
CY168/Bolker-FM CY168/Bolker 0 52181198 8 April 8, 2003 17:44 Char Count= 0

Java Outside In

ETHAN D. BOLKER

BILL CAMPBELL
University of Massachusetts, Boston

iii

CY168/Bolker-FM CY168/Bolker 0 52181198 8 April 8, 2003 17:44 Char Count= 0

P U B L I S H E D B Y T H E P R E S S S Y N D I C A T E O F T H E U N I V E R S I T Y O F C A M B R I D G E

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

C A M B R I D G E U N I V E R S I T Y P R E S S

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Ethan D. Bolker and Bill Campbell 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typefaces ITC Century Book 10/12 pt., Gill Sans, Courier System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Bolker, Ethan D.
Java outside in / Ethan Bolker, Bill Campbell.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-81198-8 – ISBN 0-521-01087-X (pb.)
1. Java (Computer program language) I. Campbell, Bill, 1950– II. Title.
QA76.73.J38 B65 2003
005.13′3–dc21 2002073692

ISBN 0 521 81198 8 hardback
ISBN 0 521 01087 X paperback

iv

CY168/Bolker-FM CY168/Bolker 0 52181198 8 April 8, 2003 17:44 Char Count= 0

Contents

Preface page vii

1 Computing with Objects 1

2 First Things Second 24

3 Classes and Objects 47

4 Collections 85

5 Inheritance 116

6 Juno 142

7 When Bad Things Happen to Good Programs 160

8 Strings 186

9 Files, Streams, and Persistence 209

10 Graphical User Interfaces 228

Glossary 257

Examples 281

Index 315

v

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Chapter 1

Computing with Objects

Computers are at work in surprisingly many everyday (and not-so-everyday) places.
They control watches, home appliances, cars, airplanes, multinational banking sys-
tems, underwater probes, and orbital telescopes. We can use our home computers for
everything from word processing, surfing the Internet for business or pleasure, bud-
geting, and electronic mail to virtual stargazing, language learning, and intergalactic
war games. What is remarkable is that all these computers are essentially alike. A
computer is a general-purpose machine that can be programmed to behave as if it
were a machine built for a special purpose – a machine for controlling the mixture
of gasoline and oxygen in an automobile engine or one for controlling a set of traffic
lights. Moreover, the program can be changed without rebuilding the computer, which
is why we can use our home computers for so many different tasks. Each application

is a separate program that runs on our computer.
A computer program is a set of instructions (the software) that tells a general-

purpose computer (the hardware) how to behave like some special-purpose machine.
A computer program is written in a programming language. There are many pro-
gramming languages; this text uses Java, a general-purpose language based on the
modern, object-oriented style of program design that allows one to write programs
that focus more on the problem the program must solve than on the computer on
which the program will run.

You will learn the craft of programming the way a prospective writer learns the
craft of writing. Writers learn by reading. You’ll read lots of programs. Writers learn by
writing. You’ll write many programs.

In this first chapter, we introduce object-oriented programming by studying two
applications. The first makes the computer act as if it were an automatic teller machine
connected to a bank. The second makes the computer act as if it were a traffic light at
an intersection. These programs are longer than those you customarily see in the first
chapter of an introductory text. Read them in order to capture a sense of what a Java
program looks like. Don’t try to understand all the details.

Simulating a Simple Banking System

How does our automatic teller machine (ATM) work? This question is really two dif-
ferent important questions:

� How does the ATM behave? More precisely: How do you interact with the computer
when it pretends to be an ATM and you pretend to be a customer? What is the ATM’s
user interface?

1

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

2 Java Outside In

� How does the program we have written cause the computer to behave like an ATM?
What is the ATM’s implementation?

The Banking System’s Behavior

In order to understand the program, we think first about the user interface of the real
ATM1 we are simulating. We insert our bank card into a slot. The ATM reads the card
to determine which bank account we want to access. Then it asks for our personal
identification number (PIN). When we’ve entered it correctly, the ATM knows we’re
entitled to access that account. Then it waits for us to tell it what transactions we
want to perform. When we tell it we’re done, it returns our card and waits for the next
customer.

To keep our simulation simple, our bank will have just two bank accounts. The ATM
won’t read cards, ask for PINs, or dispense real money. And it will manage its fake
money only in whole dollar amounts. We communicate with our ATM by typing mes-
sages at the computer keyboard and reading what the computer displays on the screen.

When we start the program, we are telling our computer to behave as if it were an
ATM. The computer responds by displaying a welcome message and a prompt asking
us to enter an account number. Typing the account number identifies the account we
wish to work with – on a real ATM, inserting a bank card does that.

Welcome to Engulf and Devour
Account number (1 or 2), 0 to shut down: 1

In this example and throughout this book, we use bold monospaced font to
identify what the computer types and monospaced font for what we enter at the
keyboard. Remember to press the Return (or Enter) key on your keyboard at the end
of each line; until you do, the program will not know that you have typed anything.

Once we choose an account to work with (in this case, account 1), the program
offers a list of available transactions and then repeatedly prompts for transactions to
process. The program carries out each transaction request, prompting for additional
information when necessary. For example, while pretending to be the first customer
we might interact with the ATM as follows:

Transactions: exit, help, deposit, withdraw, balance
transaction: balance [followed by Return or Enter!]
200
transaction: deposit
amount: 40
transaction: balance
240

1 “Cashpoint” in Canada and the United Kingdom.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 3

transaction: withdraw
amount: 25
transaction: balance
215
transaction: help
Transactions: exit, help, deposit, withdraw, balance
transaction: exit

When we’re finished with an account, we type exit as a final transaction. The program
ends the transaction cycle for the current account, welcomes the next customer, and
prompts for an account number. This in turn begins another transaction cycle for the
next account selected:

Account number (1 or 2), 0 to shut down: 2
transaction: balance
200
transaction: exit

If the first customer now revisits account 1, she will find that her balance is 215.
To shut down the program,2 we type 0 for an account number:

Account number (1 or 2), 0 to shut down: 0
Goodbye from Engulf and Devour

Of course we wouldn’t allow a customer to shut down a real ATM. Only an employee
of the bank would have that authority. But our simulation requires some way to tell
our ATM we are done. Entering a zero for an account number is as good a way as any
for now.

We will explain soon how you start this ATM program, so that you can duplicate the
foregoing dialog rather than just read about it. If you want to do that before reading
more about the program, read the “Compile/Run” section of this chapter now.

An Object Model for the Banking System

Now that we understand our application’s user interface, we can study its implemen-
tation: the program that instructs our computer to behave like an ATM. We designed
the implementation by thinking about the objects in the real world that the program
must simulate.

Objects are constructs in programming languages that represent things in the real
world. In general, anything that we can refer to with a noun, we can represent as an

2 It’s always wise to think before you start work about how you will stop. The brake pedal is more important
than the accelerator. In an emergency, you can stop a running Java application by typing Ctrl+C (hold
down the Control key as if it were a Shift key and type “C”). What’s the best way to shut down your
computer?

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

4 Java Outside In

object in our program. This particular program uses four objects:

� Two BankAccount objects, one each for each of the two bank accounts being
managed.

� One Bank object representing the bank that maintains the accounts.
� One Terminal object representing the ATM we use to communicate with the bank.

We begin by thinking about how a BankAccount object should behave. A real bank
account’s job is to keep track of how its balance changes as withdrawals and deposits
are made. Figure 1-1 shows how we might draw a picture of a BankAccount object
having a balance of 200.

In general, we refer to properties of an object that may change over time as its
internal state. Each individual property is stored in a field, a place within the object
that we can refer to by name. (These are words you will come to understand as you learn
to program in Java. Don’t take the time now to memorize the definitions.) The figure
shows that each BankAccount object has a field we chose to call balance whose
value at the moment happens to be 200. A more realistic model of a bank account
would have more fields – for the user’s name, address and PIN, and other information –
and would maintain a balance in pennies.

Objects have behavior as well as state: They can do things as well as remember
the values of their fields. To make an object behave, we send it a message; when the
object receives the message, it takes some action. It might return some value based
on its state, or it might change its state.

For example, Figure 1-2 shows a BankAccount object receiving a getBalance
message and responding by returning the current balance, 200. (Don’t worry now about
who is sending the message, or what happens to the value 200 that’s returned. We will
address those questions in time.)

We can change the current balance by sending the BankAccount a deposit mes-
sage, together with an argument indicating how much is to be deposited. Figure 1-3
illustrates depositing 40. In this case, the BankAccount object responds to the mes-
sage by changing the value of its balance field from 200 to 240. No value is returned,
but the object’s internal state has changed.

200balance:

int

BankAccount

Figure 1-1: A BankAccount object

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 5

200balance:

int

200

getBalance()

BankAccount

Figure 1-2: Sending a getBalance message

deposit(40)
240

int

balance:

BankAccount

Figure 1-3: Sending a deposit message

Figure 1-4 depicts the Bank object in our program. A Bank has four fields:

� Field bankName stores the name of the bank – in this case, “Engulf and Devour”.3
� The values of fields account1 and account2 are the two BankAccount objects

that the bank maintains.
� Field atm stores a Terminal object.4

In Figure 1-4 the values of the bank’s fields appear at the ends of arrows rather than
inside the bank itself. That’s because those values are other objects in the program.

The Simple Banking Program in Java

Now that we have designed the object structure for our banking system, we will see
how to express that structure in Java. In Java, as in all object-oriented languages,
each particular object is an instance of a class. The two BankAccount objects are
instances of class BankAccount, the one Bank object is an instance of class Bank,
and the one Terminal object is an instance of class Terminal. The string "Engulf

3 The name comes from the Mel Brooks film Silent Movie.
4 In a more extensive example, where we had an ATM connected to a network of many banks, we might
want to put the Terminal object elsewhere, because it would not belong to a single Bank.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

6 Java Outside In

bankName:

String

account1:

account2:

atm:

BankAccount

BankAccount

Terminal

Bank

balance:

BankAccount

BankAccount

Terminal

200

balance: 200

"Engulf and Devour"

int

int

Figure 1-4: A Bank object and its fields

and Devour" is an instance of class String. The definition of the BankAccount
class specifies the fields and the behavior of the objects that are instances of the class.
This is just as it should be, because all instances of the class share the same properties.
They have the same fields, though those fields may have different values in different
instances – every BankAccount has a balance, but of course those balance fields
have different values in different accounts.

Listing 1-1 is the Java class definition for the BankAccount class. In Java, each
class definition is stored in a computer file whose name is the name of the class being
defined with a .java suffix (called an extension) appended,5 so that listing is just the
contents of the file BankAccount.java.6 Such a file is often referred to as a source

file; the Java code in it is called source code.

Listing 1-1: BankAccount.java
1 // joi/1/bank/BankAccount.java
2 //
3 //
4 // Copyright 2003 Bill Campbell and Ethan Bolker
5
6 /**

5 Usually. Later we will see a few situations in which a Java file contains the definition of several classes.
6 In this and the other program listings in this book, the line numbers at the left are not part of the program;
they are there so that we can easily refer to specific lines of code in our discussions. Listing 1-1 is displayed
in full right here. Future listings will be longer. In order not to interrupt the flow of the narrative in the text,
you will find all of them on the CD-ROM supplied with this text, and on the Web at www.cs.umb.edu/joi
so that you can look at them online while reading the text.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 7

7 * A BankAccount object has a private field to keep
8 * track of this account’s current balance, and public
9 * methods to return and change the balance.

10 *
11 * @see Bank
12 * @version 1
13 */
14
15 public class BankAccount
16 {
17 private int balance; // work only in whole dollars
18
19 /**
20 * A constructor for creating a new bank account.
21 *
22 * @param initialBalance the opening balance.
23 */
24
25 public BankAccount(int initialBalance)
26 {
27 this.deposit(initialBalance);
28 }
29
30 /**
31 * Withdraw the amount requested.
32 *
33 * @param amount the amount to be withdrawn.
34 */
35
36 public void withdraw(int amount)
37 {
38 balance = balance - amount;
39 }
40
41 /**
42 * Deposit the amount requested.
43 *
44 * @param amount the amount to be deposited.
45 */
46
47 public void deposit(int amount)
48 {
49 balance = balance + amount;

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

8 Java Outside In

50 }
51
52 /**
53 * The current account balance.
54 *
55 * @return the current balance.
56 */
57
58 public int getBalance()
59 {
60 return balance;
61 }
62 }

BankAccount.java has two purposes. First, it describes the behavior of
BankAccount objects in language that humans (computer programmers) can read
and write. Second, it can be compiled – translated by a Java compiler into a form
the computer can use when we run the bank simulation. We’ll discuss compilation
later.

Lines 1–13 in the listing are comments – text that is useful to the programmers who
read and write the class definition but of no interest at all to the compiler. Any text from
a // to the end of a line and any text between a /* and a */ is a comment. Every Java
source file should begin with comments giving the program’s name, the author’s name,
and a date. The body of the program should contain comments describing the class and
its methods and comments at places where some explanation will help programmers
understand how the program works.

The class definition proper begins on line 15, which says, naturally enough, that what
follows is the definition of the BankAccount class. That definition extends through
line 62. The curly brackets ({ and }) on lines 16 and 62 serve to define the boundaries
of the class definition.

Our class definition begins with a description of the field that will hold the account’s
balance:

private int balance; // work only in whole dollars

Because it is labeled private, it is visible only within the boundaries of the class
definition. The word int says that the field stores integer values.

The rest of the definition describes BankAccount behavior: three methods
specifying how a BankAccount will respond to messages and BankAccount
objects.

A method is a named sequence of instructions that specifies what an object does
when it receives a message having that name. For example, here is the definition of

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 9

withdraw, which tells us what a BankAccountwill do when it receives a withdraw
message:

36 public void withdraw(int amount)
37 {
38 balance = balance - amount;
39 }

Line 36 is the method header. It names the method, makes it available to the public,
tells us that it returns no value (void), and describes the arguments – the infor-
mation the method needs in order to do its job. This method has one integer argu-
ment, amount, for the amount we wish to withdraw. The method body, enclosed
between the curly braces ({ and }), specifies the response to a withdraw message:
We subtract the amount to be withdrawn from the balance. The definition of deposit
is similar.

Here is the code for getBalance:

58 public int getBalance()
59 {
60 return balance;
61 }

The empty parentheses on line 58 tell us that getBalance needs no outside infor-
mation to do its job. The return balance statement on line 60 makes the value of
the balance field available to the object that sent the getBalance message.

A constructor is a special method whose purpose is to create a new object. In Java,
the constructor method is the one whose name matches that of the class. Think of it
as describing what happens when you place an order at an imaginary BankAccount
factory.

25 public BankAccount(int initialBalance)
26 {
27 this.deposit(initialBalance);
28 }

The constructor is told (in its initialBalance argument) how much money the
account will start with. The body of the constructor sends adepositmessage tothis
object, the BankAccount under construction, asking it to deposit the proper amount
in itself.

Our simulation has (one) Bank object that creates (two) BankAccount objects
and sends messages to them to perform account transactions. To see how that is
expressed in Java, we look at pieces of code from the description of the Bank class in
file Bank.java (Listing 1-2).

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

10 Java Outside In

Here is the Bank object constructor:

41 public Bank(String name)
42 {
43 bankName = name;
44 atm = new Terminal();
45 account1 = new BankAccount(INITIAL_BALANCE);
46 account2 = new BankAccount(INITIAL_BALANCE);
47 }

This code shows that whenever we construct a Bank object we first set the bankName
field in theBank to the value passed as an argument. Then we use the Java keywordnew
to create the Terminal 7 object atm and the two BankAccount objects account1
and account2, starting each out with 200, the value of INITIAL BALANCE set on
line 29:

29 private static final int INITIAL_BALANCE = 200;

In our simulation it’s line 140 that actually creates the single Bank object we interact
with. That line tells the new bank its name:

140 Bank javaBank = new Bank("Engulf and Devour");

Message Passing

We create objects in order to make them work for us. Right after we create the bank,
we ask it to open itself:

141 javaBank.open();

That line illustrates message passing syntax: We name the object, then the method,
then the information the object needs to do what we are asking – in this case there is
no extra information, so the parentheses are empty.

There are many more examples in the code in the Bank class that processes trans-
actions for an account:

107 String command = atm.readWord("transaction: ");
108 if (command.equals("exit")) {
109 moreTransactions = false;
110 }
111 else if (command.equals("help")) {
112 atm.println(HELPSTRING);
113 }

7 Terminal objects are described in the file Terminal.java, which is Listing 8-1. We won’t study that
code until Chapter 8. Until then, we will just use Terminal objects in our programs.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 11

114 else if (command.equals("deposit")) {
115 int amount = atm.readInt("amount: ");
116 account.deposit(amount);
117 }
118 else if (command.equals("withdraw")) {
119 int amount = atm.readInt("amount: ");
120 account.withdraw(amount);
121 }
122 else if (command.equals("balance")) {
123 atm.println(account.getBalance());
124 }
125 else{
126 atm.println("sorry, unknown transaction");
127 }

Line 107 sends the atm (a Terminal object) a readWord message, telling it what
prompt to use when it asks for input from the user. The Terminal’s readWord
method collects the user’s input and returns it to the bank, which stores the value
in the variable command. The remaining code (lines 108–27) expresses the logic that
examines the value of command in order to decide what to do. Read those lines
this way:

� The statement command.equals("exit") sends the command string an
equals message, asking it if its value (the string the user typed) is “exit”. The
equals method returns true or false, depending on the answer to the question.
If the user did in fact type “exit”, set the variable moreTransactions to false to
indicate we’re done with this particular bank account.

� Otherwise,8 if the user typed “help”, send the atm a message asking it to print out
the value of HELPSTRING, the String listing all possible commands:

30 private static final String HELPSTRING =
31 "Transactions: exit, help, deposit, withdraw, balance";

� Otherwise, if the user typed “deposit”, send the atm a readInt message, asking it
to prompt for, read, and return an integer amount. Then send a deposit message
to the BankAccount object account, with that amount as an argument.

� Otherwise, if the user typed “withdraw”, send the atm a readIntmessage, asking it
to prompt for, read, and return an integer amount. Then send a withdraw message
to the BankAccount object account, with that amount as an argument.

� Otherwise, if the user typed “balance”, send the atm a println message, asking
that it display the current balance. To get that value we first send the account a

8 In Java, else can always be read as “otherwise.”

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

12 Java Outside In

getBalancemessage. The value returned by account.getBalance() is in turn
the argument to the println message sent to the atm.

� Otherwise, the command is not one of the available transactions. Send the atm a
println message, asking it to inform the user.

Compile/Run

In order to run the bank simulation application, we must first compile all of the files
to translate the Java source code into a form the computer can understand. How you
tell your computer to compile a file depends on your local programming environment.
In this book we assume that environment provides you with a command-line interface
that prompts you for what you want do next. Windows usually uses a > as its command
prompt; Unix and Linux use a % unless someone has programmed a different prompt.
To avoid taking sides in a political controversy, we will use both, writing

%> javac BankAccount.java

when you are to type “javac BankAccount.java” at the command prompt. This particular
command causes the Java compiler to produce a class file BankAccount.class. In
general, the class file’s name is the same as the class name with a .class extension
replacing the .java extension.

You can compile both files at once with the command

%> javac BankAccount.java Bank.java

Our banking system requires several more class files in addition to Bank.class
and BankAccount.class. One is Terminal.class, containing the description of
Terminal objects. Another is String.class, containing the description of String
objects. You do not need to do anything special to use the String class, which comes
along with Java. The Terminal class is particular to Java Outside In.9

When you have created class files by compiling Java source code with the javac
compiler you are ready to run the bank simulation. The Java Virtual Machine (JVM)

is a computer program that reads class files and executes their contents. To start the
JVM and ask it to start the bank application, we execute the command

%> java Bank

This produces the behavior we have sketched previously, allowing a user to interact
with the program.

9 If you are using Java Outside In as a text in a programming course your instructor will have made the
Terminal class available to you. If you are studying on your own, consult the section on the Java Outside

In CD-ROM or Web page www.cs.umb.edu/joi to find out how to configure your environment so that
your programs can see the Terminal class.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 13

We encourage you to look through Bank.java and BankAccount.java now,
even though this banking application is a larger program (almost 200 lines) than you
will usually find in the first chapter of an introductory text. We think it is valuable to
encounter a program of this size right at the start of your studies: It’s large enough to be
genuinely interesting. Just understand that you need not understand it all right now.10

A Traffic Light Program

Our second example is an application that simulates the behavior of a traffic light.
Following the pattern we have just introduced, we consider first our program’s behavior
(its user interface), then the objects that model an implementation of that behavior,
then part of the Java program that gives life to our light.

Traffic lights at an intersection change color from time to time in order to guarantee
a smooth and safe flow of traffic. In the real world, traffic lights are controlled by
sophisticated software that responds to input from timers and sensors and buttons.
Our program models an unrealistically simple situation – just one light, whose color
changes when the user presses just one button.

The Behavior of the Traffic Light Program

We communicated with the bank application using a command-line interface: a
sequence of typed commands and typed responses. The traffic light application has
a graphical user interface (GUI): We use the mouse to talk to the program. In
response, the program changes the pictures on the screen. GUI programming is more
difficult than command-line interface programming. Because we don’t think mastering
those difficulties is the best way to learn to program, we won’t do much of it in this
text, but we want to give you a taste of it here in the first chapter.

To run the traffic light application, we compile its source code to build class files:

%> javac TrafficLight.java Lens.java Sequencer.java
%> javac NextButtonListener.java

and then start the JVM:

%> java TrafficLight

Figure 1-5 shows a black and white rendering of what you will see on your computer
screen: a traffic light showing a green lens lit (the red and yellow lenses are there but
invisible), and, beneath the light, a single button marked “Next”. When you move your
mouse to that button and click it, the light responds by advancing to its next state, from
green to yellow, from yellow to red, from red back to green, and so on.

10 It won’t be on the test . . .

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

14 Java Outside In

Figure 1-5: A traffic light system (green)

How you shut the program down depends on the particular window system your
computer is using. You should find both a button to click on and a Close choice on a
menu. Either will do.11

An Object Model for the TrafficLight Program

The design we have chosen for our application uses several objects. Some of them are
visible:

� A TrafficLight object, with three Lens objects
� A Button object to push

Some of them are invisible, but necessary:

� A listener object to respond to clicks on the button
� A Sequencer object to control the light in response to messages from the button

listener.

Figure 1-6 shows the object model for our traffic light application. We can view that
picture as a hardware diagram, in which the arrows represent wires that carry electri-
cal signals from one component to the next. We can also see it as an object diagram like
Figure 1-4, in which the arrows represent the values of the various objects’ fields by
pointing to the objects they contain. Some (unspecified) field in the Button has as its
value aNextButtonListener. Thesequencer field in theNextButtonListener
has as its value a Sequencer. The Sequencer’s light field has as its value a
TrafficLight. The TrafficLight has three fields named red, yellow, and

11 Recall that whenever you begin working with a new user interface one of your first tasks should be to
learn how to shut it down.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 15

Sequencer

TrafficLight TrafficLight

light:

NextButton
Listener

Sequencer

sequencer:

Button

Lens

red:

yellow:

Lens

Lens

Lens

LensLens

green:

(RED)

(YELLOW)

(GREEN)

Figure 1-6: Object model for the traffic light application

Sequencer TrafficLight

NextButton
Listener

Button

Lens

Lens

Lens

(RED)

(YELLOW)

(GREEN)actionPerformed

next

setCaution turnOff

turnOff

turnOn

Figure 1-7: Message passing diagram for the traffic light application

green, each of which holds a distinct Lens. Each Lens has a field that holds
its color.

Recall that in object-oriented programs, work is done when objects send messages
to one another. Figure 1-7 represents the messages that will be sent when the light
is green and the user presses the “Next” button, represented by the Button ob-
ject in our model. The Button object sends an actionPerformed message to the
NextButtonListener, which in turn sends a next message to the Sequencer ob-
ject. The Sequencer responds by shifting itself to the next state and sending the

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

16 Java Outside In

appropriate message, setCaution, to the TrafficLight. The TrafficLight in
turn interprets the setCaution message from the Sequencer by sending messages
to the three lenses: turnOff to red,12 turnOn to yellow, and turnOff to green.

That changes the light from green to yellow; Figure 1-8 shows the result.

The Traffic Light Application in Java

You will find the source code for the four classes we have written in Listings 1-3, 1-4, 1-5,
and 1-6: TrafficLight.java, NextButtonListener.java, Sequencer.java,
and Lens.java, respectively. We don’t need source code for Button because
Button.class (like String.class) comes with Java.

Let’s take a look at theSequencer class, defined inSequencer.java (Listing 1-5).
A Sequencer object controls the sequence of states that the traffic light passes
through.

A Sequencer object has two fields. The TrafficLight field, light, declared
on line 19 refers to the light that this Sequencer is controlling. The integer field
currentState, declared on line 26, holds the state that the traffic light is currently
in: GO, CAUTION, or STOP. The integer constants declared and initialized on lines 22,
23, and 24 represent these states.

A Sequencer has just two methods: a constructor, defined on lines 34–9, and the
method next, defined on lines 47–69.

The constructor initializes the value of the light field with the TrafficLight
passed as its argument and then sets the initial state of the Sequencer to GO by
setting the currentState field (line 37) and sending the light a setGo message
(line 38). (The light responds to this message by running its setGomethod. If you look

Figure 1-8: A traffic light system (yellow)

12 The red lens is actually already off at this moment, but this defensive program makes sure by sending the
redundant message.

CY168-01 CY168/Bolker 0 52181198 8 April 8, 2003 17:21 Char Count= 0

Computing with Objects 17

at TrafficLight.java you can see how that method sends messages to turn the
light’s green lens on and its red and yellow lenses off.)

Figure 1-7 shows that the method next is invoked in response to next messages
sent from the NextButtonListener object. It uses a switch statement to examine
the value of the currentState field and act appropriately, changing the value of that
field and sending the light the right message.

For example, when currentState is GO, execution of the program branches to
the code

51 case GO:
52 this.currentState = CAUTION;
53 this.light.setCaution();
54 break;

The state is changed to CAUTION, and a setCaution message is sent to the light
(causing it to send appropriate messages to its lenses). The break statement on line 54
tells Java that the switch on line 49 is done, completing the method at line 69.

Control branches to the default clause on line 66 only if currentStatematches
none of the intervening cases. This will not happen in our program.13

Thus the Sequencer object contains all of the logic necessary for maintaining
state and shifting through the states GO, CAUTION, and STOP, and back to GO upon
receiving successive next messages. We leave the provision of an additional WALK
state as an exercise.

The Software Development Cycle

In the two examples we have studied, one application turned our computer into an
ATM connected to a bank, the other into a traffic light. The process that produced
these examples is typical of the way software is developed. That process has several
identifiable stages:

1. Imagine. You have an idea – an image of the application you wish existed, the
special-purpose machine you want to run on your general-purpose computer.

2. Design. Think about your application’s user interface – how it will behave – and
then think about the software objects you will build to implement that behavior.

3. Edit. Write the Java code that constructs the objects you have designed.
4. Compile. Invoke the Java compiler to construct class files from your source files. If

there are any errors, return to Step 3.

13 A programmer’s last words Note that our program is designed to print an error message even in a
situation we are sure can never occur. That’s defensive programming.

