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In the beginning was the Word, and the Word was with God, and the Word was God.
St John (Authorized Version)

God bless the girl who refuses to study algebra. It is a study that has caused many a girl
to lose her soul.
Superintendent Francis of the Los Angeles schools.

The present state of our knowledge of the properties of Modular Systems is chiefly due
to the fundamental theorems and processes of L. Kronecker, M. Noether, D. Hilbert, and
E. Lasker, and above all to J. König’s profound exposition and numerous extensions of
Kronecker’s theory. König’s treatise might be regarded as in some measure complete if
it were admitted that a problem is finished with when its solution has been reduced to
a finite number of feasible operations. If however the operations are too numerous or
too involved to be carried out in practice the solution is only a theoretical one; and its
importance then lies not in itself, but in the theorems with which it is associated and to
which it leads. Such a theoretical solution must be regarded as a preliminary and not
the final stage in the consideration of the problem.
F. S. Macaulay, The Algebraic Theory of Modular Systems

Gauss is the perfect representative of the Thaurus mathematicians. Their style consists
in performing long and numerous computations until this allows them to guess a con-
jecture, usually a correct one.
Theodyl Magus, Astrology and Mathematics
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Preface

If you HOPE that this second SPES volume preserves the style of the previ-
ous volume, you will not be disappointed: in fact it maintains a self-contained
approach using only undergraduate mathematics in this introduction to ele-
mentary commutative ideal theory and to its computational aspects,1 while my
horror vacui compelled me to report nearly all the relevant results in computa-
tional algebraic geometry that I know about.

When the commutative algebra community was exposed, in 1979, to Buch-
berger’s theory and algorithm (dated 1965) of Gröbner bases2, the more alert
researchers, mainly Schreyer and Bayer, immediately realized that this injec-
tion of Gröbner technology was all one needed to make effective Macaulay’s
paradigm for reducing computational problems for ideals either to the cor-
responding combinatorial problem for monomials3 or to a more elementary
linear algebraic computation.4 This realization gave to researchers a straight-
forward approach which led them, within more or less fifteen years, to com-
pletely effectivize commutative ideal theory.

This second volume of SPES is an eyewitness report on this successful in-
troduction of effective methods to algebraic geometry.

Part three, Gauss, Euclid, Buchberger: Elementary Gröbner Bases, introduces
at the same time Buchberger’s theory of Gröbner bases, his algorithm for com-
puting them and Macaulay’s paradigm.

While I will discuss in depth both of the classical main approaches to the
introduction of Gröbner bases – their relation with rewriting rules and the

1 Up to the point that some results whose proof requires knowldge in advanced commutative
algebra are simply quoted, pointing only to the original proof.

2 And to the independent discovery by Spear.
3 The computation of the Hilbert function by means of Macaulay’s Lemma (Corollary 23.4.3).
4 Macaulay’s notion of H-basis (Definition 23.2.1) and his related lifting theorem (Theo-

rem 23.7.1) transformed by Schreyer as the tool for computing resolution.

xi
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xii Preface

Knuth–Bendix Algorithm, and their connection with Macaulay’s H-bases and
Hironaka’s standard bases as tools for lifting properities to a polynomial al-
gebra from its graded algebra – my presentation stresses the relation of both
the notion and the algorithm to elementary linear algebra and Gaussian re-
duction; an added bonus of this approach is the ability to link Buchberger’s
algorithm with the most recent alternative linear algebra approach proposed
by Faugère.

The discussion of Buchberger’s algorithm aims to present what essentially
is its ‘standard’ structure as can be found in most good implementations.

In the same mood, the discussion of Macaulay’s paradigm is illustrated by
showing how Gröbner bases can be applied in order to successfully compute
the Hilbert function and the minimal resolution of a finitely generated polyno-
mial ideal and to present the most effective algorithmic solutions.

This part also includes Spear’s tag-variable technique, its application in ef-
fectively performing ideal operations (intersection, quotient, colon, saturation),
Sweedler’s application of them to the study of subalgebras, Erdos’s character-
ization of term orderings, the Bayer–Morrison analysis of the state polytope
and the Gröbner fan of an ideal.

The next chapter, Noether, is the keystone of the book: it introduces the termi-
nology and preliminary results needed to discuss multivariate ‘solving’: the
Lasker–Noether decomposition theory, extension/contraction of decomposi-
tion, the notions of dimension and multiplicity, the Kredel–Weispfenning al-
gorithm for computing dimension.

Part four, Duality, discusses linear algebra tools for describing and computing
the multiplicity of both m-primary and m-closed ideals, m being the max-
imal at the origin; this includes Möller’s algorithm, its application to solve
the FGLM-problem, the Cerlienco–Mureddu algorithm, and the linear alge-
bra structure of configurations of points; but the main section of this part is
a careful presentation of Macaulay’s results on inverse systems and a recent
algorithm which computes the inverse system of any m-primary ideal given by
any basis.

Part five, Beyond Dimension Zero, begins with a discussion of Gröbner’s
Basissätze which describe the structure of lexicographical Gröbner bases of
prime, primary and radical ideals and their ultimate generalization, Gianni–
Kalkbrener’s Theorem; this allows us to specify what it means to ‘solve’ a
multi-dimensional ideal and introduces the decomposition algorithms.
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Preface xiii

This part also discusses Macaulay’s results on Hilbert functions and perfect-
ness, Galligo’s theorem, and Giusti’s analysis of the complexity of Gröbner
bases.
As congedo I chose the most elegant result within computational commutative
algebra, the Bayer and Stillman proof of the optimality of degrevlex orderings.

It being my firm belief that the best way of understanding a theory and an
algorithm is to verify it through a computation, as in the previous volume,
the crucial points of the most relevant algorithms are illustrated by examples,
all developed via paper-and-pencil computations; readers are encouraged to
follow them and, better, to test their own examples.

In order to help readers to plan their journey through this book, some sections
containing only some interesting digressions are indicated by asterisks in the
table of contents.

A possible short cut which allows readers to appreciate the discussion, with-
out becoming too bored by the details, is Chapters 20–23, 26–28, 34–35.

I wish to thank Miguel Angel Borges Tranard, Maria Pia Cavaliere, Francesca
Cioffi and Franz Pauel for their help, but I feel strongly indebted to Maria
Grazia Marinari for her steady support. Also I need to thank all the friends with
whom I have shared this exciting adventure of algorithmizing commutative
algebra.
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Setting

1. Let k be an infinite, perfect field, where, if p := char(k) �= 0, it is possible
to extract pth roots,1 and let k be the algebraic closure of k. Let us fix an integer
value n and consider the polynomial ring

P := k[X1, . . . , Xn]

and its k-basis

T := {Xa1
1 · · · Xan

n : (a1, . . . , an) ∈ Nn}.
2. We also fix an integer value r ≤ n and consider

the ring K := k(Xr+1, . . . , Xn),
the polynomial ring Q := K [X1, . . . , Xr ] and
its k-basis W := {Xa1

1 · · · Xar
r : (a1, . . . , ar ) ∈ Nr }.

All the notation introduced will also be applied in this setting, substituting
everywhere n, k,P, T with, respectively, r, K ,Q,W .

3. For each d ∈ N we will set

Td := {t ∈ T : deg(t) = d} and T (d) := {t ∈ T : deg(t) ≤ d}.
4. Where we need to use the set of the terms generated by some subsets of
variables, we denote for each i, j, 1 ≤ i < j ≤ n, T [i, j] the monomials
generated by Xi , . . . , X j ,

T [i, j] =
{

Xai
i · · · X

a j
j : (ai , . . . , a j ) ∈ N j−i+1

}
,

1 This is the general setting considered in this the volume, except for Chapters 37 and 38 where
moreover char(k) = 0.

These restrictions can be relaxed in most of the volume, but, knowing my absentmindedness,
I consider it safer to leave to the reader the responsibility of doing so.

xiv
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Setting xv

and T [i, j]d (respectively T [i, j](d)) denotes those terms whose degree is
equal to (respectively bounded by) d.

5. Each polynomial f ∈ k[X1, . . . , Xn] is therefore a unique linear combina-
tion

f =
∑
t∈T

c( f, t)t

of the terms t ∈ T with coefficients c( f, t) in k and can be uniquely decom-
posed, by setting

fδ :=
∑
t∈Tδ

c( f, t)t, for each δ ∈ N,

as f = ∑d
δ=0 fδ where each fδ is homogeneous, deg( fδ) = δ and fd �= 0 so

that d = deg( f ).

6. Since, for each i, 1 ≤ i ≤ n,

P = k[X1, . . . , Xi−1, Xi+1, . . . , Xn][Xi ],

each polynomial f ∈ P can be uniquely expressed as

f =
D∑

j=0

h j (X1, . . . , Xi−1, Xi+1, . . . , Xn)X j
i , hD �= 0,

and

degXi
( f ) := degi ( f ) := D

denotes its degree in the variable Xi .

In particular (i = n)

f =
D∑

j=0

h j (X1, . . . , Xn−1)X j
n , hD �= 0, D = degn( f );

the leading polynomial of f is Lp( f ) := hd , and its trailing polynomial is
Tp( f ) := h0.

7. The support {t ∈ T : c( f, t) �= 0} of f being finite, once a term ordering <

on T is fixed, f has a unique representation as an ordered linear combination
of terms:

f =
s∑

i=1

c( f, ti )ti : c( f, ti ) ∈ k \ 0, ti ∈ T , t1 > · · · > ts .

The maximal term of f is T( f ) := t1, its leading coefficient is lc( f ) :=
c( f, t1) and its maximal monomial is M( f ) := c( f, t1)t1.
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xvi Setting

8. For any set F ⊂ P we denote

• T<{F} := {T( f ) : f ∈ F};
• T<(F) := {τT( f ) : τ ∈ T , f ∈ F};
• N<(F) := T \ T<(F);
• k[N<(F)] := Spank(N<(F))

and we will usually omit the dependence on < if there is no ambiguity.

9. Each series f ∈ k[[X1, . . . , Xn]] is a unique (infinite) linear combination

f =
∑
t∈T

c( f, t)t

of the terms t ∈ T with coefficients c( f, t) in k; for any subset N ⊂ T we will
also write the subring

k[[N]] :=
{∑

t∈N

c( f, t)t

}
⊂ k[[X1, . . . , Xn]].

10. For each f, g ∈ P such that lc( f ) = 1 = lc(g), we denote

S(g, f ) := lcm(T( f ), T(g)

T( f )
f − lcm(T( f ), T(g)

T(g)
g.

For any enumerated set {g1, . . . , gs} ⊂ P , such that lc(gi ) = 1 for each i ,
we write T(i) := T(gi ) and, for each i, j, 1 ≤ i < j ≤ s

T(i, j) := lcm (T(i), T( j)) ,

S(i, j) := S(gi , g j ) := T(i, j)

T( j)
g j − T(i, j)

T(i)
gi .

11. For any field k the (n-dimensional) affine space over k, kn , is the set

kn := {(a1, . . . , an), ai ∈ k};
and we will denote by 0 ∈ kn the point 0 := (0, . . . , 0) and m :=
(X1, . . . , Xn) the maximal ideal at 0.

12. We associate

• to any set F ⊂ P , the algebraic affine variety Z(F) consisting of each
common root of all polynomials in F :

Z(F) := {a ∈ kn : f (a) = 0, for all f ∈ F} ⊂ kn;
• and to any set Z ⊂ kn , the ideal I(Z) of all the polynomials vanishing in Z:

I(Z) := { f ∈ P : f (a) = 0, for all a ∈ Z} ⊂ P.
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Setting xvii

13. For any finite set F := { f1, . . . , fs} ⊂ P the ideal generated by F is
denoted by (F) or ( f1, . . . , fs) and is the set

(F) := ( f1, . . . , fs) :=
{

s∑
i=1

hi fi : hi ∈ P
}

.

14. For an ideal f ⊂ P ,

f :=
r⋂

i=1

qi

denotes an irredundant primary representation; for each i , pi := √
qi is the

associated prime and δ(i) := dim(qi ) is the dimension of the primary qi .

15. For any field k and any n ∈ N we will denote by C(n, k) the n-tuples of
non-zero elements in k:

C(n, k) := {(c1, . . . , cn) ∈ kn, ci �= 0, for each i}.
For each c := (c1, . . . , cν) ∈ C(ν, k), we denote by

Lc : k[X1, . . . , Xν] → k[X1, . . . , Xν]

the map defined by

Lc(Xi ) :=
{

Xi + ci Xν if i < ν,

cν Xν if i = ν.

16. A term ordering 2 of the semigroup T is called degree compatible if for
each t1, t2 ∈ T

deg(t1) < deg(t2) �⇒ t1 < t2.

The semigroup T will be usually well-ordered by means of

• the lexicographical ordering induced by X1 < X2 < · · · < Xn , which is
defined by:

Xa1
1 . . . Xan

n < Xb1
1 . . . Xbn

n ⇐⇒ ∃ j : a j < b j and ai = bi for i > j;
• the degrevlex ordering induced by X1 < X2 < · · · < Xn , which is the

degree-compatible term ordering under which any two terms having the
same degree are compared according to

Xa1
1 . . . Xan

n < Xb1
1 . . . Xbn

n ⇐⇒ ∃ j : a j > b j and ai = bi for i < j.

2 That is a well-ordering and a semigroup ordering.
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xviii Setting

17. Let < be a term ordering on T , and I ⊂ P an ideal, and A := P/I.
Then, since A ∼= k[N<(I)], for each f ∈ P, there is a unique

g := Can( f, I, <) =
∑

t∈N<(I)

γ ( f, t, <)t

such that

g ∈ k[N(I)] and f − g ∈ I.

18. More generally, if I ⊂ P is an ideal, and q = {q1, . . . , qs} is a linearly
independent set such that P/I = Spank(q), then, for each f ∈ P, there is a
unique vector

Rep( f, q) := (γ ( f, q1, q), . . . , γ ( f, qs, q)) ∈ ks

which satisfies

f −
∑

j

γ ( f, q j , q)q j ∈ I.

In particular, if N<(I) = {τ1, . . . , τs}, we have, for each f ∈ P,

γ ( f, t, N<(I)) = γ ( f, t, <), for each t ∈ N<(I),

Rep( f, N<(I)) := (γ ( f, τ1, <), . . . , γ ( f, τs, <)) ∈ ks .

19. In the same setting,

M(q) :=
{ (

a(h)
l j

)
∈ ks2

, 1 ≤ h ≤ n

}

denotes the set of the square matrices defined by the equalities

Xhql =
∑

j

a(h)
l j q j , for each l, j, h, 1 ≤ l, j ≤ s, 1 ≤ h ≤ n,

in P/I = Spank(q).

20. In general, when we need to discuss homogenization of polynomials, we
will use the notation hP := k[X0, X1, . . . , Xn] and

hT :=
{

Xa0
0 Xa1

1 · · · Xan
n : (a0, a1, . . . , an) ∈ Nn+1

}
.

The homogenization/affinization maps are denoted

h− : P → hP and a− : hP → P
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Setting xix

and defined by

h f (X1, . . . , Xn) := Xdeg( f )

0 f

(
X1

X0
, . . . ,

Xn

X0

)
,

a f (X0, X1, . . . , Xn) := f (1, X1, . . . , Xn).

For any term ordering < on T the homogenization of < is the term-ordering
<h on hT defined by

t1 <h t2 ⇐⇒ deg(t1) < deg(t2) or deg(t1) = deg(t2) and at1 < at2.

21. For an ideal I ⊂ P we will denote H(T ; I) its Hilbert function; HI(T ) its
Hilbert polynomial, which we will represent as

HI(T ) = k0(I)
(

T + d

d

)
+ k1(I)

(
T + d − 1

d − 1

)
+ · · · + kd−1(I)(T + 1) + kd(I);

and H(I, T ) its Hilbert series.

22. For a free-module Pm , we usually denote {e1, . . . , em} its canonical basis
and

T (m) = {tei , t ∈ T , 1 ≤ i ≤ m}
= {Xa1

1 · · · Xan
n ei , (a1, . . . , an) ∈ Nn, 1 ≤ i ≤ m}

its monomial k-basis.

23. The free-module Pm is transformed into an N-graded module by as-
signing, for each i , a degree deg(ei ) := di and considering each element
(g1, . . . , gm) ∈ Pm to be homogeneous of degree R if and only if each gi

will be either 0 or a homogeneous polynomial of degree R − di .
Therefore each element f ∈ Pm can be uniquely decomposed as f =∑d
i=1 fi where each fi ∈ Pm is homogeneous of degree i and d = deg( f )

In a similar way, Pm is also transformed into a T -graded module by

• assigning a term ordering < on T and a term ωi ∈ T to each ei ,

• defining

T-deg : T (m) → T by T-deg(tei ) = tωi ,

• and T-deg : P(m) → T as

T-deg( f ) := max
<

{T-deg(τ ) : c( f, τ ) �= 0}

for each f = ∑
τ∈T(m) c( f, τ )τ ∈ P(m),
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xx Setting

• considering T -homogeneous of T -degree ω any element (γ1, . . . , γm) ∈
Pm such that for each i

γi ∈ T , and γiωi = ω unless γi = 0.

Each element f ∈ Pm can therefore be uniquely decomposed as f =∑
t∈T ft where each ft ∈ Pm is T -homogeneous of T -degree t .
If we fix a well-ordering ≺ on T (m) which is compatible with a term-

ordering < on T that is satisfying

t1 ≤ t2, τ1 � τ2 �⇒ t1τ1 � t2τ2,

for each t1, t2 ∈ T , τ1, τ2 ∈ T (m) then for each f = ∑
τ∈T(m) c( f, τ )τ ∈ P(m),

its maximal term is the term T( f ) := max≺{τ : c( f, τ ) �= 0}; its leading
coefficient is lc( f ) := c( f, T( f )) and its maximal monomial is M( f ) :=
lc( f )T( f ).

24. Usually a free resolution of a P-module M will be denoted

0 → Prρ
δρ−→ Prρ−1

δρ−1−→ · · ·Pri+1
δi+1−→ Pri

δi−→ Pri−1 · · ·Pr1
δ1−→ Pr0

δ0−→ M

(0.1)

25. We will denote

• by GL(n, k) the general linear group, that is the set of all invertible n × n
square matrices with entries in k,

• by B(n, k) ⊂ GL(n, k) the Borel group of the upper triangular matrices
M := (

ci j
)
, that is those such that i > j �⇒ ci j = 0,

• by N (n, k) ⊂ B(n, k) the subgroup of the upper triangular unipotent matri-
ces M := (

ci j
)
, that is those such that

i > j �⇒ ci j = 0, and i = j �⇒ ci j = 1.

We will use the shorthand k[Xi j ] and k(Xi j ) to denote, respectively, the
polynomial ring generated over k by the variables

{Xi j , 1 ≤ i ≤ n, 1 ≤ j ≤ n}
and its rational function field.

Any matrix

M := (
ci j

) ∈ GL(n, k)

describes the linear transformation

M : k[X1, . . . , Xn] → k[X1, . . . , Xn]
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Setting xxi

defined by

M(Xi ) =
∑

j
ci j X j for each i.

If we also write for each i ,

Yi := M(Xi ) =
∑

j
ci j X j ,

we obtain a system of coordinates {Y1, . . . , Yn} and a corresponding change of
coordinates

k[Y1, . . . , Yn] = k[X1, . . . , Xn]

which is defined by

f (X1, . . . , Xn) = f
(∑

i
d1i Yi , . . . ,

∑
i

dni Yi

)
∈ k[Y1, . . . , Yn],

where (
di j

) = M−1 ∈ GL(n, k),

denotes the inverse of M .

26. The module P∗ := Homk(P, k) denotes the k-vector space of all k-linear
functionals � : P → k.

Each k-linear functional � : P → k can be encoded by means of the series∑
t∈T

�(t)t ∈ k[[X1, . . . , Xn]]

in such a way that to each such series
∑

t∈T γ (t)t ∈ k[[X1, . . . , Xn]] is as-
sociated the k-linear functional � ∈ P∗ defined, on each polynomial f =∑

t∈T c( f, t)t , by

�( f ) :=
∑
t∈T

c( f, t)γ (t).

Module P∗ has a natural structure as P-module, which is obtained by defin-
ing, for each � ∈ P∗ and f ∈ P , (� · f ) ∈ P∗ as

(� · f )(g) := �( f g), for each g ∈ P.

27. For each k-vector subspace L ⊂ P∗, let

P(L) := {g ∈ P : �(g) = 0, ∀� ∈ L}
and for each k-vector subspace P ⊂ P , let

L(P) := {� ∈ P∗ : �(g) = 0, ∀g ∈ P}.
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xxii Setting

28. For each τ ∈ W , M(τ ) : Q → K denotes the morphism defined by

M(τ ) = c( f, τ ) for each f =
∑
t∈W

c( f, t)t ∈ Q

and set

M := {M(τ ) : τ ∈ W} ⊂ Q∗,

and

∇ρ := SpanK (M(τ )(·) : τ ∈ W(ρ)) ,

for each ρ ∈ N.
For each K -vector subspace Λ ⊂ SpanK (M), let

I(Λ) := P(Λ) = { f ∈ Q : �( f ) = 0, for each � ∈ Λ}
and, for each K -vector subspace P ⊂ Q, let

M(P) := L(P)∩ SpanK (M) = {� ∈ SpanK (M) : �( f ) = 0, for each f ∈ P}.
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