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General Introduction and Outline

The foundations of the differential geometry of curves and surfaces were laid in
the early part of the nineteenth century with the monumental works of Monge
(1746-1818) and Gauss (1777-1855). Monge’s major contributions were col-
lected in his Applications de I’Analyse a la Géometrie published in 1807. The
1850 edition of that work is of particular value in that it includes an annotation
by Liouville (1809-1882) detailing additional contributions to the subject by
such luminaries as Frenet (1816-1888), Serret (1819—1885), Bertrand (1822-
1900) and Saint-Venant (1796—1886), whose work in geometry was motivated
by his interest in elasticity. Gauss’ treatise on the geometry of surfaces, in-
stigated by a geodetic study sponsored by the Elector of Hanover, was the
Disquisitiones Generales Circa Superficies Curvas published in 1828. Therein,
Gauss set down the system of equations that bears his name and which time has
shown to be fundamental to the analysis of surfaces. Indeed, this Gauss system
and the symmetries that it admits for privileged classes of surfaces underpin
the remarkable connection between classical differential geometry and modern
soliton theory to be the subject of this monograph.

The origins of soliton theory are likewise to be found in the early part of the
nineteenth century. Thus, it was in 1834 that the Scottish engineer John Scott
Russell recorded the first sighting, along a canal near Edinburgh, of the solitary
hump-shaped wave to be rediscovered in 1965 in the context of the celebrated
Fermi-Pasta-Ulam problem by Kruskal and Zabusky and termed a soliton. Scott
Russell observed that his so-called great wave of translation proceeded with a
speed proportional to its height. In a vivid account of water tank experiments
set up to reproduce this large amplitude surface phenomenon, and described in
areport to the British Association in 1844, there is also depicted the creation of
two such waves. However, the limited duration of Scott Russell’s experiments
apparently did not allow him to observe the dramatic interaction properties
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2 General Introduction and Outline

of these waves in their entirety. Moreover, at that time, neither the nonlinear
evolution equation descriptive of their propagation nor the analytic means to
predict their interaction properties were to hand.

It was in 1895 that two Dutch mathematicians, Korteweg and de Vries, de-
rived the nonlinear wave equation which now bears their name and adopts the
canonical form

Uy + Uyry + 6uu, = 0. 0.1

This models long wave propagation in a rectangular channel and provides,
through a simple travelling wave solution, a theoretical confirmation of the
existence of the controversial solitary wave observed some sixty years earlier
by Scott Russell on the Union canal. However, it is less well-known that what is
now called the Korteweg—de Vries (KdV) equation had, in fact, been set down
earlier by Boussinesq in his memoir of 1877 entitled Essai sur la Théorie des
Eaux Courantes. Indeed, a pair of equations equivalent to the KdV equation
(0.1) appeared as early as 1871 in two papers by Boussinesq devoted to wave
propagation in rectangular channels.

The KdV equation was to be rediscovered in the mid-twentieth century by
Gardner and Morikawa in 1960 in an analysis of the transmission of hydromag-
netic waves. It has since been shown to be a canonical model for a rich diversity
of large amplitude wave systems arising in the theory of solids, liquids and
gases.

The advent of modern soliton theory was heralded in 1965 by the rediscovery
of the KdV equation in the context of the celebrated Fermi-Pasta-Ulam prob-
lem. Thus, in a pioneering study by Kruskal and Zabusky, the KdV equation
was obtained as a continuum limit of an anharmonic lattice model with cubic
nonlinearity. The existence of solitary waves in this nonlinear model which pos-
sess the remarkable property that they preserve both their amplitude and speed
subsequent upon interaction was revealed via a computational study. The term
soliton was coined to describe such waves which had originally been observed
in a hydrodynamic context by Scott Russell. However, the problem of obtaining
an analytical expression descriptive of the interaction of solitons still remained.

It turns out that, remarkably, a generic method for the description of soliton
interaction has its roots in a type of transformation originally introduced by
Bicklund in the nineteenth century to generate pseudospherical surfaces, that
is, surfaces of constant negative Gaussian curvature X = —1/p?. The study of
such surfaces goes back at least to Edmond Bour in 1862, who generated the
celebrated sine-Gordon equation

W = —5 SiNw 0.2)
P
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General Introduction and Outline 3

from the Gauss-Mainardi-Codazzi system for pseudospherical surfaces parame-
trised in terms of asymptotic coordinates. The sine-Gordon equation was subse-
quently rederived independently by both Bonnet in 1867 and Enneper in 1868
in a similar manner.

A purely geometric construction for pseudospherical surfaces was reformu-
lated in mathematical terms as a transformation by Bianchi in 1879. In 1882,
Bicklund published details of his celebrated transformation B, which allows
the iterative construction of pseudospherical surfaces. In 1883, Lie presented
the decomposition B, = ]L(jIIB%1T /2L which shows that the Bicklund transfor-
mation B, in fact, represents a conjugation of Lie transformations L, }L;l
with the parameter-independent Bianchi transformation B/,. Thus, the Lie
transformations serve to intrude the key parameter ¢ into the original Bianchi
transformation.

In 1892, under the title Sulla Trasformazione di Bécklund per le Superfi-
cie Pseudosferiche, in a masterly breakthrough, Bianchi demonstrated that the
Bécklund transformation B, admits a commutativity property By, By, = Bs, Bo,
a consequence of which is a nonlinear superposition principle embodied in what
is termed a permutability theorem. The evidence that Bianchi’s permutabil-
ity theorem has important application in nonlinear physics had to await the
work of Seeger et al. in 1953 on crystal dislocations. Therein, in the context
of Frenkel and Kontorova’s dislocation theory of 1938, the superposition of
so-called eigenmotions was obtained via the classical permutability theorem.
Indeed, the interaction of what today is called a breather with a kink-type dislo-
cation was both described analytically by means of the permutability theorem
and displayed graphically. The typical solitonic features to be later discovered
numerically in 1965 for the KdV equation, namely, preservation of velocity
and shape following interaction, as well as the concomitant phase shift, were
all derived by means of the permutability theorem for the sine-Gordon equation
in this remarkable paper.

In 1958, Skyrme derived a higher-dimensional sine-Gordon equation in a
nonlinear theory of particle interaction, while in 1965 the same equation was
set down by Josephson in his seminal study of the tunnelling phenomenon in
superconductivity for which he was later to gain the Nobel Prize. In 1967, Lamb
derived the classical sine-Gordon equation in an analysis of the propagation of
ultrashort light pulses. Lamb, aware of the earlier work of Seeger et al., ex-
ploited the permutability theorem associated with the Backlund transformation
to generate an analytic expression for pulse decomposition corresponding to
the two-soliton solution. Later, in 1971, he used the permutability theorem to
analyse the decomposition of 2N light pulses into N stable 27 pulses. The ex-
perimental evidence for such a decomposition phenomenon had been provided
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4 General Introduction and Outline

by Gibbs and Slusher in 1970, who recorded the decomposition of a 67 pulse
into three 21 pulses in a Rb vapour. In the same year, Scott had noted how the
permutability theorem may also be exploited in the study of long Josephson
junctions.

In 1973, Wahlquist and Estabrook demonstrated that the KdV equation,
like the sine-Gordon equation, admits invariance under a Béacklund-type trans-
formation and moreover possesses an associated permutability theorem. The
novel pulse interaction properties observed by Zabusky and Kruskal in their
original numerical study of the KdV equation are captured analytically in the
multi-soliton solutions generated by iterative application of this permutability
theorem.

In 1974, a Backlund transformation for the nonlinear Schrodinger (NLS)
equation

iqr + qxx +v4%lql =0 (0.3)

was constructed by Lamb via a classical method developed by Clairin in 1910.
A nonlinear superposition principle may again be constructed by means of the
Bicklund transformation. The NLS equation has important applications in fibre
optics. It seems to have been first set down independently by Kelley and Talanov
in 1965 in studies of the self-focusing of optical beams in nonlinear Kerr media.
Subsequently, in 1968, Zakharov derived the NLS equation in a study of deep
water gravity waves. Hasimoto, in 1971, obtained the same equation in an
approximation to the hydrodynamical motion of a thin isolated vortex filament.
Implicit was a geometric derivation of the NLS equation wherein it is associated
with a motion of an inextensible curve in R?. This association of an integrable
equation with the spatial motion of an inextensible curve will arise naturally in
our study of the geometry of solitons.

Thus, by 1974, the Bicklund transformations for the canonical soliton
equations (0.1)—(0.3) were all in place and in that year a National Science
Foundation meeting was convened at Vanderbilt University in the USA to as-
sess the status and potential role of Backlund transformations in soliton theory.
In 1973, the celebrated generalised ZS-AKNS spectral system had been in-
troduced by Ablowitz et al. A broad spectrum of 1+1-dimensional nonlinear
evolution equations amenable to the Inverse Scattering Transform (IST) can be
encapsulated as compatibility conditions for this ZS-AKNS system. The latter
was exploited by Chen to derive auto-Bicklund transformations for (0.1)—(0.3)
in an elegant manner.

The linear structure of the ZS-AKNS system permits the application in soliton
theory of another important class of transformations with their origin in the
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nineteenth century, namely, Darboux transformations. The latter arose in a
study by Darboux in 1882 of Sturm-Liouville problems. However, they are
but a special case of transformations due to Moutard and introduced earlier
in 1878 in connection with the sequential reduction of linear hyperbolic equa-
tions to canonical form. Iterated Darboux transformations were constructed by
Crum in 1955 in connection with related Sturm-Liouville problems. In 1975,
the Crum transformation was taken up by Wadati et al. and used to generate
multi-soliton solutions of integrable equations associated with the ZS-AKNS
system. In geometric terms, these iterated versions of Darboux transformations
occur in the classical theory of surfaces as Levy sequences as described in
Eisenhart’s Transformations of Surfaces.

In 1976, Lund and Regge, en route to the celebrated solitonic system which
bears their name, made the crucial observation that the ZS-AKNS system for
the sine-Gordon equation is nothing but a 2 x 2 representation of the classical
Gauss-Weingarten system for pseudospherical surfaces. This connection was
made independently in the same year by Pohlmeyer.

Thus, by 1976, it was clear that Bécklund and Darboux transformations,
with their origins in the classical differential geometry of surfaces, have deep
connections with soliton theory. The aim of the present monograph is to bring
together these strands and to give an account not only of their historical connec-
tions, but also of modern advances. It builds upon the complementary earlier
monograph by Rogers and Shadwick (1982), which presented a non-geometric
account of Bécklund transformations and their applications in soliton theory
and continuum mechanics. The geometric viewpoint in this monograph is in-
spired in many respects by the work of Antoni Sym published in 1981 under
the title Soliton Theory is Surface Theory. It is the exploration of this theme
that, in part, motivated the present work.

Chapter 1 presents an account of the connection between the classical
Backlund transformation and its variants and modern soliton theory. It opens
with the derivation of a classical nonlinear system due to Bianchi which embod-
ies the Gauss-Mainardi-Codazzi equations for hyperbolic surfaces described in
asymptotic coordinates. Specialisation to pseudospherical surfaces produces the
celebrated sine-Gordon equation. There follows, in Section 1.2, a description of
the geometric procedure for the construction of pseudospherical surfaces along
with the derivation of the induced auto-Bécklund transformation for the sine-
Gordon equation. In Section 1.3, Bianchi’s permutability theorem is derived via
this Béacklund transformation, and a lattice is introduced whereby multi-soliton
solutions may be generated in a purely algebraic manner. Pseudospherical sur-
faces corresponding to one- and two-soliton solutions of the sine-Gordon equa-
tion are constructed in Section 1.4. Thus, the stationary single soliton solution is
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6 General Introduction and Outline

seen to correspond to the pseudosphere, while the non-stationary soliton leads
to the Dini surface, namely the helicoid generated by simultaneous rotation
and translation of Huygen’s tractrix. The two-soliton solution is obtained via
the permutability theorem, and pseudospherical surfaces corresponding to en-
trapped periodic solutions known as breathers are presented. In Section 1.5, itis
shown that the Bicklund transformation for surfaces parallel to pseudospherical
surfaces may be induced in a straightforward manner. This extends the action
of the classical Biacklund transformation to a class of Weingarten surfaces. The
chapter concludes with a treatment of another important class of surfaces which
have a solitonic connection, namely that which bears the name of Bianchi. This
class is determined by the system of equations

1 1 py
a, + —&a — —p—bcosw =0,
2p 2p
1 py 1
b, + —p—b — —&acosm =0,
2p 2p (0.4)
1 (pu] . 1 . .
W,y + = p——smu) + - &c—lsmw —absinw =0,
2\pa . 2\pb )
Puv = 0,
where = —1/p? is the Gaussian curvature and u, v are asymptotic coordi-

nates. In 1890, Bianchi presented a purely geometric construction for such hy-
perbolic surfaces. The determining constraint p,,, = 0 was retrieved one hundred
years later by Levi and Sym (1990) in their search for the subclass of hyper-
bolic surfaces which possess an associated integrable Gauss-Mainardi-Codazzi
system. Their procedure was based on the intrusion by Lie group methods of a
spectral parameter into a 2 x 2 linear representation of the Gauss-Weingarten
system for hyperbolic surfaces. In Section 1.6, a spherical representation is
used to show that the Bianchi system (0.4) is, in fact, equivalent to the nonlin-
ear sigma-type model

(PNN,), +(@NN,), =0, N?’=1, Ni=N
PRy IR . 0.5)
Puv = V.

Thus, this important system of modern soliton theory has its origin in classical
differential geometry. Indeed, a vector version of (0.5) is implicit in the work
of Bianchi.

An elliptic variant of the Bianchi system is shown to deliver the well-known
Ernst equation of general relativity, namely
1 & 1 Pz Ezgf

Eog Pig pPig 2 . 0.6
ety et T Rey P ©.6)
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General Introduction and Outline 7

To conclude, a Bicklund transformation that connects hyperbolic surfaces is
constructed in a geometric manner. This is then specialised to provide an in-
variance which admits the constraint associated with the Bianchi system. The
resulting Biacklund transformation is then applied to a degenerate seed Bianchi
surface to generate a one-soliton Bianchi surface.

Chapter 2 is concerned with how certain motions of privileged curves and
surfaces can lead to solitonic equations. Thus, in Section 2.1, the classical sine-
Gordon equation is arrived at by consideration of motions of an inextensible
curve of constant curvature or torsion. In the latter case, the curve sweeps
out a pseudospherical surface. In Section 2.2, the AKNS spectral problem for
the sine-Gordon equation is derived via the so(3)—su(2) isomorphism applied
to its 3x3 Gauss-Weingarten representation. In Section 2.3, the discussion
turns to privileged motions of pseudospherical surfaces which are associated
with soliton equations said to be compatible with, or symmetries of, the sine-
Gordon equation. Particular classes of motion of pseudospherical surfaces are
considered. One is linked to a continuum version of an anharmonic lattice
model which incorporates the important modified Korteweg-de Vries (mKdV)
equation

©; + Wypy + 600, = 0. 0.7)

This mKdV equation, like the KdV equation (0.1) to which it is connected by
the Miura transformation, is of considerable physical importance and arises,
in particular, in plasma physics in the theory of the propagation of Alfvén
waves.

Another important motion of pseudospherical surfaces, purely normal in
character, is shown to produce a classical system due to Weingarten and Bianchi
which may be found in Eisenhart’s A Treatise on the Differential Geometry of
Curves and Surfaces in connection with triply orthogonal systems of surfaces
wherein one constituent family is pseudospherical. This system adopts the form

Oy, — 0,0,, cot® + 0,0,, tan0® = 0,

1 /1 0,
( Out ) —— (— sin6> — e_?,e),, =0,
cos9 /. p\p ., sin0

By 1 (1 0,0,/ 0.8)
- + —| —cosO ) + =0,
sin /,  p \p , cosf
1
O — 0,y = — sin 6 cos 6.
' P

Bécklund transformations for both the continuum lattice model and the above
system are then shown to be induced by gauge transformations acting on an
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8 General Introduction and Outline

AKNS representation. To conclude this chapter, in Section 2.4, the mKdV
equation is generated via the motion of an inextensible curve of zero torsion.
The motion of solitonic Dini surfaces is then investigated and triply orthogonal
Weingarten systems of surfaces are thereby constructed.

In Chapter 3, the discussion turns to the classical surfaces of Tzitzeica which,
like pseudospherical surfaces, emerge as having an underlying soliton connec-
tion. It was in the first decade of the twentieth century that the Romanian
geometer Tzitzeica investigated the class of surfaces which is associated with
the important nonlinear hyperbolic equation

(Inh)eg =h —h72, (0.9)

to be rediscovered some seventy years later in a solitonic context. In fact, the
study by Tzitzeica of the surfaces associated with this equation may be said to
have initiated the important subject of affine geometry. Therein, the Tzitzeica
equation (0.9) describes the so-called affinsphiren.

In Section 3.1, the class of surfaces ¥ determined by the so-called Tzitzeica
condition I = —c2d*, ¢ = const is introduced, wherein d is the distance from
the origin to the tangent plane to X at a generic point. The linear representation
of the Tzitzeica equation as originally set down by Tzitzeica is rederived and
its dual is then used as a route to another important avatar of (0.9), namely the

affinsphiren equation
R, RR,
rr), =\ 010

as obtained by the German geometer Jonas in 1953. This integrable equation
is then shown to arise naturally in a Lagrangian description of an anisentropic
gasdynamics system for a certain three-parameter class of constitutive laws.
In Section 3.2, a Bicklund transformation for the construction of suites of

Tzitzeica surfaces is derived in a geometric manner, and its connection with
the classical Moutard transformation of 1878 is elucidated. The action of the
Bicklund transformation on the trivial seed solution & =1 of the Tzitzeica
equation (0.9) is then used to generate an affinsphére with rotational symmetry.
Tzitzeica surfaces corresponding to one- and two-soliton solutions of (0.9) are
then constructed. In particular, a Tzitzeica surface corresponding to a breather
solution is displayed.

It turns out that the Tzitzeica equation is embedded in another classical system
which surprisingly has an even longer history. This solitonic system has become
known as the two-dimensional Toda lattice model

(nhy)yy = —hpsr + 2y — hy_1, neZ. 0.11)
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This nonlinear differential-difference scheme, to be rediscovered almost a cen-
tury later in modern soliton theory, is actually to be found in a treatise of Darboux
published in 1887. There, it was derived in the iteration of what have become
known as Laplace-Darboux transformations. The latter, like the contemporary
Moutard transformation, arose in connection with the iterative reduction of lin-
ear hyperbolic equations to canonical form. They have interesting application
to the theory of conjugate nets in the classical differential geometry of sur-
faces. This aspect of Laplace-Darboux transformations is described at length
in Eisenhart’s Transformations of Surfaces. Here, in Section 3.3, the notion of
a Laplace-Darboux transformation is introduced along with key associated in-
variants. Itis shown how application of a Laplace-Darboux transformation leads
to the Toda lattice scheme (0.11). The Tzitzeica equation is then generated as a
particular periodic Toda lattice. An invariance of the general two-dimensional
Toda lattice model is presented which, in particular, preserves periodicity. It is
then shown how Laplace-Darboux transformations may be applied iteratively
to produce a suite of surfaces on which the parametric lines constitute conjugate
nets.

In Chapter 4, we focus upon the NLS equation (0.3). The latter seems to have
escaped the attention of the geometers of the nineteenth century even though
it has a simple geometric origin in the evolution of an inextensible curve mov-
ing through space with speed v = kb, where k is its curvature and b its binormal.
In Section 4.1, the NLS equation is derived in a geometric manner, and soliton
surfaces corresponding to single soliton and breather solutions are presented
along with general geometric properties and the connection to the Heisenberg
spin equation

S, =SxS8,, S°=1, (0.12)

where ¢ is time and s is arc length. In Section 4.2, a solitonic system linked to
the NLS equation, namely the Pohlmeyer-Lund-Regge model,

Be — Oy — €° cos B sin B + (dF — i) cos O cosec’ § = 0,
(¢pe cot? 6)g = (ycot? e)n

is also derived in a geometric manner. This system arises in the study of rela-
tivistic vortices. It is shown to be related, in turn, to the sharpline self-induced
transparency (SIT) system

(0.13)

Xx = Siny + v v, tany,
tx tVx . l (0.14)
Vix = —VxXr COLX — UrXx(COS X sinx )™
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which stems from the unpumped Maxwell-Bloch system

E.,=P, P,=EN,

1 _ _ (0.15)
N, =-3(EP+EP), N’+PP=1.

In the above, E and P = ¢'” sin x denote, in turn, the slowly varying amplitudes
of the electric field and polarisation, while N = cos x is the atomic inversion.
The unpumped Maxwell-Bloch system is likewise shown to be linked to the
stimulated Raman scattering (SRS) system

Aix = —=SA,, Ayx =8A;, Sr=AA,, (0.16)

where A, A, are the electric field amplitudes of the pump and Stokes waves,
respectively. The connection between the SIT and SRS systems and the NLS
equation is then established via the compatibility of the latter with the unpumped
Maxwell-Bloch system. Thus, an appropriate time evolution of the eigenfunc-
tion pair in the AKNS representation for the NLS equation produces the system
(0.15). In geometric terms, this unpumped Maxwell-Bloch system arises out of
certain motions of Hasimoto surfaces in the same way as the mKdV equation
or Weingarten system come from appropriate compatible motions of pseudo-
spherical surfaces. In Section 4.3, the NLS equation is derived in an alternative
manner via a geometric formulation originally developed in a kinematic anal-
ysis of certain hydrodynamical motions by Marris and Passman in 1969. The
auto-Bicklund transformation for the NLS equation is derived in this represen-
tation at the level of the generation of Hasimoto surfaces. Spatially periodic
solutions of ‘smoke-ring’ type are thereby generated.

Chapter 5 is concerned with yet another classical class of surfaces which have
a soliton connection, namely isothermic surfaces. These surfaces seem to have
their origin in work by Lamé in 1837 motivated by problems in heat conduction.
An important subclass of isothermic surfaces were subsequently investigated
in a paper by Bonnet in 1867. These Bonnet surfaces admit non-trivial families
of isometries which leave invariant the principal curvatures k; and k, and,
accordingly, both the Gaussian curvature K = kjk; and mean curvature M =
(k1 + k2)/2.InSection 5.1, the Gauss-Mainardi-Codazzi system associated with
isothermic surfaces parametrised in curvature coordinates is set down, namely

O + eyy + K K2626 =0,

0.17)
Kiy + (KI - K2)ey = 07 Kox + (KZ - Kl)ex =0

and a reduction originally obtained by Calapso in 1903 is made to the single
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