Dynamic Sun

Edited by **B. N. Dwivedi** Banaras Hindu University, India

Foreword by E. N. Parker

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typefaces Times 10.25/13.5 pt and Joanna System $\mathbb{E}T_{FX} 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Dynamic sun / edited by B. N. Dweivedi.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 81057 4
1. Sun I. Dwivedi, B. N., 1950–

QB521 .D96 2003 523.7-dc21 2002073928

ISBN 0 521 81057 4 hardback

Contents

Foreword xv

	E.N. Parker
1	Dynamic Sun: an introduction 1 B.N. Dwivedi
1.1	Introduction 1
1.2	Main contents 2
1.3	Concluding remarks 7
2	Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault
2.1	Introduction 8
2.2	Standard solar model 9
2.3	Variant and deviant solar models 11
2.4	Neutrino physics 14
2.4.1	Standard model 16
2.4.2	Calculated uncertainties 18
2.4.3	NACRE charged particle fusion rates 20
2.4.4	Variant and deviant models 21
2.4.5	The electron number density 21
2.5	Sound speeds 24
2.6	Discussion and summary 29
2.6.1	Standard solar model: current epoch 29
2.6.2	Neutrino fluxes and related quantities 29

vi	Contents
2.6.3	Sound speeds 31
	References 32
3	Seismic Sun 36
	S.M. Chitre and H.M. Antia
3.1	Introduction 36
3.2	Structure equations and the Standard Solar Model 37
3.3	Seismology of the Sun 39
3.4	Inferences about the solar structure 41
	References 52
4	Rotation of the solar interior 55
	J. Christensen-Dalsgaard and M.J. Thompson
4.1	Introduction 55
4.2	Helioseismic probes of the solar interior 57
4.2.1	Rotational effects on the oscillation frequencies 59
4.2.2	Data on rotational splitting 60
4.2.3	Inversion for solar internal rotation 63
4.3	The solar internal rotation 64
4.3.1	Rotation of the solar convection zone 66
4.3.2	The tachocline 68
4.3.3	The radiative interior 70
4.4	Modelling solar rotation 71
4.5	Final remarks 73
	References 74
5	Helioseismic tomography 78
5	A.G. Kosovichev
5 1	Introduction 78
5.2	Method of helioseismic tomography 79
5.3	The ray approximation 84
5.4	The Born approximation 85
5.5	Inversion methods 87
5.6	Diagnostics of supergranulation 88
5.7	Large-scale flows 90
5.8	Meridional circulation 91
5.9	Emerging active regions 91
5.10	Structure and dynamics of sunspots 93

5.11	Imaging the far side of the Sun 97
5.12	Conclusion 99
	References 100
6	The solar dynamo as a model of the solar cycle 103 A.R. Choudhuri
6.1	Introduction 103
6.2	Relevant observations 104
6.3	Some basic MHD considerations 108
6.4	The turbulent dynamo and mean field MHD 110
6.5	Dynamo in the overshoot layer? 114
6.6	The Babcock–Leighton approach and advective dynamo models 117
6.7	Miscellaneous ill-understood issues 121
6.8	Conclusion 123
	References 124
7	Spectro-polarimetry 128 J.O. Stenflo
7.1	Remote sensing of the Sun's magnetic field: an introduction 128
7.2	Observational techniques and their limitations 130
7.3	Zeeman-effect diagnostics 133
7.4	The Hanle effect 138
7.5	Optical pumping 142
7.6	Concluding remarks 146
	References 146
8	Solar photosphere and convection 148 Å. Nordlund
8.1	Introduction 148
8.2	Dynamic and thermal properties of the solar photosphere 150
8.3	Spectral line synthesis 152
8.4	P-mode diagnostics 156
8.5	Large scale velocity fields 159
8.6	Consequences for coronal and chromospheric heating 162

viii	Contents
8.7	Concluding remarks 162
	References 163
9	The dynamics of the quiet solar chromosphere 165
	W. Kalkofen, S.S. Hasan and P. Ulmschneider
9.1	Introduction 165
9.2	Oscillations in the nonmagnetic chromosphere 166
9.3	Oscillations in the magnetic network 172
	References 178
10	Heating of the solar chromosphere 181
	P. Offischneider and VV. Kalkolen
10.1	Introduction 181
10.2	Empirical chromosphere models 182
10.3	Energy balance and the necessity of mechanical heating 184
10.4	Overview of the heating mechanisms 187
10.5	Search for the important heating mechanisms 188
10.6	Summary and outlook 193
	References 195
11	The color transition ragion 106
11	O. Kieldseth-Moe
11.1	Later hasting 100
11.1	Introduction 196
11.2	The emitted interacity 107
11.2.1	The emitted intensity 197
11.2.2	Constant and better flow and the this transition region 200
11.5	The extended transition region 201
11.4	Figure 201 Excess emission at temperatures below $10^5 K_{-}201$
11.4.1	The EUV flash spectrum: direct observation of an
11.4.2	inhomogeneous transition region 202
11.4.3	A transition region structured by the magnetic field 202
11.4.4	Spicules and the transition region 202
11.4.5	An extremely fine structured transition region? 203
11.4.6	Unresolved fine structures 204
11.4.7	Unresolved dynamic evolution? 205
11.5	The redshifted transition region 205
11.5.1	Line shifts in the transition region 205
	č

11.5.2	Red- or blueshifts from siphon flows and spicules? 206
11.5.3	Red shifts as signatures of downward propagating waves 207
11.6	The dynamic and time dependent transition region 208
11.6.1	Morphology of transition region loops 208
11.6.2	Velocities in transition region loops 209
11.6.3	Rapid time changes in the emission 210
11.7	Conclusion – a new concept for the transition region 212
	References 214
12	Solar Magnetohydrodynamics 217 E.R. Priest
12.1	Introduction 217
12.2	Magnetohydrodynamic equations 219
12.2.1	Flux tubes 219
12.2.2	Basic equations 219
12.2.3	Induction equation 220
12.2.4	The Lorentz force 223
12.3	Magnetohydrostatics 224
12.3.1	Introduction 224
12.3.2	Potential fields 225
12.3.3	Force-free fields 226
12.3.4	Magnetic flux tubes 228
12.4	Magnetohydrodynamic waves 229
12.4.1	Sound waves 229
12.4.2	Alfvén waves 231
12.4.3	Compressional Alfvén waves 232
12.4.4	Magnetoacoustic waves 233
12.4.5	Shock waves 233
12.5	Concluding comment 237
	References 237
13	Solar activity 238 Z. Švestka
13.1	Solar cycles 238
13.2	Active regions 240
13.3	Complexes of activity and interconnecting loops 243
13.4	Surges, jets, and sprays 244
13.5	Solar flares 245

x Contents

13.6	Coronal mass ejections and coronal storms 249
13.7	Relation between CMEs and flares 252
13.8	Other sources of CMEs 255
13.9	Causes of instabilities 255
13.10	Accelerated particles 256
13.11	Impacts of solar activity at the Earth 257
	References 259
14	Particle acceleration 262 A.G. Emslie and J.A. Miller
14.1	Introduction 262
14.2	Observational constraints 263
14.2.1	Electrons 264
14.2.2	Ions 266
14.3	Direct electric field acceleration 266
14.4	Stochastic acceleration 271
14.4.1	The cascading turbulence model 276
14.4.2	Baseline case 278
14.5	Conclusions 285
	References 285
15	Radio observations of explosive energy releases on the Sun 288 M.R. Kundu and S.M. White
15.1	Introduction 288
15.2	Flare studies 289
15.2.1	Millimeter flare emission: comparison with microwave and hard X-rays/gamma rays 289
15.2.2	Time profiles of millimeter bursts 291
15.2.3	Observations of millimeter and microwave bursts 293
15.2.4	Simple spiky bursts in microwaves 293
15.2.5	Microwave and hard X-ray observations of footpoint- emission from flaring loops 294
15.2.6	Double loop configuration of flaring regions 295
15.2.7	Modeling of microwave flares 297
15.3	Small scale energy releases on the Sun 299
15.3.1	XBP flares 300
15.3.1.1	Metric type III burst emission from an XBP flare in a coronal hole 300
15.3.1.2	Microwave observations of XBP flares 301

15.3.2	Radio observations of coronal X-ray jets 303
15.3.2.1	Meterwave observations of jets 303
15.3.2.2	A statistical study of jets in microwaves 305
15.3.3	Active region transient brightenings (ARTB's) 305
15.3.3.1	Radio (VLA) observations 306
15.3.3.2	Radio (Nobeyama) observations 307
15.3.3.3	Radio (OVRO) observations 307
15.3.3.4	Transient brightenings in quiet Sun regions 308
15.3.3.5	Implications of transients for coronal heating 308
15.4	Concluding remarks 310
	References 311
16	Coronal oscillations 314
	V.M. Nakariakov
16.1	Introduction 214
16.2	The method of MHD coronal saismology 315
16.2	Detectobility of MHD weaves in the corone, 216
10.5	Compressive waves in polar plumes 318
16.4.1	Observations 218
16.4.2	Interpretation as slow magnetoacoustic wayes 310
16.5	Search for Alfuén wayes 222
16.5 1	Theoretical especta 222
16.5.2	Observational espects 322
10.3.2	Compressive waves in long loops, 224
10.0	Observations and interpretation 224
16.6.2	Seismologia implicationa 227
16.7	Elem generated escillations of aeronal loops 227
16.7.1	Chargestions 227
1672	Determination of the magnetic field 220
16.7.2	Determination of the magnetic field 529
16.7.5	EIT or coronal Moraton waves 221
10.8	Conclusions 222
10.9	Deferences 222
	References 332
17	Probing the Sun's hot corona 335 K.J.H. Phillips and B.N. Dwivedi
17.1	The solar corona 335
17.2	The spacecraft era 338

xii Contents

17.3 17.4 17.5 17.6 17.7	Heating of the corona: theory 341 Observational evidence: transient brightenings 344 Physical characteristics of the corona 346 Observational evidence: wave motions 349 Conclusions 351
18	References 351 Vacuum-ultraviolet emission line diagnostics for
	solar plasmas 353 B.N. Dwivedi, A. Mohan and K. Wilhelm
18.1	The Sun in the ultraviolet emission lines 353
18.1.1	SUMER spectrograph 354
18.2	Atomic processes 355
18.2.1	Emission lines 356
18.2.2	Coronal model approximation 357
18.2.3	Electron collisional excitation and de-excitation 358
18.2.4	Proton collisional excitation and de-excitation 358
18.2.5	Ionization balance 359
18.3	Plasma diagnostics 359
18.3.1	Emission measure analysis 360
18.3.2	Electron-density diagnostics 362
18.3.3	Electron-temperature diagnostics 363
18.3.4	Abundance determination 364
18.4	Some new results from SUMER 365
18.4.1	Coronal holes and the solar wind 365
18.4.2	The "red/blue" Sun 367
18.4.3	Explosive events 368
18.4.4	Sunspot transition region oscillations 369
18.4.5	Solar flare observed by SUMER 370
18.5	Conclusions 370
	References 371
19	Solar wind 374 E. Marsch, W.I. Axford and J.F. McKenzie
19.1	The solar wind 374
19.2	Basic energy considerations 375
19.2.1	Historic restrospective: Parker's model 375
19.2.2	Problems with a polytropic single-fluid model 375

19.2.3	Energy requirements on heavy ions 376
19.3	Solar corona and wind in three dimensions 377
19.3.1	Types of solar wind 377
19.3.2	Three-dimensional solar corona 377
19.3.3	Electron density and temperature 379
19.4	Fast solar wind 379
19.4.1	Coronal and in-situ observations 379
19.4.2	Basic model equations 383
19.4.3	Heating functions 385
19.4.4	Some results from model calculations 386
19.4.5	The wave spectrum: origin, evolution and dissipation 389
19.4.6	Critical issues in the models 390
19.5	Slow solar wind 391
19.5.1	Observations of slow flows 391
19.5.2	Models of the closed corona and slow wind 392
19.6	Sources of the solar wind 394
19.6.1	Chromospheric network 394
19.6.2	Network pico-flares 395
19.6.3	Heating of the quiet corona 396
19.6.4	Some consequences of network flares 396
19.7	Problems 397
19.7.1	Problems with the observations 397
19.7.2	Problems with the theory 398
19.8	Conclusions 399
	References 400
20	Solar observing facilities 403 B. Fleck and C.U. Kelller
20.1	Introduction 403
20.2	Ground-based instruments 403
20.2.1	Present 406
20.2.1.1	General purpose telescopes 406
20.2.1.2	Synoptic telescopes 408
20.2.1.3	Synoptic networks 412
20.2.1.4	Synoptic radio telescopes 413
20.2.2	Future plans 414
20.2.2.1	General purpose telescopes 414
20.2.2.2	Synoptic telescopes 415

xiv Contents

20.2.2.3	Radio telescopes 416
20.3	Current and planned suborbital missions 416
20.4	Space missions 417
20.4.1	In operation 417
20.4.1.1	Ulysses 417
20.4.1.2	Yohkoh 418
20.4.1.3	Wind 419
20.4.1.4	SOHO 420
20.4.1.5	ACE 423
20.4.1.6	TRACE 423
20.4.1.7	GOES/Solar X-ray imager 424
20.4.1.8	CORONAS-F 424
20.4.1.9	Genesis 425
20.4.1.10	HESSI 425
20.4.2	In development and under study 426
20.4.2.1	Solar-B 426
20.4.2.2	STEREO 427
20.4.2.3	Space Solar Telescope–SST 428
20.4.2.4	SDO 428
20.4.2.5	Solar Orbiter 429
20.4.2.6	Solar probe 430
20.4.2.7	Solar sentinels 432
20.5	Conclusions 432
	References 432
	Index 435

Dynamic Sun: an introduction

B.N. Dwivedi Banaras Hindu University, India

1.1 Introduction

"A gaze blank and pitiless as the Sun", was how W.B. Yeats evoked faceless doom in his poem *The Second Coming*. The glare of the Sun may still seem pitiless, but it is blank no longer - at least not to solar physicists. In spite of the stability of the Sun's deep interior, the solar atmosphere is extremely active and dynamic. Observation reveals a wide-ranging repertoire of phenomena occurring at all times. Such phenomena are the consequence of magnetic flux emerging through the Sun's surface from its interior, our understanding of which has been built up by theoretical modelling and observations, since they are beyond simulation in a terrestrial laboratory.

Although many exotic astronomical objects are available for study, the seemingly pedestrian Sun is the object of special study by large-scale ground-based telescopes and other facilities as well as by major spacecraft which were launched over the past twenty years by several space agencies around the world. One reason for this is of course the Sun's proximity, which makes it a fundamental testing ground for virtually all astrophysical techniques. The signal-to-noise associated with the collection in one second of solar photons is comparable to that from a similar source at one parsec in 1000 years. Hence we are able to analyse solar data (in, e.g., the polarimetric, spectral, temporal, or spatial domain) to a very considerable extent. While we do not see surface details on any other star, we can resolve regions on the Sun as small as 150 km across, the size of a large city, using the latest ground-based instruments, and 700 km with spacecraft instrumentation, though recognizing it is likely to be even better soon. The success of solar observations has spawned studies in a wider context, e.g. atomic and nuclear spectroscopy in astrophysics, cosmic magnetometry,

1

2 B.N. Dwivedi

neutrino astrophysics, and asteroseismology. Another example of the Sun's uniqueness for observational astronomers is the way in which it is possible, using particle detectors and magnetometers on spacecraft in orbits that take them far from the Earth's magnetosphere, to sample the solar wind which is the dynamic extension of the solar corona consisting of outward-streaming fully ionised plasma.

Despite the success of recent solar physicists in elucidating the workings of the Sun, there remain many challenges for our complete understanding. Some of the items include the filamentary structure of the photospheric magnetic field, the origin and behaviour of small magnetic bipoles continually emerging in supergranules, magnetic diffusion (which is so essential for understanding the solar dynamo), the Sun's peculiar internal rotation inferred from helioseismology, the energy source of the hot solar corona and the generation and acceleration of the solar wind, as well as the small but very important solar brightness variations with level of activity.

1.2 Main contents

In this book we present a modern, comprehensive and authoritative overview of the Dynamic Sun from its deep core to the outer corona, and the solar wind (see Figure 1.1), including a chapter on solar observing facilities. All the chapters have been refereed. They present an up-to-date account of the subject and list extensive references for further study. The main contents of each chapter is as follows:

Chapter 2: Solar models: structure, neutrinos, and helioseismological properties (*Bahcall, Basu and Pinsonneault*): Solar models remain at the frontiers of two different scientific disciplines, solar neutrino studies and helioseismology. After presenting the details of some state-of-the-art solar models, this chapter gives an overview of solar neutrino physics in some detail (helioseismology is covered in Chapters 3-5 of this book). The neutrino predictions from the set of solar models discussed have been contrasted with the results of the solar neutrino experiments. Finally, the structure of the solar models are compared with helioseismic results obtained using different data sets.

Chapter 3: Seismic Sun (Chitre and Antia): Helioseismology probes the internal structure and dynamics of the Sun with high precision. Frequencies of nearly half a million resonant modes of oscillations have been measured by the ground-based Global Oscillation Network Group (GONG) project and space-based Michelson Doppler Imager (MDI) on the SOHO spacecraft. Each of these modes is trapped in a different region of the solar interior and hence its frequency is sensitive to structure and dynamics in the corresponding region. Conversely, by combining the information from these large number of independedent modes of solar oscillations, the inference is made of the structure and dynamics of the solar interior to unprecedented precision. These seismic data provide a test for solar models and theories of stellar structure and evolution.

Chapter 4: Rotation of the solar interior (Christensen-Dalsgaard and Thompson): Helioseismology allows us to infer the rotation in the greater part of the solar interior with high precision and resolution. The results show interesting conflicts with earlier theoretical expectations, indicating that the Sun is host to complex dynamical phenomena, so far hardly understood. This has important consequences for our ideas about the evolution of stellar rotation, as well as for models for the generation of the solar magnetic field. An overview of our current knowledge about solar rotation is given, much of it obtained from the SOHO spacecraft, and the broader implications are discussed.

4 B.N. Dwivedi

Chapter 5: Helioseismic tomography (Kosovichev): Helioseismic tomography extends the capabilities of helioseismology by providing three-dimensional images of sound-speed variations and mass flows associated with sunspots, active regions, emerging magnetic flux, convective cells and other solar phenomena. The initial results reveal the structure of supergranulation and meridional flows beneath the solar surface as well as large-scale mass motions around sunspots and active regions, provide a clue for the mechanism of sunspots, and even show the presence of active regions on the far side of the Sun.

Chapter 6: The solar dynamo as a model of the solar cycle (Choudhuri): It is believed that the Sun's magnetic field is produced by the dynamo process, which involves non-linear interactions between the solar plasma and the magnetic field. Summarising the main characteristics of solar magnetic field, the basic ideas of dynamo theory are presented and its current status is discussed.

Chapter 7: Spectro-polarimetry (Stenflo): Spectro-polarimetry is our tool for remotely diagnosing the Sun's magnetic field. It deals with the wavelength variation of an observable vector quantity, the Stokes vector. The observational task is to map the Stokes vector both in the spectral and spatial domain with highest possible resolutions (spatial, spectral, temporal) and polarimetric accuracy. The interpretation or inversion of Stokes vector data to derive the magnetic and thermodynamic structure of the solar atmosphere must take into account the extreme structuring of the magnetic field, which extends to scales far smaller than we can resolve with presentday telescopes. With novel imaging Stokes polarimeters qualitatively new diagnostic tools like the Hanle effect and optical pumping are now available to complement the Zeeman effect in the exploration of the magnetized solar plasma on all scales.

Chapter 8: Solar photosphere and convection (Nordlund): An abrupt transition from convective to radiative energy transport at the solar surface results in a spatially and temporally very complex photosphere. The properties of the solar photosphere as well as its importance for both the sub-surface layers and for the chromosphere and corona above are now beginning to be understood in some detail. Progress has been made largely through the use and interpretation of numerical simulations of this region. Comparisons are made in a forward sense; synthetic observational data are generated from the numerical models, and are compared directly with corresponding observational data.

Chapter 9: The dynamics of the quiet solar chromosphere (Kalkofen, Hasan and Ulmschneider): Wave propagation in the nonmagnetic chromosphere is described for plane and spherical waves, and excitation by means of impulses in small source regions in the photosphere; excitation for flux tube waves in the magnetic network is described for large, single impulses and for a fluctuating velocity field. Observational signatures of the various wave types and their effect on chromospheric heating are considered. It is concluded that calcium bright points in the nonmagnetic

chromosphere are due to spherical acoustic waves, and that for the oscillations in the magnetic network, transverse waves are more important than longitudinal waves; they may penetrate into the corona, giving rise to some coronal heating.

Chapter 10: Heating of the solar chromosphere (Ulmschneider and Kalkofen): Overlying the photosphere is the chromosphere, a layer that is dominated by mechanical and magnetic heating. By simulating the chromospheric line and continuum emission, empirical models can be constructed that allow the energy balance to be evaluated. Several possible heating processes are discussed as well as the search is made for the actual heating mechanisms. It is found that dissipation by acoustic waves is the basic heating mechanism for nonmagnetic regions of the chromosphere, and MHD tube waves for magnetic regions.

Chapter 11: The solar transition region (Kjeldseth-Moe): What is the solar transition region like? The view of a static, thin transition region has long been left behind. Modern concepts are emerging, but a new model is not generally agreed upon. The observational facts and theoretical considerations, however, consistently point towards a strongly dynamic solar plasma. A comprehensive account of all this is presented here.

Chapter 12: Solar magnetohydrodynamics (Priest): The magnetic field exerts a force, stores energy, acts as a thermal blanket, channels plasma, drives instabilities, and supports waves. For many purposes the behaviour of the magnetic field and its interaction with plasma is governed by the equations of magnetohydrodynamics (MHD). This chapter gives a brief account of some of the basics of MHD, and summarises the simple properties of the different kinds of waves that are present in ideal MHD.

Chapter 13: Solar activity (Švestka): What is the active Sun which is a very important factor in our life ? Observations from SOHO and TRACE reveal the highly turbulent nature of Sun's surface and its atmospheric layers: all the time and everywhere we see brightness variations, loop formations and decays, plasma flows and ejections of gas. However, this is not what we call solar activity. The real processes called solar activity appear only in limited parts of the solar surface, and their occurrence varies quasi-periodically with time, creating 11-year cycles of solar activity whose main characteristics are described in this chapter. Particular attention is paid to coronal mass ejections, as the most important phenomenon affecting the Earth.

Chapter 14: Particle acceleration (Emslie and Miller): The acceleration of particles to high energies is a ubiquitous phenomenon at sites throughout the universe. Despite decades of observations in X-rays and gamma-rays, the mechanism for particle acceleration in solar flares remains an enigma. A comprehensive account of the Sun as a very efficient particle accelerator is presented in this chapter.

6 B.N. Dwivedi

Chapter 15: Radio observations of explosive energy releases on the Sun (Kundu and White): This chapter is devoted to a discussion of the radio observations of explosive energy releases (normal flares and small-scale energy releases) on the Sun. Radio imaging observations of solar flares and coronal transients and the relationship of radio phenomena with those observed in hard and soft X-rays, and underlying physics are discussed.

Chapter 16: Coronal oscillations (Nakariakov): The detection of coronal waves provides us with a new tool for the determination of the unknown parameters of the corona - MHD seismology of the corona. The method is similar to helioseismology. But MHD coronal seismology is much richer as it is based upon three different wave modes – Alfvén, slow and fast magnetoacoustic modes. These MHD modes have quite different dispersive, polarization and propagation properties, which make this approach even more powerful. The delicate interplay of MHD wave theory and the observations of coronal waves and oscillations are presented, illustrating it with several examples.

Chapter 17: Probing the Sun's hot corona (Phillips and Dwivedi): The mega-Kelvin temperature of the solar corona has been recognized since the 1940s. While it is generally realized that the magnetic field is the underlying reason, the detailed heating mechanism still eludes solar physicists. This chapter reviews the main historical developments and discoveries right up to those from currently operating satellites such as SOHO and TRACE as well as the chief theoretical problems. An account of the two main competing ideas for coronal heating, nanoflares and MHD wave dissipation, is then given.

Chapter 18: Vacuum-ultraviolet emission line diagnostics for solar plasmas (*Dwivedi, Mohan and Wilhelm*): Observations of the solar vacuum-ultraviolet emission lines obtained by SUMER/SOHO and their interpretation in terms of atomic physics concepts are given. Electron temperature and density diagnostics of the low corona are described. Doppler line-of-sight measurements demonstrate an outflow at the base of the corona in the dark areas of coronal holes, which are seen as the source of the solar wind. Some aspects of the dynamics of the upper solar atmosphere, such as explosive events and sunspot oscillations, are mentioned as examples of the quiet-Sun activity, but spectral observations during solar flare are also shown with indications of plasmas with temperatures of several million Kelvins.

Chapter 19: Solar wind (Marsch, Axford and McKenzie): There are three major types of solar wind – the steady fast wind, the unsteady slow wind, and the variable transient wind. The fast streams are the normal modes of the solar wind. Their basic properties can be reproduced by multi-fluid models involving waves. After briefly reviewing the history of the subject and describing some of the modern theories of the fast wind, the boundary conditions and *in-situ* constraints are discussed which are imposed on the models, in particular by Ulysses at high latitudes.

Some of the results are then presented from SOHO observations that have brought a wealth of new information on the state of the wind in the inner corona as well as the plasma source conditions prevailing in the transition region and solar chromosphere. Finally, problem areas are identified and future research perspectives are outlined.

Chapter 20: Solar observing facilities (Fleck and Keller): An overview is given of current and planned ground-based solar telescopes and instruments, balloon-borne and suborbital solar telescopes, and solar and heliospheric space missions. These observing facilities operate in all areas of solar physics, from the solar interior to interplanetary space and from regimes of high energy to observations requiring high resolution. The next generation of solar telescopes and instruments promise us the ability to investigate solar processes on their fundamental scales, whether sub-arc second or global in nature.

1.3 Concluding remarks

SOHO and TRACE have produced a host of high-resolution observations that have already substantially improved our insights into the physics of the Sun itself as well as how the solar wind and coronal mass ejections influence the near-Earth environment. A new generation of satellites is expected to unravel further solar mysteries and to monitor space weather in a similar way to its terrestrial counterpart. The scientific future of solar physics thus offers exciting prospects for the simple reason that the Sun presents more and more mysteries giving opportunities to learn new physics. And as Yeats says elsewhere, "I'll... pluck till time and times are done ... the golden apples of the Sun", I hope the intended readership (graduate students, and researchers in solar physics, astrophysics, and astronomy) will find each chapter of this book, a 'golden apple' of the Dynamic Sun and as a whole an indispensable guide. This has been possible with the kind support of all my co-authors, and I can hardly thank them enough.