
SOLVING POLYNOMIAL EQUATION SYSTEMS

Volume III: Algebraic Solving

This third volume of four finishes the program begun in Volume I by describing all
the most important techniques, mainly based on Gröbner bases, which allow one to
manipulate the roots of an equation rather than just compute them.

The book begins with the “standard” solutions (the Gianni–Kalkbrener Theorem,
Stetter Algorithm, the Cardinal–Mourrain result) and then moves on to more
innovative methods (Lazard triangular sets, Rouillier’s Rational Univariate
Representation, the TERA Kronecker package). The author also looks at classical
results, such as Macaulay’s matrix, and provides a historical survey of elimination,
from Bézout to Cayley.

This comprehensive treatment in four volumes is a contribution to algorithmic
commutative algebra that will be essential reading for algebraists and algebraic
geometers.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in
mathematics or mathematical science and for which a detailed development of the
abstract theory is less important than a thorough and concrete exploration of the
implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as exercises
at the ends of chapters. For technicalities, readers can be referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.
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Joachim of Fiore’s Age of the Holy Spirit offers a Hegelian synthesis between the Old and
New Testament.

A. Buendia, The Long March of the Red Brigades through Conquest,
War, Famine and Death

God is my witness that I would sooner free your mind from mistakes than see me released
from prison.

Martinek Húska Loquis

The computational effort required to implement this approach turned out to be orders of
magnitude less than the effort which would be required by the direct techniques of decoding
by exhaustive search. Using new techniques which are introduced in this book, it is now
possible to build algebraic decoders which are orders of magnitude simpler than any that have
previously been considered.

There is frequently a conflict between proofs which some people consider conceptually
“simple” and proofs which lead to simple instrumentation. In this book I have attempted to
provide the proofs which lead to the simplest implementations.

E.R. Berlekamp, Algebraic Coding Theory

Solomon Gandz in the final section of his introduction to the Mensuration of al-Khwarizmi
wrote: “Euclid and his geometry [. . .] is entirely ignored by him when he writes on geometry.
On the contrary, in the preface to his Algebra, Algorithm distinctly emphasizes his purpose of
writing a popular treatise that, in contradiction to Greek theoretical mathematics, will serve
the practical ends and needs of the people in their affairs of inheritance and legacies, in their
law suits, in trade and commerces, in the surveying of lands and in the digging of canals.
Hence, Algorithm appears to us not as a pupil of the Greeks but, quite to the contary, as the
antagonist of [. . .] the Greek school, as the representative of the native popular science. At
the Academy of Bagdad Algorithm represented rather the reaction against the introduction of
Greek mathematics. His Algebra impresses us as a protest rather against the Euclid translation
and against the whole trend of the reception of the Greek science.”

Is it too much to read this quotation as a parable, interpreting Greeks as French and Euclid
as Bourbaki?

R.F. Ree, The Foundational Crisis, a Crisis of Computability?
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Preface

La gloria di colui che tutto move
per l’universo penetra, e risplende
in una parte piú e meno altrove.

My HOPE that this SPES series reaches completion has supported me over many
years. These years have been devoted both to fixing the details of the operative
scheme based on Spear’s Theorem, which allows one to set a Buchberger Theory
over each effective associative ring and of which I have been aware since my 1988
preprint “Seven variations on standard bases” and to satisfy my horror vacui by
including all the relevant results of which I have been aware.

My horror vacui had the negative aspect of making the planned third book grow
too much, forcing me to split it into two separate volumes. As a consequence the
structure I planned 12 years ago and which anticipated a Hegelian (or Dante-like)
trilogy, whose central focus was the Gröbnerian technology discussed in Volume II,
was quite deformed and the result appears as a (Wagner-like?) tetralogy.

This volume contains Part six, Algebraic Solving, and is where I complete the task
set out in Part one by discussing all the recent approaches. These are mainly based
on the results discussed in Volume II, which allow one to effectively manipulate the
roots of a polynomial equation system, thus fulfilling the aim of “solving” as set out
in Volume I according to the Kronecker–Duval Philosophy: Trinks’ Algorithm,
the Gianni–Kalkbrener Theorem, the Stetter Algorithm, Dixon’s resultant, the
Cardinal–Mourrain Algorithm, Lazard’s Solver, Rouillier’s Rational Univariate
Representation, the TERA Kronecker package.

Macaulay’s Matrix and u-resultant, a historical tour of elimination from Bézout to
Dixon, who was the last student of Cayley, the Lagrange resolvent and the investiga-
tion of it performed by Valibuze and Arnaudies are also covered.
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Setting

1. Let k be an infinite, perfect field, where, if p := char(k) �= 0, it is possible to
extract pth roots, and let k be the algebraic closure of k and �(k) the universal field
over k.

Let us fix an integer value n and consider the polynomial ring

P := k[X1, . . . , Xn]
and its k-basis

T := {Xa1
1 · · ·Xann : (a1, . . . , an) ∈ Nn}.

For each δ ∈ N we will also set Tδ := {t ∈ T : deg(t) = δ}.
2. We also fix an integer value r ≤ n, set d := n− r and consider

the field K := k(V1, . . . , Vd),

its algebraic closure K and its universal field �(K) = �(k),
the polynomial ring Q := K[Z1, . . . , Zr ] and
its K-basis W := {Za1

1 · · ·Zarr : (a1, . . . , ar ) ∈ Nr}.
All the notation introduced in the previous volumes will be applied also in this
setting, with the proviso that everywhere n, k,P, T are substituted by, respectively
r,K,Q,W .

3. Each polynomial f ∈ k[X1, . . . , Xn] is a unique linear combination,

f =
∑
t∈T
c(f, t)t,

of the terms t ∈ T with coefficients c(f, t) in k and can be uniquely decomposed as
f = ∑d

δ=0 fδ , by setting

fδ :=
∑
t∈Tδ

c(f, t)t for each δ ∈ N,

where each fδ is homogeneous, deg(fδ) = δ and fd �= 0, so that d = deg(f ).
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xiv Setting

4. Since, for each i, 1 ≤ i ≤ n,

P = k[X1, . . . , Xi−1, Xi+1, . . . , Xn][Xi],
each polynomial f ∈ P can be uniquely expressed as

f =
D∑
j=0

hj (X1, . . . , Xi−1, Xi+1, . . . , Xn)X
j
i hD �= 0,

and
degXi (f ) := degi (f ) := D

denotes its degree in the variable Xi.
In particular, for i = n, we have

f =
D∑
j=0

hj (X1, . . . , Xn−1)X
j
n, hD �= 0, D = degn(f );

the leading polynomial of f is Lp(f ) := hD , and its trailing polynomial is
Tp(f ) := h0.

5. Given a finite basis F := {f1, . . . , fu} ⊂ P, we denote as

I(F ) := (F ) :=
{
u∑
i=1

hifi :hi ∈ P
}

⊂ P

the ideal generated by F , and as

Z(F ) := {a ∈ kn : f (a) = 0, for all f ∈ F } ⊂ kn

the algebraic variety consisting of each common root of all polynomials in F .

6. The support

supp(f ) := {t ∈ T : c(f, t) �= 0}
of f being finite, once a term ordering1 < on T is fixed, f has a unique representa-
tion as an ordered linear combination of terms:

f =
s∑
i=1

c(f, ti)ti : c(f, ti) ∈ k \ {0}, ti ∈ T , t1 > · · · > ts.

The maximal term of f is T(f ) := t1, its leading cofficient is lc(f ) := c(f, t1) and
its maximal monomial is M(f ) := c(f, t1)t1.

7. For any set F ⊂ P we write

• T<{F } := {T(f ) : f ∈ F },
• T<(F ) := {τT(f ) : τ ∈ T , f ∈ F },

1 A well-ordering < on T will be called a term ordering if it is a semigroup ordering.
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Setting xv

• N<(F ) := T \ T<(F ),

• k[N<(F )] := Spank(N<(F ))

and we will usually omit the dependence on < if there is no ambiguity.

8. Let < be a term ordering on T , I ⊂ P an ideal and A := P/I.
Since A ∼= k[N<(I)], there is, for each f ∈ P, a unique

g := Can(f, I,<) =
∑
t∈N<(I)

γ (f, t,<)t,

the canonical form, such that

g ∈ k[N(I)] and f − g ∈ I.

9. For an ideal I ⊂ P ,

I := ∩t
i=1qi

denotes an irredundant primary representation in P; d := dim(I) its dimension and
r := r(I) := n− d its rank; for each i, pi := √

qi is the associated prime.

10. For such an ideal I we will re-enumerate and re-label the variables as follows:

{X1, . . . , Xn} = {V1, . . . , Vd, Z1, . . . , Zr },
so that

I ∩ k[V1, . . . , Vd ] = (0), d := dim(I),

and we will wlog assume that the primaries are ordered so that, for a suitable value
1 ≤ r ≤ t,

qi ∩ k[V1, . . . , Vd ] = (0), dim(qi ) = d ⇐⇒ i ≤ r

so that the ideal

J := I k(V1, . . . , Vd)[Z1, . . . , Zr ] = IQ

is zero-dimensional and has, in Q, the irredundant primary representation

J := ∩r
i=1qiQ.

11. In general, when dealing with a zero-dimensional ideal, instead of

I ⊂ P = k[T ] = k[X1, . . . , Xn]
we prefer to use the notation

J ⊂ Q = K[W] = K[Z1, . . . , Zr ].
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xvi Setting

12. For such a zero-dimensional ideal J, with a slight abuse of notation we will still
set A := Q/J and denote as qi its primary components in Q; we also assume that

s := deg(J) = dim(A)

and we denote, for each f ∈ Q, [f ] ∈ A, its residue class modulo J and as �f the
endomorphism

�f : A → A, [g] �→ [f g].
13. In terms of a K-basis q = {[q1], . . . , [qs]} of A such that A = SpanK(q), for
each g ∈ Q the Gröbner description of g (Definition 29.3.3,) is the unique (row)
vector

Rep(g,q) := (γ (g, q1,q), . . . , γ (g, qs,q)) ∈ Ks,
which satisfies

[g] =
∑
j

γ (g, qj ,q)[qj ].

14. A Gröbner representation (Definition 29.3.3) of J (or, better, of the algebra A)
is the assignment of

• a K-linearly independent set q = {[q1], . . . , [qs]},
• the set M = M(q) :=

{(
a
(h)
lj

)
∈ Ks2

, 1 ≤ h ≤ r
}

of r square matrices,

• s3 values γ (l)ij ∈ K,
which satisfy

(1) Q/J ∼= SpanK(q),

(2) [Zhql] = ∑
j a
(h)
lj [qj ] for each l, j, h, 1 ≤ l, j ≤ s, 1 ≤ h ≤ r ,

(3) [qiqj ] = ∑
l γ
(l)
ij [ql] for each l, j, h, 1 ≤ i, j, l ≤ s.

A Gröbner representation is called a linear representation iff q = N<(J) w.r.t. a
term ordering <.

15. For the zero-dimensional ideal J ⊂ Q with irredundant primary representation
J = ⋂r

i=1 qi in Q, we set, for each i, 1 ≤ i ≤ r,

• mi = √
qi , the associated maximal prime,

• Ki := Q/mi , K ⊂ Ki ⊂ K,
• Qi := Ki[Z1, . . . , Zr ],
• the irredundant primary representations qi = ∩rij=1qij and mi = ∩rij=1mij in Qi ,
• the roots bij := (b(ij)1 , . . . , b

(ij)
r ) ∈ Kri ⊂ Kr , 1 ≤ j ≤ ri ,

• dij := mult(bij , J) = deg(qij ) for each j , 1 ≤ j ≤ ri ,
which satisfy:

(1) mij = (Z1 − b(ij)1 , . . . , Zr − b(ij)r ),
(2) the bij , 1 ≤ j ≤ ri , are K-conjugate for each i,
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Setting xvii

(3) up to a renumeration,
√

qij = mij ,

(4) mi = mij ∩Q,
(5) qi = qij ∩Q,
(6) for each j, l, 1 ≤ j, l ≤ ri, dij = dil =: di,
(7) ri = deg(mi ) = [Ki : K],
(8) deg(qi ) = diri ,
(9) J = ∩r

i=1 ∩rij=1 qij ,
√

J = ∩r
i=1 ∩rij=1 mij , are the irredundant primary repre-

sentations in K[Z1, . . . , Zr ],
(10) Z(J) = {bij : 1 ≤ i ≤ r, 1 ≤ j ≤ rj },
(11)

∑r
i=1 diri = s.

16. With the notation above the ideal J has s := ∑r
i=1 ri roots; we will also denote

this set of roots as

Z(J) = {α1, . . . , αs} ⊂ Kr , αi = (a(i)1 , . . . , a
(i)
r ).

For each such root αi we write

• mαi = (Z1 − a(i)1 , . . . , Zr − a(i)r ),
• qi as the mαi -primary component of J, so that J = ∩s

i=1qi in K ⊗K Q,
• si := mult(αi, J) = deg(qi ) as the multiplicity in J of αi , so that s = ∑s

i=1 si .

17. A linear form Y := ∑r
h=1 chZh is said to be an allgemeine coordinate for the

zero-dimensional ideal J (Definition 34.4.7) iff

(a) there are polynomials gi ∈ K[Y ], 0 ≤ i ≤ n, g0 monic, deg(gi ) < deg(g0), such
that

G := (g0(Y ), Z1 − g1(Y ), Z2 − g2(Y ), . . . , Zr − gr (Y ))

is the reduced Gröbner basis of the ideal

J+ := J +
(
Y −

∑
h

chZh

)
⊂ K[Y,Z1, . . . , Zr ]

w.r.t. the lex ordering induced by Y < Z1 < · · · < Zr ;
with the present notation this condition implies, among other things, that (Corol-
lary 34.4.6)

(b) Q/J ∼= K[Y ]/g0(Y )

(c) for each i, 1 ≤ i ≤ s, βi := ∑r
h=1 cha

(i)
h is a root of g0 with multiplicity si and

(d) a(i)j = gj (βi) for each i, 1 ≤ i ≤ s, and each j, 1 ≤ j ≤ r ,
(e) g0(Y ) = ∏r

i=1(Y − βi)si ,
(f) f ∈ J ⇐⇒ Rem(f (g1(Y ), . . . , gr (Y )), g0(Y )) = 0.

Moreover, there is a Zarisky open set U ⊂ Kn such that Y := ∑r
h=1 chZh is an

allgemeine coordinate for J iff (c1, . . . , cr ) ∈ U.
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xviii Setting

18. Given the polynomial ring P := k[X1, . . . , Xn] and its monomial k-basis T ,
we introduce n futher variables Y1, . . . , Yn and denote

• PY := k[Y1, . . . , Yn] and TY its corresponding monomial k-basis,
• P⊗ := P⊗PY = k[X1, . . . , Xn, Y1, . . . , Yn], and T⊗ its corresponding monomial
k-basis T⊗ := {τ ⊗ ω : τ ∈ T , ω ∈ TY },

• for each i, 0 ≤ i ≤ n, we use the notation h(Xi ) to denote the polynomial

h(Xi ) := h(Y1, . . . , Yi, Xi+1, . . . , Xn) for each h(X1, . . . , Xn) ∈ P;
in particular h(X0) = h(X1, . . . , Xn) and h(Xn) = h(Y1, . . . , Yn),

• for an ideal I = I(f1, . . . , fs) ⊂ P , with a slight abuse of notation we denote
also as I the ideal in PY generated by {f1(Y1, . . . , Yn), . . . , fn(Y1, . . . , Yn)} and
A := PY /I; thus we have

A ⊗k A = P⊗/I (fi(X1, . . . , Xn), fi(Y1, . . . , Yn), 1 ≤ i ≤ n) ;
• finally we denote IX := I ⊗ PY ⊂ P⊗ and IY := P ⊗ I ⊂ P⊗.
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