</td>
</tr>
<tr>
<td>7.6.1</td>
<td>A vortex model</td>
<td>164</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Green functions</td>
<td>165</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Relationship between $\theta(r - r')$ and $g(r - r')$</td>
<td>165</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Singular nature of $\theta(r - r')$</td>
<td>166</td>
</tr>
</tbody>
</table>

Part 2: Groups and fields

8 Field transformations

<table>
<thead>
<tr>
<th>8.1</th>
<th>Group theory</th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.1</td>
<td>Definition of a group</td>
<td>170</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Group transformations</td>
<td>170</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Use of variables which transform like group vectors</td>
<td>172</td>
</tr>
<tr>
<td>8.2</td>
<td>Cosets and the factor group</td>
<td>173</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Cosets</td>
<td>173</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Conjugacy and invariant sub-groups</td>
<td>174</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Schur’s lemma and the centre of a group</td>
<td>175</td>
</tr>
<tr>
<td>8.2.4</td>
<td>The factor group G/H</td>
<td>175</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Example of a factor group: $SU(2)/Z_2$</td>
<td>175</td>
</tr>
<tr>
<td>8.3</td>
<td>Group representations</td>
<td>177</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Definition of a representation G_R</td>
<td>177</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Infinitesimal group generators</td>
<td>177</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Proper group elements</td>
<td>178</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Conjugate representations</td>
<td>180</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Congruent representations</td>
<td>180</td>
</tr>
<tr>
<td>8.4</td>
<td>Reducible and irreducible representations</td>
<td>180</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Invariant sub-spaces</td>
<td>181</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Reducibility</td>
<td>182</td>
</tr>
<tr>
<td>8.5</td>
<td>Lie groups and Lie algebras</td>
<td>183</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Normalization of the generators</td>
<td>184</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Adjoint transformations and unitarity</td>
<td>184</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Casimir invariants</td>
<td>188</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Sub-algebra</td>
<td>188</td>
</tr>
<tr>
<td>8.5.5</td>
<td>The Cartan sub-algebra</td>
<td>188</td>
</tr>
</tbody>
</table>
Contents

8.5.6 Example of diagonalization 189
8.5.7 Roots and weights 190
8.5.8 The Cartan–Weyl basis 191
8.5.9 Group vectors and Dirac notation 194
8.5.10 Example: rotational eigenvalues in three dimensions 195

8.6 Examples of discrete and continuous groups 198
8.6.1 $GL(N, C)$: the general linear group 198
8.6.2 $U(N)$: unitary matrices 199
8.6.3 $SU(N)$: the special unitary group 199
8.6.4 $SU(2)$ 200
8.6.5 $U(1)$: the set of numbers z : $|z|^2 = 1$ 200
8.6.6 Z_N: the Nth roots of unity 201
8.6.7 $O(N)$: the orthogonal group 202
8.6.8 $SO(3)$: the three-dimensional rotation group 202
8.6.9 $SO(2)$: the two-dimensional rotation group 202

8.7 Universal cover groups and centres 203
8.7.1 Centre of $SU(N)$ is Z_N 204
8.7.2 Congruent algebras: N-ality 204
8.7.3 Simple and semi-simple Lie algebras 206

8.8 Summary 206

9 Spacetime transformations 207
9.1 Parity and time reversal 209

9.2 Translational invariance 210
9.2.1 Group representations on coordinate space 210
9.2.2 Bloch’s theorem: group representations on field space 212
9.2.3 Spatial topology and boundary conditions 212

9.3 Rotational invariance: $SO(n)$ 214
9.3.1 Group representations on coordinate space 215
9.3.2 Eigenfunctions: circular and spherical harmonics 216

9.4 Lorentz invariance 219
9.4.1 Physical basis 219
9.4.2 Lorentz boosts and rotations 220
9.4.3 The homogeneous Lorentz group: $SO(1, n)$ 222
9.4.4 Different representations of the Lorentz group in $3+1$ dimensions 231
9.4.5 Other spacetime dimensions 236
9.4.6 Factorization of proper Lorentz transformations 236
9.4.7 The inhomogeneous Lorentz group or Poincaré group in $3+1$ dimensions 237
9.4.8 Curved spacetime: Killing’s equation 242

9.5 Galilean invariance 243
9.5.1 Physical basis 244
xii

Contents

9.5.2 Retardation and boosts 244
9.5.3 Generator algebra 246

9.6 Conformal invariance 247
9.6.1 Scalar fields in $n + 1$ dimensions 250
9.6.2 The Maxwell field in $n + 1$ dimensions 251

9.7 Scale invariance 252
9.8 Breaking spacetime symmetry 253
9.9 Example: Navier–Stokes equations 254

10 Kinematical and dynamical transformations 256
10.1 Global or rigid symmetries 256
10.2 Local symmetries 257
10.3 Derivatives with a physical interpretation
10.3.1 Hermiticity 258
10.3.2 Commutativity with transformations 260
10.3.3 Form-invariant derivatives 261

10.4 Charge conjugation 262
10.5 TCP invariance 263
10.6 Examples
10.6.1 Gauge invariance: electromagnetism 264
10.6.2 Lorentz invariance: gravity 265
10.6.3 The two-level atom in a strong radiation field 267

10.7 Global symmetry breaking 273
10.8 Local symmetry breaking 278
10.9 Dynamical symmetry breaking mechanisms 281

11 Position and momentum 283
11.1 Position, energy and momentum 283
11.2 Particles and position
11.2.1 Schrödinger field 285
11.2.2 Klein–Gordon field 286
11.2.3 Dirac field 288
11.2.4 Spin s fields in $3 + 1$ dimensions 288

11.3 The energy–momentum tensor $\theta_{\mu\nu}$ 289
11.3.1 Example: classical particle mechanics 293
11.3.2 Example: the complex scalar field 293
11.3.3 Example: conservation 295

11.4 Spacetime invariance and symmetry on indices 296
11.5 $\theta_{\mu\nu}$ for gauge theories 296

11.6 Another energy–momentum tensor $T_{\mu\nu}$ 298
11.6.1 Variational definition 298
11.6.2 The trace of the energy–momentum tensor $T_{\mu\nu}$ 300
11.6.3 The conformally improved $T_{\mu\nu}$ 301
Contents

11.7 Angular momentum and spin 303
 11.7.1 Algebra of orbital motion in $3 + 1$ dimensions 303
 11.7.2 The nature of angular momentum in $n + 1$ dimensions 304
 11.7.3 Covariant description in $3 + 1$ dimensions 304
 11.7.4 Intrinsic spin of tensor fields in $3 + 1$ dimensions 306
 11.7.5 Helicity versus spin 308
 11.7.6 Fractional spin in $2 + 1$ dimensions 309

11.8 Work, force and transport in open systems 310
 11.8.1 The generalized force $F_\nu = \partial_\mu T^\mu\nu$ 310
 11.8.2 Work and power 313
 11.8.3 Hydrodynamic flow and entropy 314
 11.8.4 Thermodynamical energy conservation 318
 11.8.5 Kubo formulae for transport coefficients 318

11.9 Example: Radiation pressure 321

12 Charge and current 325
 12.1 Conserved current and Noether’s theorem 325
 12.2 Electric current J_μ for point charges 329
 12.3 Electric current for fields 330
 12.4 Requirements for a conserved probability 332
 12.5 Real fields 334
 12.6 Super-conductivity 335
 12.7 Duality, point charges and monopoles 336

13 The non-relativistic limit 340
 13.1 Particles and anti-particles 340
 13.2 Klein–Gordon field 341
 13.2.1 The free scalar field 341
 13.2.2 Non-relativistic limit of $G_F(x, x')$ 345
 13.3 Dirac field 346
 13.3.1 The free Dirac field 346
 13.3.2 The Dirac Green function 348
 13.3.3 Spinor electrodynamics 348
 13.4 Thermal and Euclidean Green functions 353
 13.5 Energy conservation 356
 13.6 Residual curvature and constraints 356

14 Unified kinematics and dynamics 358
 14.1 Classical Hamiltonian particle dynamics 358
 14.1.1 Hamilton’s equations of motion 359
 14.1.2 Symmetry and conservation 360
 14.1.3 Symplectic transformations 360
 14.1.4 Poisson brackets 362
Contents

14.1.5 General canonical transformations	363
14.1.6 Variations of dynamical variables and Poisson brackets	365
14.1.7 Derivation of generators from the action	366
14.1.8 Conjugate variables and dynamical completeness	368
14.1.9 The Jacobi identity and group algebra	368

14.2 Classical Lagrangian field dynamics	369
14.2.1 Spacetime continuum	369
14.2.2 Poisson brackets of fields	369

14.3 Classical statistical mechanics	372
14.3.1 Ensembles and ergodicity	372
14.3.2 Expectation values and correlations	373
14.3.3 Liouville’s theorem	374
14.3.4 Averaged dynamical variations	374

14.4 Quantum mechanics	375
14.4.1 Non-relativistic quantum mechanics in terms of groups and operators	376
14.4.2 Quantum mechanical action principle	383
14.4.3 Relativistic quantum mechanics	385
14.5 Canonically complete theories	388

15 Epilogue: quantum field theory	390
15.1 Classical loose ends	391
15.2 Quantum action principle	391
15.2.1 Operator variations	393
15.2.2 Example: operator equations of motion	394
15.3 Path integral formulation	394
15.4 Postscript	396

Part 3: Reference: a compendium of fields

16 Gallery of definitions	399
16.1 Units	399
16.2 Constants	400
16.3 Engineering dimensions	400
16.4 Orders of magnitude	402
16.4.1 Sizes	402
16.4.2 Densities and pressure	402
16.4.3 Temperatures	403
16.4.4 Energies	403
16.4.5 Wavelengths	403
16.4.6 Velocities	404
16.4.7 Electric fields	404
16.4.8 Magnetic fields 404
16.4.9 Currents 404
16.5 Summation convention 404
16.6 Symbols and signs 405
16.6.1 Basis notation 405
16.6.2 Volume elements 406
16.6.3 Symmetrical and anti-symmetrical combinations 406
16.6.4 Derivatives 406
16.6.5 Momenta 407
16.6.6 Position, velocity and acceleration 408
16.7 Limits 408

17 The Schrödinger field 410
17.1 The action 410
17.2 Field equations and continuity 411
17.3 Free-field solutions 411
17.4 Expression for the Green function 411
17.5 Formal solution by Green functions 412
17.6 Conserved norm and probability 413
17.7 Energy–momentum tensor 414

18 The real Klein–Gordon field 416
18.1 The action 416
18.2 Field equations and continuity 417
18.3 Free-field solutions 418
18.4 Reality of solutions 419
18.5 Conserved norm and probability 419
18.6 Normalization 420
18.7 Formal solution by Green functions 420
18.8 All the Green functions 421
18.9 The energy–momentum tensor 422

19 The complex Klein–Gordon field 425
19.1 The action 425
19.2 Field equations and continuity 425
19.3 Free-field solutions 426
19.4 Formal solution by Green functions 426
19.5 Conserved norm and probability 427
19.6 The energy–momentum tensor 427
19.7 Formulation as a two-component real field 428
Contents

20 The Dirac field 430

20.1 The action 430
20.2 The \(\gamma\)-matrices 431
 - 20.2.1 Example: \(n + 1 = 4\) 433
 - 20.2.2 Example: \(n + 1 = 3\) 435
20.3 Transformation properties of the Dirac equation 436
 - 20.3.1 Rotations 437
 - 20.3.2 Boosts 438
 - 20.3.3 Parity and time reversal 438
 - 20.3.4 Charge conjugation 438
20.4 Chirality in \(3 + 1\) dimensions 441
20.5 Field continuity 441
20.6 Conserved norm and probability 442
20.7 Free-field solutions in \(n = 3\) 443
20.8 Invariant normalization in \(p\)-space 446
20.9 Formal solution by Green functions 447
20.10 Expressions for the Green functions 448
20.11 The energy–momentum tensor 448
20.12 Spinor electrodynamics 450

21 The Maxwell radiation field 452

21.1 Charges in a vacuum 452
 - 21.1.1 The action 452
 - 21.1.2 Field equations and continuity 453
 - 21.1.3 The Jacobi–Bianchi identity 455
 - 21.1.4 Formal solution by Green functions 455
 - 21.1.5 Lorentz gauge 456
 - 21.1.6 Coulomb/radiation gauge 457
 - 21.1.7 Retarded Green function in \(n = 3\) 458
 - 21.1.8 The energy–momentum tensor 458
21.2 Effective theory of dielectric and magnetic media 459
 - 21.2.1 The Maxwell action and Hamiltonian in a medium 460
 - 21.2.2 Field equations and continuity 461
 - 21.2.3 Reinstating covariance with \(c \rightarrow c/n\) 462
 - 21.2.4 Green function 463

22 The massive Proca field 464

22.1 Action and field equations 464

23 Non-Abelian fields 466

23.1 Lie groups and algebras 466
23.2 Construction 467
23.3 The action 471
23.4 Equations of motion and continuity 471
23.5 Multiple representations 472
23.6 The adjoint representation 472
23.7 Field equations and continuity 474
23.8 Commonly used generators 474
 23.8.1 SU(2) Hermitian fundamental representation 474
 23.8.2 SU(2) Hermitian adjoint representation 475
 23.8.3 SU(3) Hermitian fundamental representation 476
 23.8.4 SU(3) Hermitian adjoint representation 478

24 Chern–Simons theories 486
 24.1 Parity- and time reversal invariance 487
 24.2 Gauge invariance 487
 24.3 Abelian pure Chern–Simons theory 488
 24.3.1 Field equations and continuity 488
 24.4 Maxwell–Chern–Simons theory 489
 24.4.1 Field equations and continuity 489
 24.4.2 Topological mass 489
 24.4.3 Energy–momentum tensors 490
 24.5 Euclidean formulation 490

25 Gravity as a field theory 491
 25.1 Newtonian gravity 491
 25.2 Curvature 492
 25.3 Particles in a gravitational field 492
 25.4 Geodesics 494
 25.5 Curvature 495
 25.6 The action 496
 25.7 Kaluza–Klein theory 496

Part 4: Appendices 499
 Appendix A: Useful formulae 501
 A.1 The delta function 501
 A.2 The step function 503
 A.3 Anti-symmetry and the Jacobi identity 503
 A.4 Anti-symmetric tensors in Euclidean space 504
 A.5 Anti-symmetric tensors in Minkowski spacetime 506
 A.6 Doubly complex numbers 507
 A.6.1 Refraction in a magnetized medium 508
 A.7 Vector identities in $n = 3$ dimensions 511
 A.8 The Stokes and Gauss theorems 511
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.9</td>
<td>Integrating factors</td>
<td>512</td>
</tr>
<tr>
<td>A.10</td>
<td>Matrix formulae</td>
<td>512</td>
</tr>
<tr>
<td>A.11</td>
<td>Matrix factorization</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>Appendix B: Recommended reading</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>521</td>
</tr>
</tbody>
</table>
Foreword

This book is a collection of notes and unpublished results which I have accumulated on the subject of classical field theory. In 1996, it occurred to me that it would be useful to collect these under a common umbrella of conventions, as a reference work for myself and perhaps other researchers and graduate students. I realize now that this project can never be finished to my satisfaction: the material here only diverges. I prefer to think of this not as a finished book, so much as some notes from a personal perspective.

In writing the book, I have not held history as an authority, nor based the approach on any particular authors; rather, I have tried to approach the subject rationally and systematically. I aimed for the kind of book which I would have appreciated myself as a graduate student: a book of general theory accompanied by specific examples, which separates logically independent ideas and uses a consistent notation; a book which does not skip details of derivation, and which answers practical questions. I like books with an attitude, which have a special angle on their material, and so I make no apologies for this book’s idiosyncrasies.

Several physicists have influenced me over the years. I am especially grateful to David Toms, my graduate supervisor, for inspiring, impressing, even depressing but never repressing me, with his unstoppable ‘Nike’ philosophy: (shrug) ‘just do it’. I am indebted to the late Peter Wood for kind encouragement, as a student, and for entrusting me with his copy of Schweber’s now ex-masterpiece Relativistic Quantum Field Theory, one of my most prized possessions. My brief acquaintance with Julian Schwinger encouraged me to pay more attention to my instincts and less to conforming (though more to the conformal). I have appreciated the friendship of Gabor Kunstatter and Meg Carrington, my frequent collaborators, and have welcomed occasional encouraging communications from Roman Jackiw, one of the champions of classical and quantum field theory. I am, of course, indebted to my friends in Oslo. I blame Alan McLachlan for teaching me more than I wanted to know about group congruence classes.

xix
Foreword

Thanks finally to Tai Phan, of the Space Science Lab at Berkeley for providing some sources of information for the gallery data.

Like all software, this book will contain bugs; it is never really finished and trivial, even obvious errors creep in inexplicably. I hope that these do not distract from my perspective on one of the most beautiful ideas in modern physics: covariant field theory.

I called the original set of these notes: The X_{μ} Files: Covert Field Theory, as a joke to myself. The world of research has become a merciless battleground of competitive self-interest, a noise in which it is all but impossible to be heard. Without friendly encouragement, and a pinch of humour, the battle to publish would not be worth the effort.

Mark Burgess
Oslo University College
“The Dutch astronomer De Sitter was able to show that the velocity of propagation of light cannot depend on the velocity of motion of the body emitting the light... theoretical investigations of H.A. Lorentz...lead[s] conclusively to a theory of electromagnetic phenomena, of which the law of the constancy of the velocity of light in vacuo is a necessary consequence.”

– Albert Einstein

“Energy of a type never before encountered.”

– Spock, Star Trek: The motion picture.