Contents

Preface to the first edition page xi
Preface to the second edition xv
List of symbols xviii

1 A historical review of optical activity phenomena 1
 1.1 Introduction 1
 1.2 Natural optical rotation and circular dichroism 2
 1.3 Magnetic optical rotation and circular dichroism 10
 1.4 Light scattering from optically active molecules 14
 1.5 Vibrational optical activity 17
 1.6 X-ray optical activity 21
 1.7 Magnetochiral phenomena 22
 1.8 The Kerr and Cotton–Mouton effects 23
 1.9 Symmetry and optical activity 24
 Spatial symmetry and optical activity • Inversion symmetry and physical laws • Inversion symmetry and optical rotation • Inversion symmetry and optical activity in light scattering • Motion-dependent enantiomorphism: true and false chirality • Symmetry violation: the fall of parity and time reversal invariance • Chirality and relativity • Chirality in two dimensions

2 Molecules in electric and magnetic fields 53
 2.1 Introduction 53
 2.2 Electromagnetic waves 54
 Maxwell’s equations • Plane monochromatic waves • Force and energy • The scalar and vector potentials
 2.3 Polarized light 61
 Pure polarization • Partial polarization
 2.4 Electric and magnetic multipole moments 67
Electric multipole moments • Magnetic multipole moments • Static electric multipole fields • Static magnetic multipole fields • Dynamic electromagnetic multipole fields

2.5 The energy of charges and currents in electric and magnetic fields 78
Electric and magnetic multipole moments in static fields • Electric and magnetic multipole moments in dynamic fields

2.6 Molecules in electric and magnetic fields 85
A molecule in static fields • A molecule in a radiation field • A molecule in a radiation field at absorbing frequencies • Kramers–Kronig relations • The dynamic molecular property tensors in a static approximation

2.7 A molecule in a radiation field in the presence of other perturbations 103

2.8 Molecular transition tensors 107
The Raman transition polarizability • The adiabatic approximation • The vibrational Raman transition tensors in Placzek’s approximation • Vibronic interactions: the Herzberg–Teller approximation

3 Molecular scattering of polarized light 123
3.1 Introduction 123
3.2 Molecular scattering of light 124
3.3 Radiation by induced oscillating molecular multipole moments 126
3.4 Polarization phenomena in transmitted light 127
Refraction as a consequence of light scattering • Refrangent scattering of polarized light • Simple absorption • Linear dichroism and birefringence (the Kerr effect) • Electric field gradient-induced birefringence: measurement of molecular electric quadrupole moments and the problem of origin invariance • Natural optical rotation and circular dichroism • Magnetic optical rotation and circular dichroism • Magnetochiral birefringence and dichroism • Nonreciprocal (gyrotropic) birefringence • The Jones birefringence • Electric optical rotation (electrogyration) and circular dichroism

3.5 Polarization phenomena in Rayleigh and Raman scattered light 151
Nonrefrangent scattering of polarized light • Symmetric scattering • Antisymmetric scattering • Natural Rayleigh and Raman optical activity • Magnetic Rayleigh and Raman optical activity • Electric Rayleigh and Raman optical activity

4 Symmetry and optical activity 170
4.1 Introduction 170
4.2 Cartesian tensors 170
Contents

Scalars, vectors and tensors • Rotation of axes • Polar and axial tensors • Some algebra of unit tensors • Isotropic averages of tensor components • Principal axes

4.3 Inversion symmetry in quantum mechanics 187

Space inversion • Time reversal • The parity and reversability classification of optical activity observables • Optical enantiomers, two-state systems and parity violation • Symmetry breaking and symmetry violation • CP violation and molecular physics

4.4 The symmetry classification of molecular property tensors 217

Polar and axial, time-even and time-odd tensors • Neumann’s principle • Time reversal and the permutation symmetry of molecular property and transition tensors • The spatial symmetry of molecular property tensors • Irreducible cartesian tensors • Matrix elements of irreducible spherical tensor operators

4.5 Permutation symmetry and chirality 242

Chirality functions • Permutations and the symmetric group • Chirality functions: qualitative completeness • Chirality functions: explicit forms • Active and inactive ligand partitions: chirality numbers • Homochirality • Chirality functions: concluding remarks

5 Natural electronic optical activity 264

5.1 Introduction 264

5.2 General aspects of natural optical rotation and circular dichroism 264

The basic equations • Optical rotation and circular dichroism through circular differential refraction • Experimental quantities • Sum rules

5.3 The generation of natural optical activity within molecules 272

The static coupling model • The dynamic coupling model • Exciton coupling (the degenerate coupled oscillator model)

5.4 Illustrative examples 291

The carbonyl chromophore and the octant rule • The Co⁴⁺ chromophore: visible, near ultraviolet and X-ray circular dichroism • Finite helices: hexahelicene

5.5 Vibrational structure in circular dichroism spectra 304

Introduction • The vibronically perturbed rotational strength • The carbonyl chromophore

6 Magnetic electronic optical activity 311

6.1 Introduction 311

6.2 General aspects of magnetic optical rotation and circular dichroism 312

The basic equations • Interpretation of the Faraday A-, B- and C-terms
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Illustrative examples</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Porphyrins • Charge transfer transitions in Fe(CN)$_6^{3-}$ • The influence of intramolecular perturbations on magnetic optical activity: the carbonyl chromophore</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Magnetoehiral birefringence and dichroism</td>
<td>327</td>
</tr>
<tr>
<td>7</td>
<td>Natural vibrational optical activity</td>
<td>331</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>331</td>
</tr>
<tr>
<td>7.2</td>
<td>Natural vibrational optical rotation and circular dichroism</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>The basic equations • The fixed partial charge model • The bond dipole model • A perturbation theory of vibrational circular dichroism</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Natural vibrational Raman optical activity</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>The basic equations • Experimental quantities • Optical activity in transmitted and scattered light • The two-group model of Rayleigh optical activity • The bond polarizability model of Raman optical activity • The bond polarizability model in forward, backward and 90° scattering</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>The bond dipole and bond polarizability models applied to simple chiral structures</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>A simple two-group structure • Methyl torsions in a hindered single-bladed propellor • Intrinsic group optical activity tensors</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Coupling models</td>
<td>379</td>
</tr>
<tr>
<td>7.6</td>
<td>Raman optical activity of biomolecules</td>
<td>381</td>
</tr>
<tr>
<td>8</td>
<td>Antisymmetric scattering and magnetic Raman optical activity</td>
<td>385</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>385</td>
</tr>
<tr>
<td>8.2</td>
<td>Symmetry considerations</td>
<td>386</td>
</tr>
<tr>
<td>8.3</td>
<td>A vibronic development of the vibrational Raman transition tensors</td>
<td>388</td>
</tr>
<tr>
<td>8.4</td>
<td>Antisymmetric scattering</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>The antisymmetric transition tensors in the zeroth-order Herzberg–Teller approximation • Resonance Rayleigh scattering in atomic sodium • Resonance Raman scattering in totally symmetric vibrations of iridium (IV) hexahalides • Antisymmetric transition tensors generated through vibronic coupling • Resonance Raman scattering in porphyrins</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Magnetic Rayleigh and Raman optical activity</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>The basic equations • Resonance Rayleigh scattering in atomic sodium • Vibrational resonance Raman scattering in IrCl$_6^{3-}$ and CuBr$_6^{2-}$ • Spin-flip transitions and Raman electron paramagnetic resonance • Electronic resonance Raman scattering in uranocene • Resonance Raman scattering in porphyrins</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>423</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>436</td>
</tr>
</tbody>
</table>