Semiparametric Regression for the Applied Econometrician

This book provides an accessible collection of techniques for analyzing nonparametric and semiparametric regression models. Worked examples include estimation of Engel curves and equivalence scales; scale economies; semiparametric Cobb–Douglas, translog, and CES cost functions; household gasoline consumption; hedonic housing prices; and, option prices and state price density estimation. The book should be of interest to a broad range of economists, including those working in industrial organization, labor, development, urban, energy, and financial economics.

A variety of testing procedures are covered such as simple goodness-of-fit tests and residual regression tests. These procedures can be used to test hypotheses such as parametric and semiparametric specifications, significance, monotonicity, and additive separability. Other topics include endogeneity of parametric and nonparametric effects as well as heteroskedasticity and autocorrelation in the residuals. Bootstrap procedures are provided.

Adonis Yatchew teaches economics at the University of Toronto. His principal areas of research are theoretical and applied econometrics. In addition, he has a strong interest in regulatory and energy economics and is Joint Editor of the Energy Journal. He has received the social science undergraduate teaching award at the University of Toronto and has taught at the University of Chicago.
Further Praise for *Semiparametric Regression for the Applied Econometrician*

“This fluent book is an excellent source for learning, or updating one’s knowledge of semi- and nonparametric methods and their applications. It is a valuable addition to the existent books on these topics.”

– Rosa Matzkin, Northwestern University

“Yatchew’s book is an excellent account of semiparametric regression. The material is nicely integrated by using a simple set of ideas which exploit the impact of differencing and weighting operations on the data. The empirical applications are attractive and will be extremely helpful for those encountering this material for the first time.”

– Adrian Pagan, Australian National University

“At the University of Toronto Adonis Yatchew is known for excellence in teaching. The key to this excellence is the succinct transparency of his exposition. At its best such exposition transcends the medium of presentation (either lecture or text). This monograph reflects the clarity of the author’s thinking on the rapidly expanding fields of semiparametric and nonparametric analysis. Both students and researchers will appreciate the mix of theory and empirical application.”

– Dale Poirier, University of California, Irvine
Themes in Modern Econometrics

Managing editor
PETER C.B. PHILLIPS, Yale University

Series editors
RICHARD J. SMITH, University of Warwick
ERIC GHYSELS, University of North Carolina, Chapel Hill

Themes in Modern Econometrics is designed to service the large and growing need for explicit teaching tools in econometrics. It will provide an organized sequence of textbooks in econometrics aimed squarely at the student population and will be the first series in the discipline to have this as its express aim. Written at a level accessible to students with an introductory course in econometrics behind them, each book will address topics or themes that students and researchers encounter daily. Although each book will be designed to stand alone as an authoritative survey in its own right, the distinct emphasis throughout will be on pedagogic excellence.

Titles in the series

Statistics and Econometric Models: Volumes 1 and 2
CHRISTIAN GOURIEROUX and ALAIN MONFORT
Translated by QUANG VUONG

Time Series and Dynamic Models
CHRISTIAN GOURIEROUX and ALAIN MONFORT
Translated and edited by GIAMPIERO GALLO

Unit Roots, Cointegration, and Structural Change
G.S. MADDALA and IN-MOO KIM

Generalized Method of Moments Estimation
Edited by LÁSZLÓ MÁTYÁS

Nonparametric Econometrics
ADRIAN PAGAN and AMAN ULLAH

Econometrics of Qualitative Dependent Variables
CHRISTIAN GOURIEROUX
Translated by PAUL B. KLASSEN

The Econometric Analysis of Seasonal Time Series
ERIC GHYSELS and DENISE R. OSBORN
SEMIPARAMETRIC REGRESSION FOR THE APPLIED ECONOMETRICIAN

ADONIS YATCHEW

University of Toronto
To Marta, Tamara and Mark.
Your smiles are sunlight,
your laughter, the twinkling of stars.
Contents

List of Figures and Tables page xv
Preface xvii

1 Introduction to Differencing 1
 1.1 A Simple Idea 1
 1.2 Estimation of the Residual Variance 2
 1.3 The Partial Linear Model 2
 1.4 Specification Test 4
 1.5 Test of Equality of Regression Functions 4
 1.6 Empirical Application: Scale Economies in Electricity Distribution 7
 1.7 Why Differencing? 8
 1.8 Empirical Applications 11
 1.9 Notational Conventions 12
 1.10 Exercises 12

2 Background and Overview 15
 2.1 Categorization of Models 15
 2.2 The Curse of Dimensionality and the Need for Large Data Sets 17
 2.2.1 Dimension Matters 17
 2.2.2 Restrictions That Mitigate the Curse 17
 2.3 Local Averaging Versus Optimization 19
 2.3.1 Local Averaging 19
 2.3.2 Bias-Variance Trade-Off 19
 2.3.3 Naive Optimization 22
 2.4 A Bird’s-Eye View of Important Theoretical Results 23
 2.4.1 Computability of Estimators 23
 2.4.2 Consistency 23
 2.4.3 Rate of Convergence 23
2.4.4 Bias-Variance Trade-Off 25
2.4.5 Asymptotic Distributions of Estimators 26
2.4.6 How Much to Smooth 26
2.4.7 Testing Procedures 26

3 Introduction to Smoothing 27

3.1 A Simple Smoother 27
3.1.1 The Moving Average Smoother 27
3.1.2 A Basic Approximation 28
3.1.3 Consistency and Rate of Convergence 29
3.1.4 Asymptotic Normality and Confidence Intervals 29
3.1.5 Smoothing Matrix 30
3.1.6 Empirical Application: Engel Curve Estimation 30

3.2 Kernel Smoothers 32
3.2.1 Estimator 32
3.2.2 Asymptotic Normality 34
3.2.3 Comparison to Moving Average Smoother 35
3.2.4 Confidence Intervals 35
3.2.5 Uniform Confidence Bands 36
3.2.6 Empirical Application: Engel Curve Estimation 37

3.3 Nonparametric Least-Squares and Spline Smoothers 37
3.3.1 Estimation 37
3.3.2 Properties 39
3.3.3 Spline Smoothers 40

3.4 Local Polynomial Smoothers 40
3.4.1 Local Linear Regression 40
3.4.2 Properties 41
3.4.3 Empirical Application: Engel Curve Estimation 42

3.5 Selection of Smoothing Parameter 43
3.5.1 Kernel Estimation 43
3.5.2 Nonparametric Least Squares 44
3.5.3 Implementation 46

3.6 Partial Linear Model 47
3.6.1 Kernel Estimation 47
3.6.2 Nonparametric Least Squares 48
3.6.3 The General Case 48
3.6.4 Heteroskedasticity 50
3.6.5 Heteroskedasticity and Autocorrelation 51

3.7 Derivative Estimation 52
3.7.1 Point Estimates 52
3.7.2 Average Derivative Estimation 53

3.8 Exercises 54
4 Higher-Order Differencing Procedures

4.1 Differencing Matrices
4.1.1 Definitions
4.1.2 Basic Properties of Differencing and Related Matrices

4.2 Variance Estimation
4.2.1 The mth-Order Differencing Estimator
4.2.2 Properties
4.2.3 Optimal Differencing Coefficients
4.2.4 Moving Average Differencing Coefficients
4.2.5 Asymptotic Normality

4.3 Specification Test
4.3.1 A Simple Statistic
4.3.2 Heteroskedasticity
4.3.3 Empirical Application: Log-Linearity of Engel Curves

4.4 Test of Equality of Regression Functions
4.4.1 A Simplified Test Procedure
4.4.2 The Differencing Estimator Applied to the Pooled Data
4.4.3 Properties
4.4.4 Empirical Application: Testing Equality of Engel Curves

4.5 Partial Linear Model
4.5.1 Estimator
4.5.2 Heteroskedasticity

4.6 Empirical Applications
4.6.1 Household Gasoline Demand in Canada
4.6.2 Scale Economies in Electricity Distribution
4.6.3 Weather and Electricity Demand

4.7 Partial Parametric Model
4.7.1 Estimator
4.7.2 Empirical Application: CES Cost Function

4.8 Endogenous Parametric Variables in the Partial Linear Model
4.8.1 Instrumental Variables
4.8.2 Hausman Test

4.9 Endogenous Nonparametric Variable
4.9.1 Estimation
4.9.2 Empirical Application: Household Gasoline Demand and Price Endogeneity

4.10 Alternative Differencing Coefficients
4.11 The Relationship of Differencing to Smoothing
Contents

6.6 Monotonicity, Concavity, and Other Restrictions
 6.6.1 Isotonic Regression
 6.6.2 Why Monotonicity Does Not Enhance the Rate of Convergence
 6.6.3 Kernel-Based Algorithms for Estimating Monotone Regression Functions
 6.6.4 Nonparametric Least Squares Subject to Monotonicity Constraints
 6.6.5 Residual Regression and Goodness-of-Fit Tests of Restrictions
 6.6.6 Empirical Application: Estimation of Option Prices
6.7 Conclusions
6.8 Exercises

7 Index Models and Other Semiparametric Specifications
 7.1 Index Models
 7.1.1 Introduction
 7.1.2 Estimation
 7.1.3 Properties
 7.1.4 Identification
 7.1.5 Empirical Application: Engel’s Method for Estimation of Equivalence Scales
 7.1.6 Empirical Application: Engel’s Method for Multiple Family Types
 7.2 Partial Linear Index Models
 7.2.1 Introduction
 7.2.2 Estimation
 7.2.3 Covariance Matrix
 7.2.4 Base-Independent Equivalence Scales
 7.2.5 Testing Base-Independence and Other Hypotheses
7.3 Exercises

8 Bootstrap Procedures
 8.1 Background
 8.1.1 Introduction
 8.1.2 Location Scale Models
 8.1.3 Regression Models
 8.1.4 Validity of the Bootstrap
 8.1.5 Benefits of the Bootstrap
 8.1.6 Limitations of the Bootstrap
 8.1.7 Summary of Bootstrap Choices
 8.1.8 Further Reading
Contents

8.2 Bootstrap Confidence Intervals for Kernel Smoothers 160
8.3 Bootstrap Goodness-of-Fit and Residual Regression Tests 163
 8.3.1 Goodness-of-Fit Tests 163
 8.3.2 Residual Regression Tests 164
8.4 Bootstrap Inference in Partial Linear and Index Models 166
 8.4.1 Partial Linear Models 166
 8.4.2 Index Models 166
8.5 Exercises 171

Appendixes

Appendix A – Mathematical Preliminaries 173
Appendix B – Proofs 175
Appendix C – Optimal Differencing Weights 183
Appendix D – Nonparametric Least Squares 187
Appendix E – Variable Definitions 194

References 197
Index 209
List of Figures and Tables

Figure 1.1. Testing equality of regression functions. page 6
Figure 1.2. Partial linear model – log-linear cost function: Scale economies in electricity distribution. 9
Figure 2.1. Categorization of regression functions. 16
Figure 2.2. Naive local averaging. 20
Figure 2.3. Bias-variance trade-off. 21
Figure 2.4. Naive nonparametric least squares. 24
Figure 3.1. Engel curve estimation using moving average smoother. 31
Figure 3.2. Alternative kernel functions. 33
Figure 3.3. Engel curve estimation using kernel estimator. 38
Figure 3.4. Engel curve estimation using kernel, spline, and lowess estimators. 42
Figure 3.5. Selection of smoothing parameters. 45
Figure 3.6. Cross-validation of bandwidth for Engel curve estimation. 46
Figure 4.1. Testing linearity of Engel curves. 65
Figure 4.2. Testing equality of Engel curves. 70
Figure 4.3. Household demand for gasoline. 74
Figure 4.4. Household demand for gasoline: Monthly effects. 75
Figure 4.5. Scale economies in electricity distribution. 77
Figure 4.6. Scale economies in electricity distribution: PUC and non-PUC analysis. 79
Figure 4.7. Weather and electricity demand. 82
Figure 5.1. Hedonic prices of housing attributes. 108
Figure 5.2. Household gasoline demand in Canada. 109
Figure 6.1. Constrained and unconstrained estimation and testing. 113
Figure 6.2A. Data and estimated call function. 131
Figure 6.2B. Estimated first derivative. 132
Figure 6.2C. Estimated SPDs. 133
Figure 6.3. Constrained estimation – simulated expected mean-squared error. 135
List of Figures and Tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 7.1</td>
<td>Engel’s method for estimating equivalence scales.</td>
<td>141</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Parsimonious version of Engel’s method.</td>
<td>144</td>
</tr>
<tr>
<td>Figure 8.1</td>
<td>Percentile bootstrap confidence intervals for Engel curves.</td>
<td>162</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Equivalence scale estimation for singles versus couples: Asymptotic versus bootstrap methods.</td>
<td>170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Asymptotic confidence intervals for kernel estimators – implementation.</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Optimal differencing weights.</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Values of δ for alternate differencing coefficients.</td>
<td>62</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Mixed estimation of PUC/non-PUC effects: Scale economies in electricity distribution.</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Scale economies in electricity distribution: CES cost function.</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Symmetric optimal differencing weights.</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Relative efficiency of alternative differencing sequences.</td>
<td>90</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>The backfitting algorithm.</td>
<td>103</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Bierens (1990) specification test – implementation.</td>
<td>120</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Härdle and Mammen (1993) specification test – implementation.</td>
<td>122</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Hong and White (1995) specification test – implementation.</td>
<td>123</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Li (1994), Zheng (1996) residual regression test of specification – implementation.</td>
<td>123</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Residual regression test of significance – implementation.</td>
<td>125</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Distribution of family composition.</td>
<td>143</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Parsimonious model estimates.</td>
<td>145</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Wild bootstrap.</td>
<td>157</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Bootstrap confidence intervals at (f(x_0)).</td>
<td>161</td>
</tr>
<tr>
<td>Table 8.3</td>
<td>Bootstrap goodness-of-fit tests.</td>
<td>164</td>
</tr>
<tr>
<td>Table 8.4</td>
<td>Bootstrap residual regression tests.</td>
<td>165</td>
</tr>
<tr>
<td>Table 8.5</td>
<td>Percentile-(t) bootstrap confidence intervals for (\beta) in the partial linear model.</td>
<td>167</td>
</tr>
<tr>
<td>Table 8.6</td>
<td>Asymptotic versus bootstrap confidence intervals: Scale economies in electricity distribution.</td>
<td>168</td>
</tr>
<tr>
<td>Table 8.7</td>
<td>Confidence intervals for (\delta) in the index model: Percentile method.</td>
<td>169</td>
</tr>
</tbody>
</table>
Preface

This book has been largely motivated by pedagogical interests. Nonparametric and semiparametric regression models are widely studied by theoretical econometricians but are much underused by applied economists. In comparison with the linear regression model \[y = \beta \mathbf{z} + \epsilon, \] semiparametric techniques are theoretically sophisticated and often require substantial programming experience.

Two natural extensions to the linear model that allow greater flexibility are the partial linear model \[y = \beta \mathbf{z} + f(x) + \epsilon, \] which adds a nonparametric function, and the index model \[y = f(\beta \mathbf{z}) + \epsilon, \] which applies a nonparametric function to the linear index \(\beta \mathbf{z} \). Together, these models and their variants comprise the most commonly used semiparametric specifications in the applied econometrics literature. A particularly appealing feature for economists is that these models permit the inclusion of multiple explanatory variables without succumbing to the “curse of dimensionality.”

We begin by describing the idea of differencing, which provides a simple way to analyze the partial linear model because it allows one to remove the nonparametric effect \(f(x) \) and to analyze the parametric portion of the model \(\beta \mathbf{z} \) as if the nonparametric portion were not there to begin with. Thus, one can draw not only on the reservoir of parametric human capital but one can also make use of existing software. By the end of the first chapter, the reader will be able to estimate the partial linear model and apply it to a real data set (the empirical example analyzes scale economies in electricity distribution using a semiparametric Cobb–Douglas specification).

Chapter 2 describes the broad contours of nonparametric and semiparametric regression modeling, the categorization of models, the “curse of dimensionality,” and basic theoretical results.

Chapters 3 and 4 are devoted to smoothing and differencing, respectively. The techniques are reinforced by empirical examples on Engel curves, gasoline demand, the effect of weather on electricity demand, and semiparametric translog and CES cost function models. Methods that incorporate heteroskedasticity, autocorrelation, and endogeneity of right-hand-side variables are included.
Chapter 5 focuses on nonparametric functions of several variables. The example on hedonic pricing of housing attributes illustrates the benefits of nonparametric modeling of location effects.

Economic theory rarely prescribes a specific functional form. Typically, the implications of theory involve constraints such as monotonicity, concavity, homotheticity, separability, and so on. Chapter 6 begins by outlining two broad classes of tests of these and other properties: goodness-of-fit tests that compare restricted and unrestricted estimates of the residual variance, and residual regression tests that regress residuals from a restricted regression on all the explanatory variables to see whether there is anything left to be explained. Both of these tests have close relatives in the parametric world. The chapter then proceeds to constrained estimation, which is illustrated by an option pricing example.

Chapter 7 addresses the index model with an application to equivalence scale estimation using South African household survey data. Chapter 8 describes bootstrap techniques for various procedures described in earlier chapters.

A cornerstone of the pedagogical philosophy underlying this book is that the second best way to learn econometric techniques is to actually apply them. The best way is to teach them. To this purpose, data and sample programs are available for the various examples and exercises at www.chass.utoronto.ca/~yatchew/. With the exception of constrained estimation of option prices, all code is in S-Plus. The reader should be able to translate the code into other programs such as Stata easily enough.

By working through the examples and exercises, the reader should be able to:

- estimate nonparametric regression, partial linear, and index models;
- test various properties using large sample results and bootstrap techniques;
- estimate nonparametric models subject to constraints such as monotonicity and concavity.

Well-known references in the nonparametrics and semiparametrics literature include Härdle (1990), Stoker (1991), Bickel et al. (1993), Horowitz (1998), 1 Krause and Olson (1997) have provided a particularly pleasant introduction to S-Plus. See also Venables and Ripley (1994).

1 Each year I tell my students the apocryphal story of a junior faculty member complaining to a senior colleague of his inability to get through to his students. After repeating the same lecture to his class on three different occasions, he exclaims in exasperation “I am so disappointed. Today I thought I had finally gotten through to them. This time even I understood the material, and they still did not understand.”

2 Many of the examples and portions of the text draw upon previously published work, in particular, Yatchew (1997, 1998, 1999, 2000), Yatchew and Bos (1997), Yatchew and No (2001), and Yatchew, Sun, and Deri (2001). The permission for use of these materials is gratefully acknowledged.
Preface

It is hoped that this book is worthy of being squeezed onto a nearby bookshelf by providing an applied approach with numerical examples and adaptable code. It is intended for the applied economist and econometrician working with cross-sectional or possibly panel data. It is expected that the reader has had a good basic course in econometrics and is thoroughly familiar with estimation and testing of the linear model and associated ideas such as heteroskedasticity and endogeneity. Some knowledge of nonlinear regression modeling and inference is desirable but not essential. Given the presence of empirical examples, the book could be used as a text in an advanced undergraduate course and certainly at the graduate level.

I owe a great intellectual debt to too many to name them individually, and regrettably not all of them appear in the references. Several anonymous reviewers provided extensive and valuable comments for which I am grateful. Thanks are also due to Scott Parris at Cambridge University Press for his unflagging efforts in this endeavor. My sister Oenone kindly contributed countless hours of proofreading time. Finally, it is indeed a special privilege to thank Peter Phillips, whose intellectual guidance shaped several aspects of this book. It was Peter who from the start insisted on reproducible empirical exercises. Those who are acquainted with both of us surely know to whom the errors belong.

5 With the exception of correlation in the residuals, time-dependent data issues have not been covered here.