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Chapter 1
Introduction and overview

1.1 Some history

Chaotic dynamics may be said to have started with the work of the French
mathematician Henri Poincaré at about the turn of the century. Poincaré’s
motivation was partly provided by the problem of the orbits of three
celestial bodies experiencing mutual gravational attraction (e.g., a star
and two planets). By considering the behavior of orbits arising from sets
of initial points (rather than focusing on individual orbits), Poincaré was
able to show that very complicated (now called chaotic) orbits were
possible. Subsequent noteworthy early mathematical work on chaotic
dynamics includes that of G. Birkhoff in the 1920s, M. L. Cartwright and
J. E. Littlewood in the 1940s, S. Smale in the 1960s, and Soviet
mathematicians, notably A. N. Kolmogorov and his coworkers. In spite of
this work, however, the possibility of chaos in real physical systems was
not widely appreciated until relatively recently. The reasons for this were
first that the mathematical papers are difficult to read for workers in other
fields, and second that the theorems proven were often not strong enough
to convince researchers in these other fields that this type of behavior
would be important in their systems. The situation has now changed
drastically, and much of the credit for this can be ascribed to the extensive
numerical solution of dynamical systems on digital computers. Using
such solutions, the chaotic character of the time evolutions in situations of
practical importance has become dramatically clear. Furthermore, the
complexity of the dynamics cannot be blamed on unknown extraneous
experimental effects, as might be the case when dealing with an actual
physical system.
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2 1 Introduction and overview

In this chapter, we shall provide some of the phenomenology of chaos
and will introduce some of the more basic concepts. The aim is to provide
a motivating overview! in preparation for the more detailed treatments to
be pursued in the rest of this book.

1.2 Examples of chaotic behavior

Most students of science or engineering have seen examples of dynamical
behavior which can be fully analyzed mathematically and in which the
system eventually (after some transient period) settles either into periodic
motion (a limit cycle) or into a steady state (i.e., a situation in which the
system ceases its motion). When one relies on being able to specify an
orbit analytically, these two cases will typically (and falsely) appear to be
the only important motions. The point is that chaotic orbits are also very
common but cannot be represented using standard analytical functions.
Chaotic motions are neither steady nor periodic. Indeed, they appear to be
very complex, and, when viewing such motions, adjectives like wild,
turbulent, and random come to mind. In spite of the complexity of these
motions, they commonly occur in systems which themselves are not
complex and are even surprisingly simple. (In addition to steady state,
periodic and chaotic motion, there is a fourth common type of motion,
namely quasiperiodic motion. We defer our discussion of quasiperiodicity
to Chapter 6.)

Before giving a definition of chaos we first present some examples and
background material. As a first example of chaotic motion, we consider an
experiment of Moon and Holmes (1979). The apparatus is shown in Figure
1.1. When the apparatus is at rest, the steel beam has two stable steady-
state equilibria: either the tip of the beam is deflected toward the left
magnet or toward the right magnet. In the experiment, the horizontal
position of the apparatus was oscillated sinusoidally with time. Under
certain conditions, when this was done, the tip of the steel beam was
observed to oscillate in a very irregular manner. As an indication of this
very irregular behavior, Figure 1.2(a) shows the output signal of a strain
gauge attached to the beam (Figure 1.1). Although the apparatus appears
to be very simple, one might attribute the observed complicated motion to
complexities in the physical situation, such as the excitation of higher
order vibrational modes in the beam, possible noise in the sinusoidal
shaking device, etc. To show that it is not necessary to invoke such effects,
Moon and Holmes considered a simple model for their experiment,
namely, the forced Duffing equation in the following form,

¢y dy

@+Va+(y3fy):gsint. (1.1)
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In Eq. (1.1), the first two terms represent the inertia of the beam and
dissipative effects, while the third term represents the effects of the
magnets and the elastic force. The sinusoidal term on the right-hand side
represents the shaking of the apparatus. In the absence of shaking (g = 0),

Eq. (1.1) possesses two stable steady states, y =1 and y =

—1, corre-

sponding to the two previously mentioned stable steady states of the beam.
(There is also an unstable steady state y = 0.) Figure 1.2(b) shows the

results of a digital computed numerical solution of Eq. (1.1) for a

particular choice of v and g. We observe that the results of the physical
experiment are qualitatively similar to those of the numerical solution.

Figure 1.1 The apparatus of
Moon and Holmes (1979).

Figure 1.2 (a) Signal from the
strain gauge. (b) Numerical
solution of Eq. (1.1) (Moon

and Holmes, 1979).
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4 1 Introduction and overview

Thus, it is unnecessary to invoke complicated physical processes to
explain the observed complicated motion.

As a second example, we consider the experiment of Shaw (1984)
illustrated schematically in Figure 1.3. In this experiment, a slow steady
inflow of water to a ‘faucet’ was maintained. Water drops fall from the
faucet, and the times at which successive drops pass a sensing device are
recorded. Thus, the data consists of the discrete set of times
t, ta, ..., tp, ... at which drops were observed by the sensor. From these
data, the time intervals between successive drops can be formed,
At, = t,y1 — t,. When the inflow rate to the faucet is sufficiently small,
the time intervals A¢, are all equal. As the inflow rate is increased, the
time interval sequence becomes periodic with a short interval Az,
followed by a longer interval At,, so that the sequence of time intervals is
of the form ..., At,, Aty, At,, Atp, At,, .... We call this a period two
sequence since Af, = At,>. As the inflow rate is further increased,
periodic sequences of longer and longer periods were observed, until, at
sufficiently large inflow rate, the sequence At,, At,, Ats, ... apparently
has no regularity. This irregular sequence is argued to be due to chaotic
dynamics.

As a third example, we consider the problem of chaotic Rayleigh—
Benard convection, originally studied theoretically and computationally in
the seminal paper of Lorenz (1963) and experimentally by, for example,
Ahlers and Behringer (1978), Gollub and Benson (1980), Bergé et al.
(1980) and Libchaber and Maurer (1980). In Rayleigh—Benard convec-
tion, one considers a fluid contained between two rigid plates and
subjected to gravity, as shown in Figure 1.4. The bottom plate is
maintained at a higher temperature 7 + AT than the temperature 7 of
the top plate. As a result, the fluid near the warmer lower plate expands,
and buoyancy creates a tendency for this fluid to rise. Similarly, the cooler

Figure 1.3 Schematic P
illustration of the experiment Dripping
of Shaw (1984). faucet

Light source

—_"___IWO

Light sensor
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1.2 Examples of chaotic behavior

more dense fluid near the top plate has a tendency to fall. While Lorenz’s
equations are too idealized a model to describe the experiments accurately,
in the case where the experiments were done with vertical bounding side-
walls situated at a spacing of two to three times the distance between the
horizontal walls, there was a degree of qualitative correspondence between
the model and the experiments. In particular, in this case, for some range
of values of the temperature difference AT, the experiments show that the
fluid will execute a steady convective cellular flow, as shown in the figure.
At a somewhat larger value of the temperature difference, the flow
becomes time-dependent, and this time dependence is chaotic. This
general behavior is also predicted by Lorenz’s paper.

From these simple examples, it is clear that chaos should be expected
to be a very common basic dynamical state in a wide variety of systems.
Indeed, chaotic dynamics has by now been shown to be of potential
importance in many different fields including fluids,? plasmas,* solid state

4 6 mechanical devices,” biology,® chemistry,’

devices,* circuits,® lasers,
acoustics,!? celestial mechanics,!! etc.

In both the dripping faucet example and the Rayleigh—Benard convec-
tion example, our discussions indicated a situation as shown schematically
in Figure 1.5. Namely, there was a system parameter, labeled p in Figure
1.5, such that, at a value p = p;, the motion is observed to be nonchaotic,
and at another value p = p,, the motion is chaotic. (For the faucet
example, p is the inflow rate, while for the example of Rayleigh—Benard
convection, p is the temperature difference AT.) The natural question
raised by Figure 1.5 is how does chaos come about as the parameter p is
varied continuously from p, to p,? That is, how do the dynamical motions
of the system evolve with continuous variation of p from p; and p,? This

question of the routes to chaos'? will be considered in detail in Chapter 8.

N Ty

Gravity

Ty + AT

Pi P> System

! ] >
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Nonchaotic Chaotic
behavior behavior

Figure 1.4 Rayleigh—Benard

convection.

Figure 1.5 Schematic
illustration of the question of
the transition to chaos with
variation of a system

parameter.
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6 1 Introduction and overview

1.3 Dynamical systems

A dynamical system may be defined as a deterministic mathematical
prescription for evolving the state of a system forward in time. Time here
either may be a continuous variable, or else it may be a discrete integer-
valued variable. An example of a dynamical system in which time
(denoted #) is a continuous variable is a system of N first-order, auto-
nomous, ordinary differential equations,

dxD/dt = Fi(x®, x@, ., xV),
dx@/dt = Fo(x®, x@, ..., xV),
. (1.2)

dxM/dt = Fy(x®, x®, ..., x),
which we shall often write in vector form as
dx(¢)/dt = F[x(?)], (1.3)

where x is an N-dimensional vector. This is a dynamical system because,
for any initial state of the system x(0), we can in principle solve the
equations to obtain the future system state x(¢) for # > 0. Figure 1.6 shows
the path followed by the system state as it evolves with time in a case
where N = 3. The space (x(, x@®, x®) in the figure is referred to as
phase space, and the path in phase space followed by the system as it
evolves with time is referred to as an orbit or trajectory. Also, it is
common to refer to a continous time dynamical system as a flow. (This
latter terminology is apparently motivated by considering the trajectories
generated by all the initial conditions in the phase space as roughly
analogous to the paths followed by the particles of a flowing fluid.)

Figure 1.6 An orbit in a three- x@
dimensional (N = 3) phase
space.

]
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1.3 Dynamical systems

In the case of discrete, integer-valued time (with »n denoting the time
variable, n =0, 1, 2, ...), an example of a dynamical system is a map,
which we write in vector form as

Xpi1 = M(X,), (1.4)

where x,, is N-dimensional, x, = (x{V, x®, ..., ¥™). Given an initial
state Xg, we obtain the state at time n =1 by x; = M(x¢). Having
determined x;, we can then determine the state at n = 2 by x, = M(x)),
and so on. Thus, given an initial condition X, we generate an orbit (or
trajectory) of the discrete time system: Xg, Xj, Xo, . ... As we shall see, a
continous time system of dimensionality N can often profitably be reduced
to a discrete time map of dimensionality N — 1 via the Poincaré surface of
section technique.

It is reasonable to conjecture that the complexity of the possible
structure of orbits can be greater for larger system dimensionality. Thus, a
natural question is how large does N have to be in order for chaos to be
possible? For the case of N first-order autonomous ordinary differential
equations, the answer is that

N=3 (1.5)

is sufficient.!® Thus, if one is given an autonomous first-order system with
N = 2, chaos can be ruled out immediately.

Example: Consider the forced damped pendulum equation (cf. Figure
1.7)
d?0

de
FTa + VE + sin 0 = T sin(27x f7), (1.6a)

where the first term represents inertia, the second, friction at the pivot, the
third, gravity, and the term on the right-hand side represents a sinusoidal
torque applied at the pivot. (This equation also describes the behavior of a
simple Josephson junction circuit.) We ask: is chaos ruled out for the
driven damped pendulum equation? To answer this question, we put the
equation (which is second-order and nonautonomous) into first-order
autonomous form by the substitution

1 = do/dt,
X =,
X =27 fr.

(Note that, since both x® and x® appear in Eq. (1.6a) as the argument of
a sine function, they can be regarded as angles and may, if desired, be
defined to lie between 0 and 271.) The driven damped pendulum equation
then yields the following first-order autonomous system.

Figure 1.7 Forced, damped
pendulum.

‘ Gravity
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8 1 Introduction and overview

dx(V/dt = T'sinx® — sinx® — yx(®),
dx® /dt = x(V, (1.6b)
dx® /dt = 2xf.

Since N = 3, chaos is not ruled out. Indeed, numerical solutions show that
both chaotic and periodic solutions of the driven damped pendulum
equation are possible depending on the particular choice of system
parameters v, T and f.

We now consider the question of the required dimensionality for chaos
for the case of maps. In this case, we must distinguish between invertible
and noninvertible maps. We say the map M is invertible if, given x,,; |, we
can solve X,;; = M(x,) uniquely for x,. If this is so, we denote the
solution for x,, as

Xy = Mil(xnntl)a (17)

and we call M~! the inverse of M. For example, consider the one-
dimensional (N = 1) map'4,

M(x) = rx(1 — x), (1.8)

which is commonly called the ‘logistic map.” As shown in Figure 1.8, this
map is not invertible because for a given x,,,| there are two possible values
of x,, from which it could have come. On the other hand, consider the two-
dimensional map,
H 1 2
A= S8 — w9

2 _
xn+l_x(n)’

This map is clearly invertible as long as J # 0,

n T ntl
X = ) - A0 (10

n+1 n+1

Figure 1.8 Noninvertibility of X1 A
the logistic map.
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1.3 Dynamical systems

We can now state the dimensionality requirements on maps. If the map is
invertible, then there can be no chaos unless

N=2. (1.11)

If the map is noninvertible, chaos is possible even in one-dimensional
maps. Indeed, the logistic map Eq. (1.8) exhibits chaos for large enough r.

It is often useful to reduce a continuous time system (or ‘flow’) to a
discrete time map by a technique called the Poincaré surface of section
method. We consider N first-order autonomous ordinary differential equa-
tions (Eq. (1.2)). The ‘Poincaré map’ represents a reduction of the
N-dimensional flow to an (N — l)-dimensional map. For illustrative
purposes, we take N =3 and illustrate the construction in Figure 1.9.
Consider a solution of (1.2). Now, choose some appropriate (N — 1)-
dimensional surface (the ‘surface of section’) in the N-dimensional phase
space, and observe the intersections of the orbit with the surface. In Figure
1.9, the surface of section is the plane x®) = K, but we emphasize that in
general the choice of the surface can be tailored in a convenient way to the
particular problem. Points 4 and B represent two successive crossings of
the surface of section. Point 4 uniquely determines point B, because A
can be used as an initial condition in (1.2) to determine B. Likewise, B
uniquely determines A4 by reversing time in (1.2) and using B as the initial
condition. Thus, the Poincaré map in this illustration represents an
invertible two-dimensional map transforming the coordinates (x{V, x{?)) of

the nth piercing of the surface of section to the coordinates (x(n' il , x(nzl ) at

+®
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Figure 1.9 A Poincaré surface

of section.
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10 1 Introduction and overview

piercing n+ 1. This equivalence of an N-dimensional flow with an
(N — 1)-dimensional invertible map shows that the requirements Eq.
(1.11) for chaos in a map follows from Eq. (1.5) for chaos in a flow.

Another way to create a map from the flow generated by the system of
autonomous differential equations (1.3) is to sample the flow at discrete
times t, = to + nT (n =0, 1, 2, ...), where the sampling interval 7 can
be chosen on the basis of convenience. Thus, a continuous time trajectory
x(¢) yields a discrete time trajectory x, = x(¢,). The quantity x,; is
uniquely determined from x,, since we can use X, as an initial condition in
Egs. (1.3) and integrate the equations forward for an amount of time 7 to
determine X, 1. Thus, in principle, we have a map x,1; = M(x,). We call
this map the time 7 map. The time 7 map is invertible (like the Poincaré
map), since the differential equations (1.3) can be integrated backward in
time. Unlike the Poincaré map, the dimensionality of the time 7 map is
the same as that of the flow.

1.4 Attractors

In Hamiltonian systems (cf. Chapter 7) such as arise in Newton’s equations
for the motion of particles without friction, there are choices of the phase
space variables (e.g., the canonically conjugate position and momentum
variables) such that phase space volumes are preserved under the time
evolution. That is, if we choose an initial (¢ =0) closed (N — 1)-
dimensional surface S; in the N-dimensional x-phase space, and then
evolve each point on the surface Sy forward in time by using them as
initial conditions in Eq. (1.3), then the closed surface Sy evolves to a
closed surface S; at some later time ¢, and the N-dimensional volumes
7 (0) of the region enclosed by Sy and V'(¢) of the region enclosed by S;
are the same, V(f) = V(0). We call such a volume preserving system
conservative. On the other hand, if the flow does not preserve volumes,
and cannot be made to do so by a change of variables, then we say that the
system is nonconservative. By the divergence theorem, we have that

dV(t)/dt:J V-FdVx, (1.12)
Sy

where fs, signifies the integral over the volume interior to the surface S,
and V-F = ZZIBF,-()C(”, .., x)/0xD. For example, for the forced
damped pendulum equation written in first-order autonomous form, Eq.
(1.6b), we have that V - F = —v, which is independent of the phase space
position x and is negative. From (1.12), we have dV(¢)/dt = —vV (¢) so
that 7 decreases exponentially with time, V(¢) = exp(—vt)V(0). In gen-
eral, V- F will be a function of phase space position x. If V-F < 0 in
some region of phase space (signifying volume contraction in that region),
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