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Chapter 1
Introduction and overview

1.1 Some history

Chaotic dynamics may be said to have started with the work of the French
mathematician Henri Poincaré at about the turn of the century. Poincaré’s
motivation was partly provided by the problem of the orbits of three
celestial bodies experiencing mutual gravational attraction (e.g., a star
and two planets). By considering the behavior of orbits arising from sets
of initial points (rather than focusing on individual orbits), Poincaré was
able to show that very complicated (now called chaotic) orbits were
possible. Subsequent noteworthy early mathematical work on chaotic
dynamics includes that of G. Birkhoff in the 1920s, M. L. Cartwright and
J. E. Littlewood in the 1940s, S. Smale in the 1960s, and Soviet
mathematicians, notably A. N. Kolmogorov and his coworkers. In spite of
this work, however, the possibility of chaos in real physical systems was
not widely appreciated until relatively recently. The reasons for this were
first that the mathematical papers are difficult to read for workers in other
fields, and second that the theorems proven were often not strong enough
to convince researchers in these other fields that this type of behavior
would be important in their systems. The situation has now changed
drastically, and much of the credit for this can be ascribed to the extensive
numerical solution of dynamical systems on digital computers. Using
such solutions, the chaotic character of the time evolutions in situations of
practical importance has become dramatically clear. Furthermore, the
complexity of the dynamics cannot be blamed on unknown extraneous
experimental effects, as might be the case when dealing with an actual
physical system.



1 Introduction and overview

In this chapter, we shall provide some of the phenomenology of chaos
and will introduce some of the more basic concepts. The aim is to provide
a motivating overview' in preparation for the more detailed treatments to
be pursued in the rest of this book.

1.2 Examples of chaotic behavior

Most students of science or engineering have seen examples of dynamical
behavior which can be fully analyzed mathematically and in which the
system eventually (after some transient period) settles either into periodic
motion (a limit cycle) or into a steady state (i.e., a situation in which the
system ceases its motion). When one relies on being able to specify an
orbit analytically, these two cases will typically (and falsely) appear to be
the only important motions. The point is that chaotic orbits are also very
common but cannot be represented using standard analytical functions.
Chaotic motions are neither steady nor periodic. Indeed, they appear to be
very complex, and, when viewing such motions, adjectives like wild,
turbulent, and random come to mind. In spite of the complexity of these
motions, they commonly occur in systems which themselves are not
complex and are even surprisingly simple. (In addition to steady state,
periodic and chaotic motion, there is a fourth common type of motion,
namely quasiperiodic motion. We defer our discussion of quasiperiodicity
to Chapter 6.)

Before giving a definition of chaos we first present some examples and
background material. As a first example of chaotic motion, we consider an
experiment of Moon and Holmes (1979). The apparatus is shown in Figure
1.1. When the apparatus is at rest, the steel beam has two stable steady-
state equilibria: either the tip of the beam is deflected toward the left
magnet or toward the right magnet. In the experiment, the horizontal
position of the apparatus was oscillated sinusoidally with time. Under
certain conditions, when this was done, the tip of the steel beam was
observed to oscillate in a very irregular manner. As an indication of this
very irregular behavior, Figure 1.2(a) shows the output signal of a strain
gauge attached to the beam (Figure 1.1). Although the apparatus appears
to be very simple, one might attribute the observed complicated motion to
complexities in the physical situation, such as the excitation of higher
order vibrational modes in the beam, possible noise in the sinusoidal
shaking device, etc. To show that it is not necessary to invoke such effects,
Moon and Holmes considered a simple model for their experiment,
namely, the forced Duffing equation in the following form,

dy

d ,
@—l—vd—f—i—(f—y):gsmt. (1.1)
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Figure 1.1 The apparatus of
Moon and Holmes (1979).
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Figure 1.2 (a) Signal from the
strain gauge. (b) Numerical
solution of Eq. (1.1) (Moon
and Holmes, 1979).
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In Eq. (1.1), the first two terms represent the inertia of the beam and
dissipative effects, while the third term represents the effects of the
magnets and the elastic force. The sinusoidal term on the right-hand side
represents the shaking of the apparatus. In the absence of shaking (g = 0),
Eq. (1.1) possesses two stable steady states, y =1 and y = —1, corre-
sponding to the two previously mentioned stable steady states of the beam.
(There is also an unstable steady state y = 0.) Figure 1.2(b) shows the
results of a digital computed numerical solution of Eq. (1.1) for a
particular choice of v and g. We observe that the results of the physical
experiment are qualitatively similar to those of the numerical solution.



Figure 1.3 Schematic
illustration of the experiment
of Shaw (1984).

1 Introduction and overview

Thus, it is unnecessary to invoke complicated physical processes to
explain the observed complicated motion.

As a second example, we consider the experiment of Shaw (1984)
illustrated schematically in Figure 1.3. In this experiment, a slow steady
inflow of water to a ‘faucet’ was maintained. Water drops fall from the
faucet, and the times at which successive drops pass a sensing device are
recorded. Thus, the data consists of the discrete set of times
t1, ta, ..., ty, ... at which drops were observed by the sensor. From these
data, the time intervals between successive drops can be formed,
At, = tyy1 — t,. When the inflow rate to the faucet is sufficiently small,
the time intervals A¢, are all equal. As the inflow rate is increased, the
time interval sequence becomes periodic with a short interval Af,
followed by a longer interval A, so that the sequence of time intervals is
of the form ..., At,, Aty, At,, Atp, At,, .... We call this a period two
sequence since Af, = At,;. As the inflow rate is further increased,
periodic sequences of longer and longer periods were observed, until, at
sufficiently large inflow rate, the sequence At, At,, Ats, ... apparently
has no regularity. This irregular sequence is argued to be due to chaotic
dynamics.

As a third example, we consider the problem of chaotic Rayleigh—
Benard convection, originally studied theoretically and computationally in
the seminal paper of Lorenz (1963) and experimentally by, for example,
Ahlers and Behringer (1978), Gollub and Benson (1980), Bergé et al.
(1980) and Libchaber and Maurer (1980). In Rayleigh—Benard convec-
tion, one considers a fluid contained between two rigid plates and
subjected to gravity, as shown in Figure 1.4. The bottom plate is
maintained at a higher temperature 7y + AT than the temperature 7 of
the top plate. As a result, the fluid near the warmer lower plate expands,
and buoyancy creates a tendency for this fluid to rise. Similarly, the cooler

Z ﬁ Dripping
faucet

Light source

'__—__'l/\f\f\>0

Light sensor



1.2 Examples of chaotic behavior

more dense fluid near the top plate has a tendency to fall. While Lorenz’s
equations are too idealized a model to describe the experiments accurately,
in the case where the experiments were done with vertical bounding side-
walls situated at a spacing of two to three times the distance between the
horizontal walls, there was a degree of qualitative correspondence between
the model and the experiments. In particular, in this case, for some range
of values of the temperature difference AT, the experiments show that the
fluid will execute a steady convective cellular flow, as shown in the figure.
At a somewhat larger value of the temperature difference, the flow
becomes time-dependent, and this time dependence is chaotic. This
general behavior is also predicted by Lorenz’s paper.

From these simple examples, it is clear that chaos should be expected
to be a very common basic dynamical state in a wide variety of systems.
Indeed, chaotic dynamics has by now been shown to be of potential
importance in many different fields including fluids,? plasmas,?® solid state

4 ¢ mechanical devices,” biology,® chemistry,’

11

devices,* circuits,” lasers,

acoustics,'? celestial mechanics,!! etc.

In both the dripping faucet example and the Rayleigh—Benard convec-
tion example, our discussions indicated a situation as shown schematically
in Figure 1.5. Namely, there was a system parameter, labeled p in Figure
1.5, such that, at a value p = p;, the motion is observed to be nonchaotic,
and at another value p = p,, the motion is chaotic. (For the faucet
example, p is the inflow rate, while for the example of Rayleigh—Benard
convection, p is the temperature difference AT.) The natural question
raised by Figure 1.5 is how does chaos come about as the parameter p is
varied continuously from p, to p,? That is, how do the dynamical motions
of the system evolve with continuous variation of p from p; and p,? This
question of the routes to chaos'? will be considered in detail in Chapter 8.

N Ty
Gravity
Ty + AT
P ) System
} ! parameter
} f !

Nonchaotic Chaotic
behavior behavior

Figure 1.4 Rayleigh—Benard
convection.

Figure 1.5 Schematic
illustration of the question of
the transition to chaos with
variation of a system
parameter.



Figure 1.6 An orbit in a three-
dimensional (N = 3) phase
space.

1 Introduction and overview

1.3 Dynamical systems

A dynamical system may be defined as a deterministic mathematical
prescription for evolving the state of a system forward in time. Time here
either may be a continuous variable, or else it may be a discrete integer-
valued variable. An example of a dynamical system in which time
(denoted ¢) is a continuous variable is a system of N first-order, auto-
nomous, ordinary differential equations,

dx(V/dt = Fi(xD, x@, ... x(M),

dx(z)/dt = B, x@ ) xWy,
. (1.2)
dx(N)/dt : FN(x(l), x@ ., x(N)),
which we shall often write in vector form as
dx(#)/dt = F[x(#)], (1.3)

where x is an N-dimensional vector. This is a dynamical system because,
for any initial state of the system x(0), we can in principle solve the
equations to obtain the future system state x(¢) for # > 0. Figure 1.6 shows
the path followed by the system state as it evolves with time in a case
where N = 3. The space (x(V, x®, x®) in the figure is referred to as
phase space, and the path in phase space followed by the system as it
evolves with time is referred to as an orbit or trajectory. Also, it is
common to refer to a continous time dynamical system as a flow. (This
latter terminology is apparently motivated by considering the trajectories
generated by all the initial conditions in the phase space as roughly
analogous to the paths followed by the particles of a flowing fluid.)

2)

]
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In the case of discrete, integer-valued time (with » denoting the time
variable, n =0, 1, 2, ...), an example of a dynamical system is a map,
which we write in vector form as

Xpi1 = M(X,), (1.4)

where x,, is N-dimensional, x, = (x{V, x@_ ... x(M) Given an initial
state xo, we obtain the state at time n=1 by x; = M(xq). Having
determined x;, we can then determine the state at n = 2 by x, = M(x)),
and so on. Thus, given an initial condition X, we generate an orbit (or
trajectory) of the discrete time system: Xq, Xj, Xo, . ... As we shall see, a
continous time system of dimensionality N can often profitably be reduced
to a discrete time map of dimensionality N — 1 via the Poincaré surface of
section technique.

It is reasonable to conjecture that the complexity of the possible
structure of orbits can be greater for larger system dimensionality. Thus, a
natural question is how large does N have to be in order for chaos to be
possible? For the case of N first-order autonomous ordinary differential
equations, the answer is that

N=3 (1.5)

is sufficient.!® Thus, if one is given an autonomous first-order system with
N = 2, chaos can be ruled out immediately.

Example: Consider the forced damped pendulum equation (cf. Figure
1.7)

&0
ds?

where the first term represents inertia, the second, friction at the pivot, the

de
+ va + sin @ = T sin(27 f7), (1.6a)

third, gravity, and the term on the right-hand side represents a sinusoidal
torque applied at the pivot. (This equation also describes the behavior of a

Figure 1.7 Forced, damped
pendulum.

simple Josephson junction circuit.) We ask: is chaos ruled out for the
driven damped pendulum equation? To answer this question, we put the
equation (which is second-order and nonautonomous) into first-order
autonomous form by the substitution

x0 = do/dr,
X =9,
x® =2xft.

(Note that, since both x® and x® appear in Eq. (1.6a) as the argument of

a sine function, they can be regarded as angles and may, if desired, be
defined to lie between 0 and 2:71.) The driven damped pendulum equation ;
then yields the following first-order autonomous system. Gravity



Figure 1.8 Noninvertibility of
the logistic map.

1 Introduction and overview

dxM/dt = T'sinx® — sinx® — yxD),
dx® /dr = x0, (1.6b)
dx®/dt = 2xf.

Since N = 3, chaos is not ruled out. Indeed, numerical solutions show that
both chaotic and periodic solutions of the driven damped pendulum
equation are possible depending on the particular choice of system
parameters v, T and f.

We now consider the question of the required dimensionality for chaos
for the case of maps. In this case, we must distinguish between invertible
and noninvertible maps. We say the map M is invertible if, given x,,.|, we
can solve X,;; = M(x,) uniquely for x,. If this is so, we denote the
solution for x,, as

Xp = Mil(xn+l)s (17)

and we call M~! the inverse of M. For example, consider the one-
dimensional (N = 1) map'4,

M(x) = rx(1 — x), (1.8)
which is commonly called the ‘logistic map.” As shown in Figure 1.8, this
map is not invertible because for a given x,, | there are two possible values

of x, from which it could have come. On the other hand, consider the two-
dimensional map,

1
)= fED) =

(1.9
x(nz-%)—l =x).
This map is clearly invertible as long as J # 0,
2
X)) = x(nJ)rl’
@) —1 (2) 1) (1.10)
Xy = J [f(xn+l) - xn+1]'
Xp+1 &
] !
! |
L I \ -




1.3 Dynamical systems

We can now state the dimensionality requirements on maps. If the map is
invertible, then there can be no chaos unless

N=2. (1.11)

If the map is noninvertible, chaos is possible even in one-dimensional
maps. Indeed, the logistic map Eq. (1.8) exhibits chaos for large enough .

It is often useful to reduce a continuous time system (or ‘flow’) to a
discrete time map by a technique called the Poincaré surface of section
method. We consider N first-order autonomous ordinary differential equa-
tions (Eq. (1.2)). The ‘Poincaré map’ represents a reduction of the
N-dimensional flow to an (N — 1)-dimensional map. For illustrative
purposes, we take N =3 and illustrate the construction in Figure 1.9.
Consider a solution of (1.2). Now, choose some appropriate (N — 1)-
dimensional surface (the ‘surface of section’) in the N-dimensional phase
space, and observe the intersections of the orbit with the surface. In Figure
1.9, the surface of section is the plane x® = K, but we emphasize that in
general the choice of the surface can be tailored in a convenient way to the
particular problem. Points 4 and B represent two successive crossings of
the surface of section. Point 4 uniquely determines point B, because A
can be used as an initial condition in (1.2) to determine B. Likewise, B
uniquely determines A4 by reversing time in (1.2) and using B as the initial
condition. Thus, the Poincaré map in this illustration represents an

invertible two-dimensional map transforming the coordinates (x(nl), x(nz)) of

@O @ ) at

the nth piercing of the surface of section to the coordinates (x,;,, x,.},

NG)

::/
/./‘

4

s;_/

> @

NO)

Figure 1.9 A Poincaré surface
of section.
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piercing n+ 1. This equivalence of an N-dimensional flow with an
(N — 1)-dimensional invertible map shows that the requirements Eq.
(1.11) for chaos in a map follows from Eq. (1.5) for chaos in a flow.

Another way to create a map from the flow generated by the system of
autonomous differential equations (1.3) is to sample the flow at discrete
times t, = to + nT (n =0, 1, 2, ...), where the sampling interval T can
be chosen on the basis of convenience. Thus, a continuous time trajectory
x(?) yields a discrete time trajectory x, = x(¢,). The quantity x,; is
uniquely determined from x,, since we can use X, as an initial condition in
Egs. (1.3) and integrate the equations forward for an amount of time 7 to
determine X, . Thus, in principle, we have a map x,1; = M(x,). We call
this map the time 7 map. The time 7 map is invertible (like the Poincaré
map), since the differential equations (1.3) can be integrated backward in
time. Unlike the Poincaré map, the dimensionality of the time 7 map is
the same as that of the flow.

1.4 Attractors

In Hamiltonian systems (cf. Chapter 7) such as arise in Newton’s equations
for the motion of particles without friction, there are choices of the phase
space variables (e.g., the canonically conjugate position and momentum
variables) such that phase space volumes are preserved under the time
evolution. That is, if we choose an initial (¢t =0) closed (N — 1)-
dimensional surface S; in the N-dimensional x-phase space, and then
evolve each point on the surface S, forward in time by using them as
initial conditions in Eq. (1.3), then the closed surface S, evolves to a
closed surface S, at some later time ¢, and the N-dimensional volumes
V(0) of the region enclosed by Sy and V(¢) of the region enclosed by S,
are the same, V(f) = V(0). We call such a volume preserving system
conservative. On the other hand, if the flow does not preserve volumes,
and cannot be made to do so by a change of variables, then we say that the
system is nonconservative. By the divergence theorem, we have that

dv(r)/dt :J V-Fd¥x, (1.12)
S
where [, signifies the integral over the volume interior to the surface Sy,
and V- F = zi’ilaF,«(x“), oo, xXM)/0xD. For example, for the forced
damped pendulum equation written in first-order autonomous form, Eq.
(1.6b), we have that V - F = —v, which is independent of the phase space
position x and is negative. From (1.12), we have dV(¢)/dt = —vV(¢) so
that V' decreases exponentially with time, V(¢) = exp(—v#)V(0). In gen-
eral, V- F will be a function of phase space position x. If V-F <0 in
some region of phase space (signifying volume contraction in that region),
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then we shall refer to the system as a dissipative system. It is an important
concept in dynamics that dissipative systems typically are characterized
by the presence of attracting sets or attractors in the phase space. These
are bounded subsets to which regions of initial conditions of nonzero
phase space volume asymptote as time increases. (Conservative dynamical
systems do not have attractors; see the discussion of the Poincaré
recurrence theorem in Chapter 7.)

As an example of an attractor, consider the damped harmonic oscilla-
tor, d>y/d¢?> + vdy/dt 4+ w?y = 0. A typical trajectory in the phase space
(M = y, x® = dy/dr) is shown in Figure 1.10(a). We see that, as time
goes on, the orbit spirals into the origin, and this is true for any initial
condition. Thus, in this case the origin, () = x® = 0, is said to be the
‘attractor’ of the dynamical system. As a second example, Figure 1.10(5)
shows the case of a limit cycle (the dashed curve). The initial condition
(labeled o) ouside the limit cycle yields an orbit which, with time, spirals
into the closed dashed curve on which it circulates in periodic motion in
the ¢ — +oc limit. Similarly, the initial condition (labeled ) inside the
limit cycle yields an orbit which spirals outward, asymptotically approach-
ing the dashed curve. Thus, in this case, the dashed closed curve is the
attractor. An example of an equation displaying a limit cycle attractor as
illustrated in Figure 1.10(b) is the van der Pol equation,

dz)’ 2 dy 2
— —n)—= =0. 1.13
dt2+(y n)dt+wy (1.13)

This equation was introduced in the 1920s as a model for a simple vacuum
tube oscillator circuit.

One can speak of conservative and dissipative maps. A conservative
N-dimensional map is one which preserves N-dimensional phase space
volumes on each iterate (or else can be made to do so by a suitable change

(@) x® (b)

-
D).
\

A

11

Figure 1.10 (a) The attractor is
the point at the origin. (b) The
attractor is the closed dashed
curve.
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Figure 1.11 Surface of section
for a three-dimensional flow
with a limit cycle.

1 Introduction and overview

of variables). A map is volume preserving if the magnitude of the
determinant of its Jacobian matrix of partial derivatives is one,

J(x) = |det[OM(x)/0x]| = 1.

For example, for a continuous time Hamiltonian system, a surface of
section formed by setting one of the N canonically conjugate variables
equal to a constant can be shown to yield a volume preserving map in the
remaining N — 1 canonically conjugate variables (Chapter 7). On the
other hand, if J(x) < 1 in some regions, then we say the map is dissipative
and, as for flows, typically it can have attractors. For example, Figure 1.11
illustrates the Poincaré surface of section map for a three-dimensional flow
with a limit cycle. We see that for the map, the two points A, and A4,
together constitute the attractor. That is, the orbit of the two-dimensional
surface of section map x,; = M(x,) yields a sequence xj, X, ... which
converges to the set consisting of the two points 4; and 4,, between which
the map orbit sequentially alternates in the limit n — +o0.

In Figure 1.10, we have two examples, one in which the attractor of a
continuous time system is a set of dimension zero (a single point) and one
in which the attractor is a set of dimension one (a closed curve). In Figure
1.11, the attractor of the map has dimension zero (it is the two points, 4;
and A4,). It is a characteristic of chaotic dynamics that the resulting
attractors often have a much more intricate geometrical structure in the
phase space than do the examples of attractors cited above. In fact,

(3)
x Limit cycle
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1.4 Attractors

according to a standard definition of dimension (Section 3.1), these
attractors commonly have a value for this dimension which is not an
integer. In the terminology of Mandelbrot, such geometrical objects are
fractals. When an attractor is fractal, it is called a strange attractor.

As an example of a strange attractor, consider the attractor obtained
for the two-dimensional Hénon map,

a1 _ (1))2 (2)
X =A4—(x + Bx'?,
n+1 ( n ) n } (114)

[V -

(1)
ntl = Xn's

for A = 1.4 and B = 0.3. See Hénon (1976). (Note that Eq. (1.14) is in
the form of Eq. (1.9).) Figure 1.12(a) shows the results of plotting 10*
successive points obtained by iterating Eqs. (1.14) (with the initial
transient before the orbit settles into the attractor deleted). The result is
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Figure 1.12 (a) The Hénon
attractor. (b) Enlargement

of region defined by

the rectangle in (a).

(¢) Enlargement of region
defined by the rectangle in (b)
(Grebogi et al., 1987d).
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Figure 1.13 The attractor of
the forced damped pendulum
equation in the surface of
section x® modulo 27 = 0
(Grebogi et al., 1987d).

1 Introduction and overview

essentially a picture of the attractor. Figure 1.12(b) shows that a blow-up
of the rectangle in Figure 1.12(a) reveals that the attractor apparently has
a local small-scale structure consisting of a number of parallel lines. A
blow-up of the rectangle in Figure 1.12(b) is shown in Figure 1.12(¢) and
reveals more lines. Continuation of this blow-up procedure would show
that the attractor has similar structure on arbitrarily small scale. In fact,
roughly speaking, we can regard the attractor in Figure 1.12(b) as
consisting of an uncountable infinity of lines. Numerical computations
show that the fractal dimension D, of the attractor in Figure 1.12 is a
number between one and two, Dy ~ 1.26. Hence, this appears to be an
example of a strange attractor.

b)) —09 1 L L 1 1
0.0 0.2 0.4 0.6 0.8 1.0




1.5 Sensitive dependence on initial conditions

As another example of a strange attractor, consider the forced damped
pendulum (Egs. (1.6) and Figure 1.7) with v=0.22, T =2.7, and
f = 1/2x. Treating x® as an angle in phase space, we define

73 = x® modulo 27

and choose a surface of section ¥ = 0. The modulo operation is defined
as

y modulo K = y+ pK

where p is a positive or negative integer chosen to make
0 < y+ pK < K. The surface of section ¥® = 0 is crossed at the times
t =0, 2m, 47, 671, . ... (This type of surface of section for a periodically
forced system is often referred to as a stroboscopic surface of section,
since it shows the system state at successive ‘snapshots’ of the system at
evenly spaced time intervals.) As seen in Figure 1.13(a) and in the blow-
up of the rectangle (Figure 1.13(b)), the attractor again apparently consists
of a number of parallel curves. The fractal dimension of the intersection of
the attractor with the surface of section in this case is approximately 1.38.
Correspondingly, if one considers the attracting set in the full three-
dimensional phase space, it has a dimension 2.38 (i.e., one greater than its
intersection with the surface of section).

1.5 Sensitive dependence on initial conditions

A defining attribute of an attractor on which the dynamics is chaotic is
that it displays exponentially sensitive dependence on initial conditions.
Consider two nearby initial conditions x;(0) and x,(0) = x;(0) + A(0),
and imagine that they are evolved forward in time by a continuous time
dynamical system yielding orbits x;(¢) and x,(¢) as shown in Figure 1.14.

Xo(7)

A(?)

x(9)
x,(0)

x;(0)

15

Figure 1.14 Evolution of two
nearby orbits in phase space.
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At time ¢, the separation between the two orbits is A(¢) = xo(#) — x; (). If,
in the limit |A(0)] — 0, and large #, orbits remain bounded and the
difference between the solutions |A(7)| grows exponentially for typical
orientation of the vector A(0) (i.e., |A(?)|/|A(0)| ~ exp(ht), h > 0), then
we say that the system displays sensitive dependence on initial conditions
and is chaotic. By bounded solutions, we mean that there is some ball in
phase space, |x| < R < oo, which solutions never leave.!> (Thus, if the
motion is on an attractor, then the attractor lies in [x| < R.) The reason we
have imposed the restriction that orbits remain bounded is that, if orbits go
to infinity, it is relatively simple for their distances to diverge exponen-
tially. An example is the single, autonomous, linear, first-order differential
equation dx/d¢ = x. This yields d[x,(¢) — x;(#)]/dt = [x2(#) — x1(¢)] and
hence A(?) ~ exp(f). Our requirement of bounded solutions eliminates
such trivial cases.'® For the case of the driven damped pendulum equation,
we defined three phase space variables, one of which was x® = 27 ft. As
defined, x® is unbounded since it is proportional to . The reason we can
speak of the driven damped pendulum as being chaotic is that, as
previously mentioned, x® only occurs as the argument of a sine, and
hence it (as well as x'» = 0) can be regarded as an angle. Thus, the phase
space coordinates can be taken as x(, ¥ 3 where ¥®3 = x?¥
modulo 27. Since the variables ¥» and ¥ lie between 0 and 27, they are
necessarily bounded.

The exponential sensitivity of chaotic solutions means that, as time
goes on, small errors in the solution can grow very rapidly (i.e., exponen-
tially) with time. Hence, after some time, effects such as noise and
computer roundoff can totally change the solution from what it would be
in the absence of these effects. As an illustration of this, Figure 1.15 shows
the results of a computer experiment on the Hénon map, Eq. (1.14), with
A = 1.4 and B = 0.3. In this figure, we show a picture of the attractor (as
in Figure 1.12(a)) superposed on which are two computations of iterate
numbers 32—36 of an orbit originating from the single initial condition
(xgl) , x(()z)) = (0, 0) (labeled as an asterisk in the figure). The two computa-
tions of the orbits are done identically, but one uses single precision and
the other double precision. The roundoff error in the single precision
computation is about 10~'%. The orbit computed using single precision is
shown as open diamonds, while the orbit using double precision is shown
as asterisks. A straight line joins the two orbit locations at each iterate. We
see that the difference in the two computations has become as large as the
variables themselves. Thus, we cannot meaningfully compute the orbit on
the Hénon attractor using a computer with 10~'* roundoff for more than
of the order of 30—40 iterates. Hence, given the state of a chaotic system,
its future becomes difficult to predict after a certain point. Returning to
the Hénon map example, we note that, after the first iterate, the two
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2r Figure 1.15 After a relatively
033 small number of iterates, two
trajectories, one computed
using single precision, the
other computed using double
precision, both originating
from the same initial
condition, are far apart. (This
figure courtesy of Y. Du.)

-2 -1 0 1 2

solutions differ by of the order of 10~!* (the roundoff). If the subsequent
computations were made without error, and the error doubled on each
iterate (i.e., an exponential increase of 2” = exp(nIn2)), then the orbits
would be separated by an amount of the order of the attractor size at a time
roughly determined by 271074 ~ 1 or n ~ 45. If errors double on each
iterate, it becomes almost impossible to improve prediction. Say, we can
compute exactly, but our initial measurement of the system state is only
accurate to within 10~'%. The above shows that we cannot predict the state
of the system past n ~ 45. Suppose that we wish to predict to a longer
time, say, twice as long, i.e.,, to n ~ 90. Then we must improve the
accuracy of our initial measurement from 10~'# to 10728, That is, we must
improve our accuracy by a tremendous amount, namely, 14 orders of
magnitude! In any practical situation, this is likely to be impossible. Thus,
the relatively modest goal of an improvement of prediction time by a
factor of two is not feasible.

The fact that chaos may make prediction past a certain time difficult,
and essentially impossible in a practical sense, has important conse-
quences. Indeed, the work of Lorenz was motivated by the problem of
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Figure 1.16 Given a noisy
trajectory from the initial
condition xy, it is possible to
find a slightly different initial
condition x{, such that the
true (i.e., noiseless) trajectory
from x4 shadows the noisy
trajectory from xg.
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weather prediction. Lorenz was concerned with whether it is possible to
do long-range prediction of atmospheric conditions. His demonstration
that thermally driven convection could result in chaos raises the possibility
that the atmosphere is chaotic. Thus, even the smallest perturbation, such
as a butterfly flapping its wings, eventually has a large effect. Long-term
prediction becomes impossible.

Given the difficulty of accurate computation, illustrated in Figure 1.15,
one might question the validity of pictures such as Figures 1.12 and 1.13
which show thousands of iterates of the map. Is the figure real, or is it
merely an artifact of chaos-amplified computer roundoff? A partial answer
to this question comes from rigorous mathematical proofs of the shadow-
ing property for certain chaotic systems. Although a numerical trajectory
diverges exponentially from the true trajectory with the same initial
condition, there exists a true (i.e. errorless) trajectory with a slightly
different initial condition (Fig. 1.16) that stays near (shadows) the numer-
ical trajectory (Anosov, 1967; Bowen, 1970; Hammel, Yorke and Grebogi,
1987; and Problem 3 of Chapter 2). Thus, there is good reason to believe
that the apparent fractal structure seen in pictures like Figures 1.12 and
1.13 is real.

We emphasize that the nonchaotic cases, shown in Figure 1.10(a) and
1.10(b), do not yield long-term exponential divergence of solutions. For
the damped harmonic oscillator example (Figure 1.10(a)), two initially
nearby points approach the point attractor and their energies decrease
exponentially to zero with time. Hence, orbits converge exponentially for
large time. For the case of a limit cycle (Figure 1.10(b)), orbits initially
separated by an amount A(0) typically eventually wind up on the limit

True trajectory
from x

Noisy
trajectory
Initial from x
condition x

Slightly
different
initial condition X

True trajectory
from x



1.6 Delay coordinates

cycle attractor separated by an amount of order |A(0)| and maintain a
separation of this order forever. Thus, a small initial error leads to small
errors for all time. As another example, consider the motion of a particle
in a one-dimensional anharmonic potential well in the absence of friction
(a conservative system). The total particle energy (potential energy plus
kinetic energy) is constant with time on an orbit. Each orbit is periodic
and the period depends on the particle energy. Two nearby initial condi-
tions, in general, will have slightly different energies and hence slightly
different orbit frequencies. This leads to divergence of these orbits, but the
divergence is only linear with time rather than exponential;
|A(#)| ~ (Aw)t, where Aw is the difference of the orbital frequencies.
Thus, if |A(0)| is reduced by a factor of two (reducing Aw by a factor of
two), then ¢ can be doubled, and the same error will be produced. This is
in contrast with our chaotic example above where errors doubled on each
iterate. In that case, to increase the time by a factor of two, |A(0)| had to
be reduced by a factor of order 10,

The dynamics on an attractor is said to be chaotic if there is
exponential sensitivity to initial conditions. We will say that an attractor is
strange if it is fractal (this definition of strange is often used but is not
universally accepted). Thus, chaos describes the dynamics on the attractor,
while ‘strange’ refers to the geometry of the attractor. It is possible for
chaotic attractors not to be strange (typically the case for one-dimensional
maps (see the next chapter)), and it is also possible for attractors to be
strange but not chaotic (Grebogi ef al., 1984; Romeiras and Ott, 1987; and
Section 6.4). For most cases involving differential equations, strangeness
and chaos commonly occur together.

1.6 Delay coordinates

In experiments one cannot always measure all the components of the
vector x(7) giving the state of the system. Let us suppose that we can only
measure one component, or, more generally, one scalar function of the
state vector,

g(1) = G(x(1)). (1.15)

Given such a situation, can we obtain phase space information on the
geometry of the attractor? For example, can we somehow make a surface
of section revealing fractal structure as in Figures 1.12 and 1.13? The
answer is yes. To see that this is so, define the so-called delay coordinate
vector (Takens, 1980), y = (y(, y@, ..., y) by
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Figure 1.17 Experimental
delay coordinate plot showing
a closed curve corresponding
to a limit cycle attractor.

1 Introduction and overview

Y1) = g(v),
Y1) = gt — ),
Y1) = g(r —27), (1.16)

yM(1)= glt — (M — 1)1,

where 7 is some fixed time interval, which should be chosen to be of the
order of the characteristic time over which g(#) varies. Given x at a
specific time #, one could, in principle, obtain x(fy — m7) by integrating
Eq. (1.3) backwards in time by an amount mrt. Thus, x(fy — m7) is
uniquely determined by x(#p) and can hence be regarded as a function of

x(?o),

X(1 = mt) = Ln(x(1)).

Hence, g(¢t — mt) = G(L,,(x(?))), and we may thus regard the vector y(¢)
as a function of x(7)

y = H(x).

We can now imagine making a surface of section in the y-space. It can be
shown (Section 3.9) that, if the number of delays M is sufficiently large,
then we will typically see a qualitatively similar structure as would be seen
had we made our surface of section in the original phase space x.
Alternatively, we might simply examine the continuous time trajectory in
y. For example, Figure 1.17 shows a result for an experiment involving
chemical reactions (cf. Section 2.4.3). The vertical axis is the measured
concentration g(¢) of one chemical constituent at time ¢ and the horizontal
axis is the same quantity evaluated at + — (8.8 seconds). We see that the
delay coordinates y = (g(7), g(¢ — 8.8)) traces out a closed curve indi-
cating a limit cycle.
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