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Geometric and analytic setting

This chapter essentially describes the objects and properties that will
interest us in this work. For a more detailed exposition of the general
background in Riemannian geometry and in analysis on manifolds, one
may refer for instance to [183] and [98]. After recalling how to associate,
to each Riemannian metric on a manifold, a Laplacian operator on the
same manifold, we will give a definition of smooth harmonic map be-
tween two manifolds. Very soon, we will use the variational framework,
which consists in viewing harmonic maps as the critical points of the
Dirichlet functional.

Next, we introduce a frequently used ingredient in this book: Noether’s
theorem. We present two versions of it: one related to the symmetries of
the image manifold, and the other which is a consequence of an invari-
ance of the problem under diffeomorphisms of the domain manifold (in
this case it is not exactly Noether’s theorem, but a “covariant” version).

These concepts may be extended to contexts where the map between
the two manifolds is less regular. In fact, a relatively convenient space
is that of maps with finite energy (Dirichlet integral), H1(M,N ). This
space appears naturally when we try to use variational methods to con-
struct harmonic maps, for instance the minimization of the Dirichlet
integral. The price to pay is that when the domain manifold has dimen-
sion larger than or equal to 2, maps in H1(M,N ) are not smooth, in
general. Moreover, H1(M,N ) does not have a differentiable manifold
structure. This yields that several non-equivalent generalizations of the
notion of harmonic function coexist in H1(M,N ) (weakly harmonic,
stationary harmonic, minimizing, . . . ). We will conclude this chapter
with a brief survey of the known results on weakly harmonic maps in
H1(M,N ). As we will see, the results are considerably different accord-
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2 Geometric and analytic setting

ing to which definition of critical point of the Dirichlet integral we adopt.

Notation: M and N are differentiable manifolds. Most of the time,
M plays the role of domain manifold, and N that of image manifold;
we will suppose N to be compact without boundary. In case they are
abstract manifolds (and not submanifolds) we may suppose that they are
C∞ (in fact, thanks to a theorem of Whitney, we may show that every C1

manifold is C1-diffeomorphic to a C∞ manifold). Unless stated otherwise,
M is equipped with a C0,α Riemannian metric g, where 0 < α < 1. For
N , we consider two possible cases: either it is an abstract manifold with
a C1 Riemannian metric h, or we will need to suppose it is a C2 immersed
submanifold of R

N . The second situation is a special case of the first
one, but nevertheless, Nash’s theorem (see [123], [74] and [77]) assures
us that if h is Cl for l ≥ 3, then there exists a Cl isometric immersion of
(N , h) in (RN , 〈., .〉).

Several regularity results are presented in this book. We will try to
present them under minimal regularity hypotheses on (M, g) and (N , h),
keeping in mind that any improvement of the hypotheses on (M, g)
and (N , h) automatically implies an improvement of the conclusion, as
explained in theorem 1.5.1.
We write m := dimM and n := dimN .

1.1 The Laplacian on (M, g)
For every metric g on M there exists an associated Laplacian operator
∆g, acting on all smooth functions on M taking their values in R (or
any vector space over R or C). To define it, let us use a local coordinate
system (x1, . . . , xm) on M. Denote by

gαβ(x) = g(x)
(
∂

∂xα
,
∂

∂xβ

)
the coefficients of the metric, and by det g(x) the determinant of the
matrix whose elements are gαβ(x). Then, for each real-valued function
φ defined over an open subset Ω of M, we let

∆gφ =
1√
det g

∂

∂xα

(√
det g gαβ(x)

∂φ

∂xβ

)
(1.1)

where we adopt the convention that repeated indices should be summed
over. The metric g induces on the cotangent space T ∗

x M a metric which
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1.1 The Laplacian on (M, g) 3

we denote by g#. Its coefficients are given by gαβ = g#(dxα, dxβ). Recall
that gαβ(x) represents an element of the inverse matrix of (gαβ).

Definition 1.1.1 Any smooth function φ defined over an open subset Ω
of M and satisfying

∆gφ = 0

is called a harmonic function.

We can easily check through a computation that the operator ∆g does
not depend on the choice of the coordinate system, but it will be more
pleasant to obtain this as a consequence of a variational definition of
∆g. Let

dvolg =
√

det g(x) dx1 . . . dxm, (1.2)

be the Riemannian measure. For each smooth function φ from Ω ⊂ M
to R, let

E(Ω,g)(φ) =
∫

Ω

e(φ) dvolg (1.3)

be the energy or Dirichlet integral of φ (which may be finite or not).
Here, e(φ) is the energy density of φ and is given by

e(φ) =
1
2
gαβ(x)

∂φ

∂xα
∂φ

∂xβ
. (1.4)

It is easy to check that the Dirichlet integral does not depend on
the choice of the local coordinate system and that, if ψ is a compactly
supported smooth function on Ω ⊂ M, then for all t ∈ R,

E(Ω,g)(φ+ tψ) = E(Ω,g)(φ)− t
∫

Ω

(∆gφ)ψ dvolg +O(t2). (1.5)

Hence, −∆g appears as the variational derivative of EΩ, which pro-
vides us with an equivalent definition of the Laplacian.
Thus, the Laplacian does not depend on the coordinate system used.

However, it depends on the metric. For instance, let us consider the effect
of a conformal transformation on (M, g), i.e. compare the Dirichlet
integrals and the Laplacians on the manifolds (M, g) and (M, e2vg),
where v is a smooth real-valued function on M. We have

dvole2vg = emv dvolg, (1.6)
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4 Geometric and analytic setting

and for the energy density (1.4)

ee2vg(φ) = e−2veg(φ). (1.7)

Thus,

E(Ω,e2vg)(φ) =
∫

Ω

e(m−2)veg(φ) dvolg. (1.8)

However, we notice that in case m = 2, the Dirichlet integrals calcu-
lated using the metrics g and e2vg coincide, and thus are invariant under
a conformal transformation of the metric.
Still in the case m = 2, we have

∆e2vg(φ) = e−2v∆gφ . (1.9)

Therefore, for m = 2, every function which is harmonic over (M, g) will
also be so over (M, e2vg). More generally, if (M, g) and (M′, g′) are two
Riemannian surfaces and Ω and Ω′ are two open subsets of M and M′

respectively, then if T : (Ω, g) −→ (Ω′, g′) is a conformal diffeomorphism,
we have

E(Ω,g)(φ ◦ T ) = E(Ω′,g′)(φ),∀φ ∈ C1(Ω′,R) (1.10)

and

∆g(φ ◦ T ) = λ(∆g′φ) ◦ T, (1.11)

where

λ =
1
2
gαβ(x)g′ij(T (x))

∂T i

∂xα
∂T j

∂xβ
.

Thus,

Proposition 1.1.2 The Dirichlet integral, and the set of harmonic func-
tions over an open subset of a Riemannian surface, depend only on the
conformal structure of this surface.

This phenomenon, characteristic of dimension 2, has many conse-
quences, among them the following, which is very useful: first recall
that according to the theorem below, locally all conformal structures
are equivalent.
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1.2 Harmonic maps between two Riemannian manifolds 5

Theorem 1.1.3 Let (M, g) be a Riemannian surface. Then, for each
point x0 in (M, g), there is a neighborhood U of x0 in M, and a diffeo-
morphism T from the disk

D = {(x, y) ∈ R
2| x2 + y2 < 1}

to U , such that, if c is the canonical Euclidean metric on the disk,
T : (D, c) −→ (U, g) is a conformal map. We say that T−1 is a lo-
cal conformal chart in (M, g) and that (x, y) are conformal coordinates.

Remark 1.1.4 There are several proofs of this result, depending on the
regularity of g. The oldest supposes g to be analytic. Later methods
like that of S.S. Chern (see [36]), where g is supposed to be just Hölder
continuous, have given results that are valid under weaker regularity as-
sumptions. At the end of this book (theorem 5.4.3) we can find a proof
of theorem 1.1.3 under weaker assumptions.

Using theorem 1.1.3, we can express the Dirichlet integral over U of a
map φ from M to R, simply as

∫
U

e(φ) dvolg =
∫
D2

1
2

[(
∂(φ ◦ T )
∂x

)2

+
(
∂(φ ◦ T )
∂y

)2
]
dxdy ,

and φ will be harmonic if and only if

∆(φ ◦ T ) = ∂
2(φ ◦ T )
∂x2

+
∂2(φ ◦ T )
∂y2

= 0 .

Thus, when studying harmonic functions on a Riemannian surface,
we can always suppose, at least locally, that our equations are simi-
lar to those corresponding to the case where the domain metric is flat
(Euclidean).

1.2 Harmonic maps between two Riemannian manifolds

We now introduce a second Riemannian manifold, N , supposed to be
compact and without boundary, which we equip with a metric h. Re-
call that over any Riemannian manifold (N , h), there exists a unique
connection or covariant derivative, ∇, having the following properties.

(i) ∇ is a linear operator acting on the set of smooth (at least C1)
tangent vector fields on N . To each Ck vector field X (where
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6 Geometric and analytic setting

k ≥ 1) on N , we associate a field of Ck−1 linear maps from TyN
to TyN defined by

TyN � Y  −→ ∇Y X ∈ TyN .

(ii) ∇ is a derivation, i.e. for any smooth function α from N to R,
any vector field X and any vector Y in TyN ,

∇Y (αX) = dα(Y )X + α∇YX.

(iii) The metric h is parallel for ∇, i.e. for any vector fields X,Y , and
for any vector Z in TyN ,

d(hy(X,Y ))(Z) = hy(∇ZX,Y ) + hy(X,∇ZY ).

(iv) ∇ has zero torsion, i.e. for any vector fields X,Y ,

∇XY −∇YX − [X,Y ] = 0 .

∇ is called the Levi-Civita connection.
Let (y1, . . . , yn) be a local coordinate system on N , and hij(y) the

coefficients of the metric h in these coordinates. We can show (see, for
instance, [47]) that for any vector field Y = Y i ∂∂yi ,

∇X

(
Y i
∂

∂yi

)
=

(
Xj ∂ Y

i

∂yj
+ ΓijkX

jY k
)
∂

∂yi

where

Γijk =
1
2
hil

(
∂hjl
∂xk

+
∂hkl
∂xj

− ∂hjk
∂xl

)
(1.12)

are the Christoffel symbols.
Let u : M −→ N be a smooth map.

Definition 1.2.1 u is a harmonic map from (M, g) to (N , h) if and
only if u satisfies at each point x in M the equation

∆gu
i + gαβ(x)Γijk(u(x))

∂uj

∂xα
∂uk

∂xβ
= 0 . (1.13)
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1.2 Harmonic maps between two Riemannian manifolds 7

Once more, the reader may check that this definition is independent
of the coordinates chosen on M and N . However, it is easier to see this
once we notice that harmonic maps are critical points of the Dirichlet
functional

E(M,g)(u) =
∫
M
e(u)(x) dvolg, (1.14)

where

e(u)(x) =
1
2
gαβ(x)hij(u(x))

∂ui

∂xα
∂uj

∂xβ
,

and where u is forced to take its values in the manifold N . The proof
of this result, in a more general setting, will be given later on, in lemma
1.4.10. When we say that u : M −→ N is a critical point of E(M,g), it
is implicit that for each one-parameter family of deformations

ut : M −→ N , t ∈ I ⊂ R,

which has a C1 dependence on t, and is such that u0 ≡ u on M and, for
every t, ut = u outside a compact subset K of M, we have

lim
t→0

E(M,g)(ut)− E(M,g)(u)
t

= 0.

Different types of deformations will be specified in section 1.4. Notice
that, by checking that E(M,g)(u) is invariant under a change of coordi-
nates on (M, g), we show that definition 1.2.1 does not depend on the
coordinates chosen on M (the same is true for the coordinates on N ).

Effect of a conformal transformation on (M, g), if m = 2

As we noticed in the previous section, in dimension 2 (i.e. when M
is a surface), the Dirichlet functional for real-valued functions on M
is invariant under conformal transformations of (M, g). This property
remains true when we replace real-valued functions by maps into a man-
ifold (N , h). An immediate consequence of this is the following general-
ization of proposition 1.1.2.

Proposition 1.2.2 The Dirichlet integral, and the set of harmonic maps
on an open subset of a Riemannian surface, depend only on the confor-
mal structure.
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8 Geometric and analytic setting

By theorem 1.1.3, we can always suppose that we have locally confor-
mal coordinates (x, y) ∈ R

2 on (M, g). In these coordinates equation
(1.13) becomes

∂2ui

∂x2
+
∂2ui

∂y2
+ Γijk(u)

(
∂uj

∂x

∂uk

∂x
+
∂uj

∂y

∂uk

∂y

)
= 0.

Another definition

Henceforth, we will not use formulation (1.13), but an alternative one
where we think of N as a submanifold of a Euclidean space. In fact,
thanks to the Nash–Moser theorem ([123], [102], [77]), we know that,
provided h is C3, it is always possible to isometrically embed (N , h) into
a vector space R

N , with the Euclidean scalar product 〈. , .〉. Then, we
will obtain a new expression for the Dirichlet integral

E(M,g)(u) =
∫
M

1
2
gαβ(x)

〈
∂u

∂xα
,
∂u

∂xβ

〉
dvolg (1.15)

where now we think of u as a map from M to R
N satisfying the con-

straint

u(x) ∈ N ,∀x ∈ M. (1.16)

Therefore, we have another definition.

Definition 1.2.3 u is a harmonic map from (M, g) to N ⊂ R
N , if and

only if u is a critical point of the functional defined by (1.15), among the
maps satisfying the constraint (1.16). We can then see that u satisfies

∆gu ⊥ Tu(x)N , ∀x ∈ M . (1.17)

The proof of (1.17) will be given, in a more general setting, in lemma
1.4.10. This equation means that for every point x of M, ∆gu(x) is
a vector of R

N belonging to the normal subspace to N at u(x). At
first glance, condition (1.17) seems weaker than equation (1.13), since
we just require that the vector ∆gu belongs to a subspace of R

N . This
imprecision is illusory: by this we mean that it is possible to calculate the
normal component of ∆gu, a priori unknown, using the first derivatives
of u.
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1.2 Harmonic maps between two Riemannian manifolds 9

Lemma 1.2.4 Let u be a C2 map from M to N , not necessarily har-
monic. For each x ∈ M, let P⊥

u be the orthogonal projection from R
N

onto the normal subspace to Tu(x)N in R
N . Then, for every x in M,

P⊥
u (∆gu) = −gαβA(u)

(
∂u

∂xα
,
∂u

∂xβ

)
, (1.18)

where A(y) is an R
N -valued symmetric bilinear form on TyN whose

coefficients are smooth functions of y. A is the second fundamental form
of the embedding of N into R

N .

A first way of writing A explicitly is to choose over sufficiently small
open sets ω ofN an (N−n)-tuple of smooth vector fields (en+1, . . . , eN ) :
ω −→ (RN )N−n, such that at each point y ∈ ω, (en+1(y), . . . , en(y)) is
an orthonormal basis of (TyN )⊥. Then, for each pair of vectors (X,Y )
in (TyN )2,

A(y)(X,Y ) =
N∑

j=n+1

〈X,DY ej〉ej ,

where DY ej =
∑N

i=1 Y
i ∂ej

∂yi is the derivative of ej along Y in R
N . An-

other possible definition for A is

A(y)(X,Y ) = DXP⊥
y (Y ) . (1.19)

Proof of lemma 1.2.4 We have

P⊥
u

(
gαβ

√
det g

∂u

∂xβ

)
= 0 ,

which implies that

P⊥
u

(
∂

∂xα

(
gαβ

√
det g

∂u

∂xβ

))
+
∂P⊥

u

∂xα

(
gαβ

√
det g

∂u

∂xβ

)
= 0 .

Thus,

P⊥
u (∆gu) =

1√
det g

P⊥
u

(
∂

∂xα

(
gαβ

√
det g

∂u

∂xβ

))
= −gαβD ∂u

∂xα
P⊥
u

(
∂u

∂xβ

)
.
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10 Geometric and analytic setting

And we conclude that

P⊥
u (∆gu) = −gαβA(u)

(
∂u

∂xα
,
∂u

∂xβ

)
, (1.20)

where A is given by (1.19).

We come back to harmonic maps according to definition 1.2.3 and
denote, for each y ∈ N , by Py the orthogonal projection of R

N onto
TyN . Since Py + P⊥

y = 1l, from lemma 1.2.4 we deduce that for every
harmonic map u from (M, g) to N ,

∆gu+ gαβA(u)
(
∂u

∂xα
,
∂u

∂xβ

)
= 0. (1.21)

Example 1.2.5 R
n-valued maps

If the image manifold is a Euclidean vector space, such as (Rn, 〈., .〉),
then a map u : (M, g) −→ R

n is harmonic if and only if each of its
components ui is a real-valued harmonic function on (M, g).

Example 1.2.6 Geodesics

If the domain manifold M has dimension 1 (i.e. is either an interval in
R, or a circle), equation (1.21) becomes, denoting by t the variable on
M,

d2u

dt2
+A(u)

(
du

dt
,
du

dt

)
= 0 ,

which is the equation satisfied by a constant speed parametrization of a
geodesic in (N , h).

Example 1.2.7 Maps taking their values in the unit sphere of

R
3

In this case we have

N = S2 = {y ∈ R
3| |y| = 1},

where |y| =
(

3∑
i=1

(yi)2
) 1

2

is the norm of y. Notice that for each map

u : (M, g) −→ S2, we have

0 = ∆g|u|2 = 2 〈u,∆gu〉+ 4e(u),
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