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Introduction

Turbulence is a ubiquitous phenomenon. Wherever fluids are set into motion
turbulence tends to develop, as everyday experience shows us. When the fluid
is electrically conducting, the turbulent motions are accompanied by magnetic-
field fluctuations. However, conducting fluids are rare in our terrestrial world,
where electrical conductors are usually solid. One of the rare examples of a
fast-moving conducting fluid, which has been of some practical importance
and concern and to which authors of theoretical studies sometimes referred, is,
or better, was the flow of liquid sodium in the cooling ducts of a fast-breeder
reactor. It is therefore not surprising that, in contrast to the broad scientific
and technical literature on ordinary, i.e., hydrodynamic, turbulence, magnetic
turbulence has not received much attention.

The most natural conducting fluid is an ionized gas, called a plasma. It is true
that laboratory plasmas, which are confined by strong magnetic fields, notably
in nuclear-fusion research, exhibit little dynamics, except in short disruptive
pulses. Only the reversed-field pinch, a toroidal plasma discharge of relatively
high plasma pressure, exhibits continuous magnetic activity, such that it is some-
times considered more as a convenient device for studying magnetic turbulence
rather than as a particularly promising approach to controlled nuclear fusion.

Plasmas are, however, abundant in the extraterrestrial world. It is said that
99% of all material in the universe exists in the plasma state. This does not,
however, mean that the plasma properties are always important. In fact, for un-
derstanding stellar evolution, during which conditions are mostly quasi-static,
or galaxy formation, which is dominated by gravitational forces, the specific
plasma properties and the presence of magnetic fields are not crucial and have
usually been neglected, atomic and nuclear properties being more important.
Only in certain processes have magnetic fields long been acknowledged to play
a dominant part, such as in the dynamics of stellar atmospheres and in the gener-
ation of cosmic rays. In recent times, however, it appears that the omnipresence
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2 Introduction

and active role of magnetic fields has also been recognized in those astrophys-
ical objects which had formerly been treated as essentially nonmagnetic neu-
tral fluids, for instance in accretion disks and in the interstellar medium. Here
magnetic fluctuations provide essential clues regarding the intrinsic transport
properties, namely transport of angular momentum in the former and gravita-
tional collapse in the latter. These applications have led to a remarkable revival
of interest in magnetic turbulence.

Though magnetic-field fluctuations occur on all scales, down to the smallest
plasma modes, magnetic fields are most important at macroscales, i.e., mean
wavelengths exceeding the internal plasma scale lengths, such as the ion gyro-
radius. In this regime magnetohydrodynamics (MHD) provides the appropriate
framework, to which this book is restricted. This does not mean that the classi-
cal condition for a fluid approach, namely the smallness of the mean free path
between interparticle collisions compared with gradient scales, must be satis-
fied. Indeed, in many dilute plasmas collisions are very rare, but there are other,
collective, processes that play a similar dissipative role giving rise to effective
(often called anomalous) transport coefficients. Also, in weakly ionized gases
magnetic diffusion is not governed by classical resistivity, the friction between
ions and electrons, but by ambipolar diffusion, the friction between ions and
neutral species. Hence the huge values of the Reynolds numbers and other
parameters characterizing a turbulent system, which are typical for astrophys-
ical systems when they are calculated with the classical transport coefficients,
should not be taken too seriously. In any case, the dissipation processes, inde-
pendently of their nature, serve only as energy sinks, which cut off the spectrum
of turbulent fluctuations at small scales but do not affect the main turbulence
scales.

Since MHD turbulence is related to hydrodynamic turbulence, by following
similar equations one may apply, and generalize, the formalism developed for
the latter. Hence this book deals necessarily also with hydrodynamic turbulence.
Turbulence theory has developed along two rather different lines, one oriented
toward technical applications, the other focussing on the intrinsic turbulence
properties. The practical importance of the first line is obvious – in popular
view, turbulence is, indeed, considered more a technical problem than a physical
phenomenon. The second line, which is naturally more interesting to a physicist,
is characterized by certain approximations made for algebraic convenience as
well as for conceptual clarity, which move the focus away from the practical
aspects of turbulence. This is also reflected in the various treatises on turbulence
theory published during the past few decades, for instance by Leslie (1973), by
Lesieur (1997), and by Frisch (1995), which concentrate more on the formal
developments in homogeneous incompressible turbulence theory. While the
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Introduction 3

classical books, especially the two volumes by Monin and Yaglom (1975),
contain also major parts dealing with observational results, in more recent works
the emphasis has increasingly shifted toward discussion of results of computer
simulations, which can be compared more directly with the theoretical models.

In fact, numerical computations have become an indispensable tool in tur-
bulence research. Since statistical fluid theory is notoriously difficult to deal
with analytically, a numerical treatment of the time-dependent primitive equa-
tions, now generally called numerical simulation, providing an exact solution
(within controlled numerical-discreteness effects), is often the only method by
which to check the validity of analytical modeling. The numerical scaling laws
obtained by varying the values of parameters may be considered the solution
of a turbulence problem, which should subsequently only be “understood” by
invoking a simple intuitive model, or mechanism. The argument often given,
namely that numerically attainable Reynolds numbers are simply too small to
be useful for understanding real, high-Reynolds-number turbulence is gradu-
ally becoming academic, as progress in computer technology allows use of ever
larger computational grids. To illustrate the progress in computer power, only
15 years ago two-dimensional (2D) simulations on a grid of 10242 points were
considered the state of the art, whereas present-day supercomputers can handle
the same linear resolution in three dimensions (3D), an increase by a factor
of 103. Naturally the development of efficient numerical methods and codes
and their exploitation has become a major activity for many turbulence theo-
rists. For MHD turbulence numerical simulations play an even greater role than
they do for hydrodynamic turbulence, since laboratory experiments are practi-
cally impossible and astrophysical systems, in particular solar-wind turbulence,
the most important system of high-Reynolds-number MHD turbulence ac-
cessible to in situ measurements, are too complex to be directly comparable
with theoretical results. We shall therefore frequently refer to such numerical
studies.

Initially, interest in MHD turbulence focussed on the dynamo problem, no-
tably in Batchelor’s early paper (1950) and in the famous article by Steenbeck
et al. (1966) reviewed later on in Moffatt’s book (1978). A milestone in the
fundamental scaling theory was the introduction of the Alfvén effect proposed
independently by Iroshnikov (1964) and Kraichnan (1965b). This describes
small-scale turbulent fluctuations as weakly interacting Alfvén waves pro-
pagating along the large-scale field. Because of the reduction of the corre-
sponding spectral transfer the energy spectrum was predicted to be somewhat
flatter, k−3/2 instead of the Kolmogorov spectrum k−5/3. This led to a long-
standing debate about which process actually dominates the turbulence dy-
namics. From the theory side the importance of the Elsässer fields as basic
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4 Introduction

dynamic variables, which incorporate the Alfvén-wave properties and naturally
describe aligned states, seems to point to the fundamental role of the Alfvén
effect. From the observation side, however, the energy spectrum of solar-wind
turbulence was found to be clearly closer to a Kolmogorov law. The solution of
this paradox lies in the intrinsic anisotropy of MHD turbulence emphasized by
Goldreich and Sridhar (1995), who showed that the spectrum is more strongly
developed perpendicularly to the local magnetic field, where the Alfvén effect
is not operative. Hence a Kolmogorov-like transfer dynamics should dominate,
which is also corroborated by results of recent numerical studies of 3D MHD
turbulence.

There are, however, self-organization processes in MHD turbulence that have
no hydrodynamic counterpart. These processes originate from certain selective
decay properties arising from the presence of several ideal invariants with differ-
ent decay rates, which have been studied intensively primarily by Montgomery
and Matthaeus and their collaborators. Conservation of cross-helicity leads to
highly correlated, or aligned, states, while conservation of magnetic helicity
gives rise to the formation of force-free magnetic configurations as was first
shown by Woltjer (1958) and generalized by Taylor (1974). A further facet of
the latter process is the inverse cascade of the magnetic helicity, the excitation of
increasingly larger magnetic scales, which is the basis of the nonlinear dynamo
effect as noted by Pouquet et al. (1976).

The book consists of four parts. Chapters 2 and 3 discuss the properties of the
MHD model and the transition from a smooth to a turbulent state; Chapters 4–7
deal with the various aspects of fully developed incompressible turbulence;
Chapters 8 and 9 treat two extensions, namely 2D turbulence, which corre-
sponds to the limit of a strong magnetic field, and, in a sense the opposite limit,
supersonic turbulence. The last part, Chapters 10–12, considers three astro-
physical applications, namely turbulence in the solar wind, in accretion disks,
and in the interstellar medium.

Chapter 2 introduces the MHD theory and discusses special approximations,
such as incompressibility and the Boussinesq approximation. The MHD equa-
tions exhibit a number of ideal conservation laws reflecting the constraints on
the turbulence dynamics which are relaxed only by dissipative effects. We then
briefly outline the properties of static equilibrium configurations, either mag-
netic or gravitational, and the different types of linear waves, which arise due to
magnetic tension, pressure, and stratification. Finally the MHD equations are
formulated in terms of the Elsässer fields, which are particularly well suited to
MHD turbulence.

Chapter 3 deals with the transition to turbulence, namely how random mo-
tions are generated from a smooth flow. We first discuss the character of the
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Introduction 5

singular solutions developing in the ideal equations, in particular the generation
of finite-time singularities. This problem has aroused considerable interest,
though its connection to the real, dissipative turbulence is somewhat loose. To
date no general mathematical answer has been found, but there are strong indica-
tions that the hydrodynamic Euler equations do, indeed, give rise to finite-time
singularities, if the initial state is not too symmetric, whereas in the MHD case
no finite-time singularities seem to exist. This difference can be pinned down to
the structure of the solution at the location of the singularity, filamentary in hy-
drodynamics and sheet-like in MHD. The development of small-scale random
fluid motions is described by the effect of some instability of the quasi-singular
structures of the ideal solution. When the velocity shear, pressure gradient, and
current density exceed certain thresholds, the fluid becomes Kelvin–Helmholtz
unstable, Rayleigh–Taylor unstable or unstable against tearing. We discuss these
instabilities and their nonlinear evolution in some detail.

In Chapters 4–7 we consider incompressible turbulence. Chapter 4 focusses
on macroscopic properties. We first discuss the Reynolds equations. Here the
effects of the small-scale fluctuations are contained in the turbulent Reynolds
and Maxwell tensors in the momentum equation and the electromotive force
and turbulent resistivity in the induction equation, for which phenomenologi-
cal expressions based on the mixing-length concept are used. Self-organization
processes in MHD turbulence are caused by selective decay. Since magnetic
helicity, and, to a lesser extent, also cross-helicity, decay much more slowly
than does the turbulence energy, the decay of the latter leads to relaxed states,
depending on the initial state either a linear force-free magnetic configura-
tion or an Alfvénic state, in which the velocity and magnetic field are aligned.
The energy-decay law is a characteristic property of the turbulence. For finite
magnetic helicity the decay is controlled by selective decay, in particular ki-
netic energy decays more rapidly than does magnetic energy, EK ∼ t−1 and
EM � E ∼ t−0.5. If the magnetic helicity is negligible, the turbulence remains
macroscopically self-similar during the decay, EK ∼ EM , and the energy decay
is faster, E ∼ t−1, since the turbulence is less constrained.

High-Mach-number turbulence carries a wide range of spatial scales, which
exhibit characteristic scaling properties, notably the internal-range energy spec-
trum examined in Chapter 5. The scaling behavior becomes particularly trans-
parent if the turbulence is not affected by the inhomogeneity of the global
system, but can be considered statistically homogeneous and, possibly, also
isotropic, which is the framework of most theories dealing with the intrinsic
turbulence properties. To understand the spectral-transfer processes it is helpful
to look at the statistical equilibrium states of the nondissipative system trun-
cated in Fourier space, which are called absolute equilibrium states, from which
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6 Introduction

the preferential spectral-transfer, or cascade, direction of a spectral quantity can
be read off directly, for instance the inverse cascade of the magnetic helicity.
We then derive, in a phenomenological way, the energy spectrum in dissipative
MHD turbulence by assuming that there is either a local, Kolmogorov-type,
transfer process leading to a k−5/3 spectrum or a spectral transfer controlled
by the Alfvén effect, which gives rise to the IK spectrum k−3/2. In accounting
for the inherent spectral anisotropy the latter is essentially ruled out. Numerical
simulations of 3D MHD turbulence corroborate the Goldreich–Sridhar concept
of a Kolmogorov inertial-range spectrum, which is independent of the amount
of magnetic helicity present. Only at small wavenumbers, for which the inverse
cascade of the magnetic helicity enhances the magnetic-energy spectrum, is
there a difference between helical and nonhelical turbulence.

Two-point closure theory, which we treat in Chapter 6, gives a description of
turbulence derived from the basic fluid equations instead of purely phenomeno-
logical arguments. Though closure theory cannot treat higher-order correla-
tions correctly because of the basic quasi-normal approximation, it provides,
in principle, a self-consistent dynamical theory of the evolution of the two-
point correlations, the various spectral quantities in Fourier space. In practice
the equations are made tractable by additional phenomonological assumptions,
which lead to the EDQNM model which is usually considered. We discuss the
MHD closure theory, in particular the special cases of helical and of correlated
turbulence.

Chapter 7 deals with the higher-order statistics of turbulence in order to
obtain a more detailed picture of the spatial structure. Fluid turbulence is not
strictly self-similar, as small-scale eddies are increasingly sparsely distributed,
a property which is called intermittency. To familiarize the reader with the gen-
eral concept of intermittency, we first present some examples demonstrating the
difference between self-similar and intermittent behavior. Structure functions
S(n)(l), in particular the set of scaling exponents ζn , S(n) ∼ lζn , describe the
statistical distribution of the turbulent structures. In many turbulent systems,
however, for which Reynolds numbers are rather modest, the scaling range
of the structure functions, especially for higher orders, is too short to yield
clear values of the exponents. The scaling range is often significantly broad-
ened when one considers S(n)(S(3)) instead of S(n)(l), a property called extended
self-similarity, which yields surprisingly accurate values of the relative scaling
exponents ζn/ζ3. Third-order structure functions, in turn, satisfy some exact
relations derived directly from the fluid equations, Kolmogorov’s four-fifths
law in hydrodynamic turbulence, Yaglom’s four-thirds law for an advected tur-
bulent scalar field, and a similar relation for a third-order structure function of
the Elsässer fields in MHD turbulence. Since no further exact relations seem to
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Introduction 7

exist and no approximate scheme is known to date from which to obtain further
information about the scaling properties directly from the fluid equations, the
only viable approach consists of phenomenological modeling using some phys-
ical picture of the turbulence dynamics. We discuss in some detail two different
models, the log-normal model and the log-Poisson model, the latter of which
gives good agreement with experimental measurements in hydrodynamic tur-
bulence and, mutatis mutandis, reproduces equally well the results for MHD
turbulence obtained from numerical simulations. By varying the strength of a
mean magnetic field B0 simulations can also be made to show the transition
from globally isotropic 3D MHD turbulence for B0 = 0 to 2D turbulence for
B0 → ∞.

Two-dimensional turbulence is considered in Chapter 8. We first discuss
the hydrodynamic case, which has attracted much interest. In the presence of
two ideal invariants, the energy and the enstrophy, the turbulence dynamics is
dominated by a self-organization process, the buildup of large-scale structures
due to the inverse cascade of the energy. An analogous process occurs in 2D
MHD turbulence, for which now the energy exhibits a direct cascade but the
mean-square magnetic potential exhibits an inverse cascade, which leads to
the formation of large-scale magnetic structures. The free decay of turbulence
proceeds in a macroscopically self-similar way with the asymptotic energy-
decay law E ∼ t−1. The spatial scaling properties are different from those
observed in 3D MHD turbulence, scaling exponents being generally lower, in
particular ζ3 < 1, and the energy spectrum is flatter than the Kolmogorov
spectrum, roughly consistent with the IK spectrum k−3/2. Scaling properties
are, however, not uniform in the sense that all structure functions of the same
order have the same scaling exponent, since the exponent of the energy flux, a
particular type of third-order structure function, is again unity.

The first part in Chapter 9 is devoted to compressible, in particular supersonic,
turbulence, which is important in view of many astrophysical applications.
Turbulence consists of both eddy motions and shock waves, and, as a rule of
thumb, the inertial-range scales are dominated by eddy motions – the energy
spectrum follows a Kolmogorov law –, while dissipation occurs mainly through
shock waves. Also density fluctuations exhibit a Kolmogorov spectrum, but
their spatial distribution is highly intermittent. Except for the case of a strong
mean field, the dynamics is dominated by the supersonic flows, while magnetic
effects are less important, the field being mainly advected, forming filamentary
structures similar to those of the density. The second part of the chapter deals
with turbulent convection in stratified systems. We consider first turbulence in
the Boussinesq approximation, for which simple spectral laws can be derived,
in particular for passive-scalar turbulence, and then add compressibility and
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8 Introduction

magnetic fields. Because of the complexity of these systems only fully dynamic
simulations can provide reliable information.

In the last three chapters dealing with some applications we restrict our con-
sideration to astrophysical topics, since in laboratory plasma devices MHD
turbulence usually does not occur and the only exception, the reversed-field
pinch, has already been reviewed in several treatises (e.g., Biskamp, 1993a). In
Chapter 10 we consider the turbulence in the solar wind. This is the only system
of high-Reynolds-number MHD turbulence which is accessible to in situ ob-
servations. Much data has been accumulated from several spacecraft sampling
the interplanetary space at various radii and latitudes. Here many properties of
homogeneous turbulence theory are recovered. In spite of the large Mach num-
ber of the solar wind, compression effects are not dominant in the turbulence.
In general inhomogeneities due to radial expansion of the wind and mixing of
different types of wind by solar rotation complicate conditions considerably,
leaving important observations unexplained.

Chapter 11 treats accretion disks, a widespread phenomenon in astrophysics,
in which magnetic turbulence should be present, since it is the only conceivable
mechanism for transport of angular momentum, the very agent of accretion.
We first give a brief introduction to the main properties of accretion disks be-
fore considering more closely the origin of the presumed turbulence. Since in
the disk material rotates essentially in Keplerian orbits, the system is hydro-
dynamically shear-flow stable, even nonlinearly. Turbulence can, however, be
excited through the Balbus–Hawley instability when we allow the presence
of a weak but finite magnetic field. Numerical simulations indicate that this
mechanism may account for the observed accretion rates.

The last chapter deals with the interstellar medium, where the presence of
turbulence can be observed directly. As in the previous two chapters, we first
give a general overview of the properties of the interstellar medium, in particular
its densest parts, the molecular clouds. Observations indicate the occurrence of
highly supersonic irregular flows. These act as an effective pressure preventing
rapid gravitational collapse and thus explaining the observed long lifetimes and
low star-formation rates. The role of the magnetic field, which is random, at
least on the larger scales, is still being debated, but it appears that it provides an
additional stabilizing effect against contraction. Another interesting feature is
the coupling between the magnetic field and the gas, which is only very weakly
ionized; while classical resistivity would give rise to almost perfect coupling,
in reality the coupling is rather loose because of ambipolar diffusion.

In a book spanning various rather different fields, the individual topics can-
not all be treated in depth. We have therefore included numerous references to
more specialized reviews and also, of course, the appropriate citations of the
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Introduction 9

original work. However, the number of these citations had to be restricted in
order not to diminish the readability of the text. Concerning notation, I have
tried as far as possible to avoid denoting different things by the same symbol,
giving an explicit warning in the few exceptional cases dictated by traditional
notation. I use cgs units in the original equations, because they are still rather
common in astrophysics and because of personal preference, but, whenever
convenient, introduce suitable normalizations in order to write the equations in
nondimensional forms.
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2

Magnetohydrodynamics

Magnetohydrodynamics, or MHD in short, describes the macroscopic behavior
of an electrically conducting fluid – usually an ionized gas called a plasma –,
which forms the basis of this book. By macroscopic we mean spatial scales
larger than the intrinsic scale lengths of the plasma, such as the Debye length
λD and the Larmor radii ρ j of the charged particles.1 In this chapter we first
derive, in a heuristic way, the dynamic equations of MHD and discuss the local
thermodynamics (Section 2.1). Since most astrophysical systems rotate more
or less rapidly, it is useful to write the momentum equation also in a rotating
reference frame, where inertial forces appear (Section 2.2). Then some conve-
nient approximations are introduced, in particular incompressiblity and, for a
stratified system, the Boussinesq approximation (Section 2.3). In MHD theory
the ideal invariants, i.e., integral quantities that are conserved in an ideal (i.e.,
nondissipative) system, play a crucial role in turbulence theory; these are the
energy, the magnetic helicity, and the cross-helicity (Section 2.4). Though this
book deals with turbulence, it is useful to obtain an quick overview of mag-
netostatic equilibrium configurations, which are more important in plasmas
than stationary flows are in hydrodynamics (Section 2.5). Also the zoology of
linear modes, the small-amplitude oscillations about an equilibrium, is richer
than that in hydrodynamics (Section 2.6). Finally, in Section 2.7 we introduce
the Elsässer fields, which constitute the basic dynamic quantities in MHD tur-
bulence. In this chapter we write the equations in dimensional form, using
Gaussian units, to emphasize the physical meaning of the various terms. At the
end nondimensionalization in terms of the Alfvén time is introduced, which
will be used throughout most of the following.

1 The fluid approximation also requires that the mean free path is smaller than the gradient scales.
For motions perpendicular to the magnetic field, however, the Larmor radius assumes the role of
the mean free path.
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