Atomic and Electronic Structure of Solids

This text is a modern treatment of the theory of solids. The core of the book deals with the physics of electron and phonon states in crystals and how they determine the structure and properties of the solid.

The discussion uses the single-electron picture as a starting point and covers electronic and optical phenomena, magnetism and superconductivity. There is also an extensive treatment of defects in solids, including point defects, dislocations, surfaces and interfaces. A number of modern topics where the theory of solids applies are also explored, including quasicrystals, amorphous solids, polymers, metal and semiconductor clusters, carbon nanotubes and biological macromolecules. Numerous examples are presented in detail and each chapter is accompanied by problems and suggested further readings. An extensive set of appendices provides the necessary background for deriving all the results discussed in the main body of the text.

The level of theoretical treatment is appropriate for first-year graduate students of physics, chemistry and materials science and engineering, but the book will also serve as a reference for scientists and researchers in these fields.

Efthimios Kaxiras received his PhD in theoretical physics at the Massachusetts Institute of Technology, and worked as a Postdoctoral Fellow at the IBM T. J. Watson Research Laboratory in Yorktown Heights. He joined Harvard University in 1991, where he is currently a Professor of Physics and the Gordon McKay Professor of Applied Physics. He has worked on theoretical modeling of the properties of solids, including their surfaces and defects; he has published extensively in refereed journals, as well as several invited review articles and book chapters. He has co-organized a number of scientific meetings and co-edited three volumes of conference proceedings. He is a member of the American Physical Society, the American Chemical Society, the Materials Research Society, Sigma Xi-Scientific Research Society, and a Chartered Member of the Institute of Physics (London).

Atomic and Electronic Structure of Solids

EFTHIMIOS KAXIRAS

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > > http://www.cambridge.org

© Efthimios Kaxiras 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt System $\[AT_EX 2_{\mathcal{E}}\]$ [TB]

A catalogue record for this book is available from the British Library

ISBN 0 521 81010 8 hardback ISBN 0 521 52339 7 paperback

> I dedicate this book to three great physics teachers: Evangelos Anastassakis, who inspired me to become a physicist, John Joannopoulos, who taught me how to think like one, and Lefteris Economou, who vastly expanded my physicist's horizon.

Contents

	Preface						
	Acknowledgments						
I	Cr	Crystalline solids					
	1	1 Atomic structure of crystals					
		1.1	Buildi	ng crystals from atoms	5		
			1.1.1	Atoms with no valence electrons	7		
			1.1.2	Atoms with s valence electrons	13		
			1.1.3	Atoms with s and p valence electrons	15		
			1.1.4	Atoms with s and d valence electrons	24		
			1.1.5	Atoms with s , d and f valence electrons	24		
	1.1.6 Solids with two types of atoms						
			1.1.7	Hydrogen: a special one-s-valence-electron atom	27		
			1.1.8	Solids with many types of atoms	29		
	1.2 Bonding in solids				32		
	Further reading				36		
	Problems				37		
	2	The	single-r	particle approximation	42		
		2.1	The ha	umiltonian of the solid	42		
		2.2	The Ha	artree and Hartree–Fock approximations	44		
			2.2.1	The Hartree approximation	44		
			2.2.2	Example of a variational calculation	46		
			2.2.3	The Hartree–Fock approximation	47		
	2.3 Hartree–Fock theory of free electrons						
		2.4	The hy	/drogen molecule	54		
	2.5 Density Functional Theory						

Cambridge University Press
0521810108 - Atomic and Electronic Structure of Solids
Efthimios Kaxiras
Frontmatter
Moreinformation

viii	Contents					
		2.6 Electrons as quasiparticles	65			
		2.6.1 Quasiparticles and collective excitations	68			
		2.6.2 Thomas–Fermi screening	69			
		2.7 The ionic potential	72			
		Further reading	78			
		Problems	78			
	3	Electrons in crystal potential	82			
		3.1 Periodicity – Bloch states	82			
		3.2 k-space – Brillouin zones	87			
		3.3 Dynamics of crystal electrons	94			
		3.4 Crystal electrons in an electric field	97			
		3.5 Crystal symmetries beyond periodicity	101			
		3.6 Groups and symmetry operators	104			
		3.7 Symmetries of the band structure	105			
		3.8 Symmetries of 3D crystals	111			
		5.9 Special K-points	11/			
		Problems	119			
		FIODIEIIIS	120			
	4	Band structure of crystals	121			
		4.1 The tight-binding approximation	121			
		4.1.1 Example: 1D linear chain with s or p orbitals	125			
		4.1.2 Example: 2D square lattice with <i>s</i> and				
		<i>p</i> orbitals	129			
		4.1.3 Generalizations of the TBA	136			
		4.2 General band-structure methods	140			
		4.3 Band structure of representative solids	145			
		4.3.1 A 2D solid: graphite – a semimetal $4.2.2$ and $2D$ solid: graphite – b semimetal $4.2.2$	145			
		4.5.2 5D covalent solids: semiconductors and	140			
		Insulators	140			
		4.5.5 5D inclaine solids	155			
		Problems	157			
			157			
	5	Applications of band theory	160			
		5.1 Density of states	160			
		5.2 Tunneling at metal–semiconductor contact	165			
		5.3 Optical excitations	167			
		5.4 Conductivity and dielectric function	169			

	Contents			
	5.5 Excitons			
	5.6	Energetics and dynamics		
		5.6.1 The total energy	186	
		5.6.2 Forces and dynamics	194	
	Furt	her reading	200	
	Prob	blems	201	
6	Latt	ice vibrations	203	
	6.1	Phonon modes	203	
	6.2	The force-constant model	207	
		6.2.1 Example: phonons in 2D periodic chain	209	
		6.2.2 Phonons in a 3D crystal	213	
	6.3	Phonons as harmonic oscillators	216	
	6.4	Application: the specific heat of crystals	218	
		6.4.1 The classical picture	218	
		6.4.2 The quantum mechanical picture	219	
		6.4.3 The Debye model	221	
	< -	6.4.4 Thermal expansion coefficient	225	
	6.5 Application: phonon scattering			
		6.5.1 Phonon scattering processes	228	
		6.5.2 The Debye–Waller factor	232	
	D 1	6.5.3 The Mössbauer effect	234	
	Prot	biems	237	
7	Ma	agnetic behavior of solids	238	
	7.1	Magnetic behavior of insulators	239	
	7.2	Magnetic behavior of metals	246	
		7.2.1 Magnetization in Hartree–Fock free-electron		
		gas	247	
		7.2.2 Magnetization of band electrons	251	
	7.3	Heisenberg spin model	254	
		7.3.1 Ground state of the Heisenberg ferromagnet	255	
		7.3.2 Spin waves in the Heisenberg ferromagnet	258	
		7.3.3 Heisenberg antiferromagnetic spin model	262	
	7.4	7.4 Magnetic order in real materials		
	7.5	7.5 Crystal electrons in an external magnetic field		
	7.5.1 de Haas–van Alphen effect			
	7.5.2 Classical and quantum Hall effects			
	Further reading			
	Problems			

х

ĸ				Contents		
	8	Super	rconduct	ivity	282	
		8.1	Overvi	ew of superconducting behavior	282	
		8.2	Thermo	odynamics of the superconducting transition	289	
		8.3	BCS th	eory of superconductivity	293	
			8.3.1	Cooper pairing	293	
			8.3.2	BCS ground state	297	
			8.3.3	BCS theory at finite temperature	307	
			8.3.4	The McMillan formula for T_c	308	
		8.4	High-te	emperature superconductors	310	
		Further reading				
		312				
II	Def	ects, n	on-cryst	alline solids and finite structures	315	
	9	Defec	ets I: poi	nt defects	317	
		9.1	Intrinsi	c point defects	317	
			9.1.1	Energetics and electronic levels	317	
			9.1.2	Defect-mediated diffusion	320	
		9.2	Extrinsic point defects		325	
			9.2.1	Impurity states in semiconductors	325	
			9.2.2	Effect of doping in semiconductors	331	
			9.2.3	The p-n junction	338	
			9.2.4	Metal-semiconductor junction	345	
		347				
		Problems				
	10	Defects II: line defects		350		
		10.1	Nature	350		
		10.2	Elastic	properties and motion of dislocations	355	
			10.2.1	Stress and strain fields	356	
			10.2.2	Elastic energy	360	
			10.2.3	Peierls-Nabarro model	365	
		10.3	Brittle	versus ductile behavior	370	
			10.3.1	Stress and strain under external load	371	
			10.3.2	Brittle fracture – Griffith criterion	374	
			10.3.3	Ductile response – Rice criterion	376	
			10.3.4	Dislocation-defect interactions	378	
		Furth	er readin	ıg	381	
		Probl	ems		382	

			Contents	xi			
11	Defects III: surfaces and interfaces						
	11.1	11.1 Experimental study of surfaces					
	11.2	Surface reconstruction					
		11.2.1	Dimerization: the Si(001) surface	398			
		11.2.2	Relaxation: the GaAs(110) surface	400			
		11.2.3	Adatoms and passivation: the Si(111) surface	403			
	11.3	11.3 Growth phenomena					
	11.4	Interfac	ces	419			
		11.4.1	Grain boundaries	419			
		11.4.2	Hetero-interfaces	421			
	Furth	Further reading					
	Probl	ems		428			
12	Non-	Non-crystalline solids					
12	12.1	Ouasici	rystals	430			
	12.1	Amorphous solids					
		12.2.1	Continuous random network	437			
		12.2.2	Radial distribution function	440			
		12.2.3	Electron localization due to disorder	443			
	12.3	Polymers					
		12.3.1	Structure of polymer chains and solids	448			
		12.3.2	The glass and rubber states	451			
	Furth	Further reading					
	Problems						
13	Finite structures						
15	13.1 Clusters						
	15.1	13.1.1	Metallic clusters	460			
		13.1.2	Carbon clusters	462			
		13.1.3	Carbon nanotubes	476			
		13.1.4	Other covalent and mixed clusters	481			
	13.2	Biologi	cal molecules and structures	483			
		13.2.1	The structure of DNA and RNA	484			
		13.2.2	The structure of proteins	498			
		13.2.3	Relationship between DNA, RNA and				
			proteins	504			
		13.2.4	Protein structure and function	509			
	Furth	Further reading					
	Problems						

xii			Contents		
III	Appendices				
	Appendix	515			
	A.1	Electro	statics and magnetostatics	515	
	A.2	Fields i	in polarizable matter	518	
	A.3	Electro	dynamics	520	
	A.4	Electro	Electromagnetic radiation		
	Furth	er readin	ıg	529	
	Appendix	B Elen	nents of quantum mechanics	530	
	B.1	The Sc	hrödinger equation	530	
	B.2	Bras, k	ets and operators	533	
	B.3	Solutio	on of the TISE	539	
		B.3.1	Free particles	539	
		B.3.2	Harmonic oscillator potential	540	
		B.3.3	Coulomb potential	543	
	B.4	Spin an	ngular momentum	549	
	B.5	Station	ary perturbation theory	554	
		B.5.1	Non-degenerate perturbation		
			theory	554	
		B.5.2	Degenerate perturbation theory	556	
	B.6	Time-d	lependent perturbation theory	557	
	B.7	The ele	ectromagnetic field term	559	
	Furth	er readin	ıg	560	
	Probl	560			
	Appendix	564			
	C.1	The laws of thermodynamics		564	
	C.2	Thermo	odynamic potentials	567	
	C.3	Applica	ation: phase transitions	570	
	Probl	578			
	Appendix	579			
	D.1	Averag	e occupation numbers	580	
		D.1.1	Classical Maxwell–Boltzmann		
			statistics	580	
		D.1.2	Quantum Fermi–Dirac statistics	582	
		D.1.3	Quantum Bose–Einstein statistics	583	
	D.2	Ensem	ble theory	584	
		D.2.1	Definition of ensembles	585	
		D.2.2	Derivation of thermodynamics	589	

Cambridge University Press
0521810108 - Atomic and Electronic Structure of Solids
Efthimios Kaxiras
Frontmatter
More information

Contents	xiii	
D.3 Applications of ensemble theory	591	
D.3.1 Equipartition and the Virial	591	
D.3.2 Ideal gases	592	
D.3.3 Spins in an external magnetic field	603	
Further reading	617	
Problems	617	
Appendix E Elements of elasticity theory	622	
E.1 The strain tensor	622	
E.2 The stress tensor	624	
E.3 Stress-strain relations	626	
E.4 Strain energy density	627	
E.5 Applications of elasticity theory	629	
E.5.1 Isotropic elastic solid	629	
E.5.2 Plane strain	632	
E.5.3 Solid with cubic symmetry	634	
Further reading	636	
Problems	636	
Appendix F The Madelung energy	638	
F.1 Potential of a gaussian function	639	
F.2 The Ewald method	640	
Problems	642	
Appendix G Mathematical tools	644	
G.1 Differential operators	644	
G.2 Power series expansions	646	
G.3 Functional derivatives	648	
G.4 Fourier and inverse Fourier transforms	649	
G.5 The δ -function and its Fourier transform	650	
G.5.1 The δ -function and the θ -function	650	
G.5.2 Fourier transform of the δ -function	654	
G.5.3 The δ -function sums for crystals	654	
G.6 Normalized gaussians	655	
Appendix H Nobel prize citations	657	
Appendix I Units and symbols	659	
References	660	
Index		

Preface

This book is addressed to first-year graduate students in physics, chemistry, materials science and engineering. It discusses the atomic and electronic structure of solids. Traditional textbooks on solid state physics contain a large amount of useful information about the properties of solids, as well as extensive discussions of the relevant physics, but tend to be overwhelming as introductory texts. This book is an attempt to introduce the single-particle picture of solids in an accessible and self-contained manner. The theoretical derivations start at a basic level and go through the necessary steps for obtaining key results, while some details of the derivations are relegated to problems, with proper guiding hints. The exposition of the theory is accompanied by worked-out examples and additional problems at the end of chapters.

The book addresses mostly *theoretical* concepts and tools relevant to the physics of solids; there is no attempt to provide a thorough account of related experimental facts. This choice was made in order to keep the book within a limit that allows its contents to be covered in a reasonably short period (one or two semesters; see more detailed instructions below). There are many sources covering the experimental side of the field, which the student is strongly encouraged to explore if not already familiar with it. The suggestions for further reading at the end of chapters can serve as a starting point for exploring the experimental literature. There are also selected references to original research articles that laid the foundations of the topics discussed, as well as to more recent work, in the hope of exciting the student's interest for further exploration. Instead of providing a comprehensive list of references, the reader is typically directed toward review articles and monographs which contain more advanced treatments and a more extended bibliography.

As already mentioned, the treatment is mostly restricted to the single-particle picture. The meaning of this is clarified and its advantages and limitations are described in great detail in the second chapter. Briefly, the electrons responsible for the cohesion of a solid interact through long-range Coulomb forces both with the

xvi

Preface

nuclei of the solid and with all the other electrons. This leads to a very complex many-electron state which is difficult to describe quantitatively. In certain limits, and for certain classes of phenomena, it is feasible to describe the solid in terms of an approximate picture involving "single electrons", which interact with the other electrons through an average field. In fact, these "single-electron" states do not correspond to physical electron states (hence the quotes). This picture, although based on approximations that cannot be systematically improved, turns out to be extremely useful and remarkably realistic for many, but not all, situations. There are several phenomena – superconductivity and certain aspects of magnetic phenomena being prime examples – where the collective behavior of electrons in a solid is essential in understanding the nature of the beast (or beauty). In these cases the "single-electron" picture is not adequate, and a full many-body approach is necessary. The phenomena involved in the many-body picture require an approach and a theoretical formalism beyond what is covered here; typically, these topics constitute the subject of a second course on the theory of solids.

The book is divided into two parts. The first part, called Crystalline solids, consists of eight chapters and includes material that I consider essential in understanding the physics of solids. The discussion is based on crystals, which offer a convenient model for studying macroscopic numbers of atoms assembled to form a solid. In this part, the first five chapters develop the theoretical basis for the single-electron picture and give several applications of this picture, for solids in which atoms are frozen in space. Chapter 6 develops the tools for understanding the motion of atoms in crystals through the language of phonons. Chapters 7 and 8 are devoted to magnetic phenomena and superconductivity, respectively. The purpose of these last two chapters is to give a glimpse of interesting phenomena in solids which go beyond the single-electron picture. Although more advanced, these topics have become an essential part of the physics of solids and must be included in a general introduction to the field. I have tried to keep the discussion in these two chapters at a relatively simple level, avoiding, for example, the introduction of tools like second quantization, Green's functions and Feynman diagrams. The logic of this approach is to make the material accessible to a wide audience, at the cost of not employing a more elegant language familiar to physicists.

The second part of the book consists of five chapters, which contain discussions of defects in crystals (chapters 9, 10 and 11), of non-crystalline solids (chapter 12) and of finite structures (chapter 13). The material in these chapters is more specific than that in the first part of the book, and thus less important from a fundamental point of view. This material, however, is relevant to real solids, as opposed to idealized theoretical concepts such as a perfect crystal. I must make here a clarification on why the very last chapter is devoted to finite structures, a topic not traditionally discussed in the context of solids. Such structures are becoming increasingly important, especially in the field of nanotechnology, where the functional components may be

Preface

xvii

measured in nanometers. Prime examples of such objects are clusters or tubes of carbon (the fullerenes and the carbon nanotubes) and biological structures (the nucleic acids and proteins), which are studied by ever increasing numbers of traditional physicists, chemists and materials scientists, and which are expected to find their way into solid state applications in the not too distant future. Another reason for including a discussion of these systems in a book on solids, is that they *do* have certain common characteristics with traditional crystals, such as a high degree of order. After all, what could be a more relevant example of a regular one-dimensional structure than the human DNA chain which extends for three billion base-pairs with essentially perfect stacking, even though it is not rigid in the traditional sense?

This second part of the book contains material closer to actual research topics in the modern theory of solids. In deciding what to include in this part, I have drawn mostly from my own research experience. This is the reason for omitting some important topics, such as the physics of metal alloys. My excuse for such omissions is that the intent was to write a modern textbook on the physics of solids, with representative examples of current applications, rather than an encyclopedic compilation of research topics. Despite such omissions, I hope that the scope of what *is* covered is broad enough to offer a satisfactory representation of the field.

Finally, a few comments about the details of the contents. I have strived to make the discussion of topics in the book as self-contained as possible. For this reason, I have included unusually extensive appendices in what constitutes a third part of the book. Four of these appendices, on classical electrodynamics, quantum mechanics, thermodynamics and statistical mechanics, contain all the information necessary to derive from very basic principles the results of the first part of the book. The appendix on elasticity theory contains the background information relevant to the discussion of line defects and the mechanical properties of solids. The appendix on the Madelung energy provides a detailed account of an important term in the total energy of solids, which was deemed overly technical to include in the first part. Finally, the appendix on mathematical tools reviews a number of formulae, techniques and tricks which are used extensively throughout the text. The material in the second part of the book could not be made equally self-contained by the addition of appendices, because of its more specialized nature. I have made an effort to provide enough references for the interested reader to pursue in more detail any topic covered in the second part. An appendix at the end includes Nobel prize citations relevant to work mentioned in the text, as an indication of how vibrant the field has been and continues to be. The appendices may seem excessively long by usual standards, but I hope that a good fraction of the readers will find them useful.

Some final comments on notation and figures: I have made a conscious effort to provide a consistent notation for all the equations throughout the text. Given the breadth of topics covered, this was not a trivial task and I was occasionally forced

xviii

Preface

to make unconventional choices in order to avoid using the same symbol for two different physical quantities. Some of these are: the choice of Ω for the volume so that the more traditional symbol V could be reserved for the potential energy; the choice of Θ for the enthalpy so that the more traditional symbol H could be reserved for the magnetic field; the choice of Y for Young's modulus so that the more traditional symbol E could be reserved for the energy; the introduction of a subscript in the symbol for the divergence, $\nabla_{\mathbf{r}}$ or $\nabla_{\mathbf{k}}$, so that the variable of differentiation would be unambiguous even if, on certain occasions, this is redundant information. I have also made extensive use of superscripts, which are often in parentheses to differentiate them from exponents, in order to make the meaning of symbols more transparent. Lastly, I decided to draw all the figures "by hand" (using software tools), rather than to reproduce figures from the literature, even when discussing classic experimental or theoretical results. The purpose of this choice is to maintain, to the extent possible, the feeling of immediacy in the figures as I would have drawn them on the blackboard, pointing out important features rather than being faithful to details. I hope that the result is not disagreeable, given my admittedly limited drawing abilities. Exceptions are the set of figures on electronic structure of metals and semiconductors in chapter 4 (Figs. 4.6-4.12), which were produced by Yannis Remediakis, and the figure of the KcsA protein in chapter 13 (Fig. 13.30), which was provided by Pavlos Maragakis.

The book has been constructed to serve two purposes. (a) For students with adequate background in the basic fields of physics (electromagnetism, quantum mechanics, thermodynamics and statistical mechanics), the first part represents a comprehensive introduction to the single-particle theory of solids and can be covered in a one-semester course. As an indication of the degree of familiarity with basic physics expected of the reader, I have included sample problems in the corresponding appendices; the readers who can tackle these problems easily can proceed directly to the main text covered in the first part. My own teaching experience indicates that approximately 40 hours of lectures (roughly five per chapter) are adequate for a brisk, but not unreasonable, covering of this part. Material from the second part can be used selectively as illustrative examples of how the basic concepts are applied to realistic situations. This can be done in the form of special assignments, or as projects at the end of the one-semester course.

(b) For students without graduate level training in the basic fields of physics mentioned above, the entire book can serve as the basis for a full-year course. The material in the first part can be covered at a more leisurely pace, with short introductions of the important physics background where needed, using the appendices as a guide. The material of the second part of the book can then be covered, selectively or in its entirety as time permits, in the remainder of the full-year course.

Acknowledgments

The discussion of many topics in this book, especially the chapters that deal with symmetries of the crystalline state and band structure methods, was inspired to a great extent by the lectures of John Joannopoulos who first introduced me to this subject. I hope the presentation of these topics here does justice to his meticulous and inspired teaching.

In my two-decade-long journey through the physics of solids, I had the good fortune to interact with a great number of colleagues, from all of whom I have learned a tremendous amount. In roughly chronological order in which I came to know them, they are: John Joannopoulos, Karin Rabe, Alex Antonelli, Dung-Hai Lee, Yaneer Bar-Yam, Eugen Tarnow, David Vanderbilt, Oscar Alerhand, Bob Meade, George Turner, Andy Rappe, Michael Payne, Jim Chelikowsky, Marvin Cohen, Jim Chadi, Steven Louie, Stratos Manousakis, Kosal Pandey, Norton Lang, Jerry Tersoff, Phaedon Avouris, In-When Lvo, Ruud Tromp, Matt Copel, Bob Hamers, Randy Feenstra, Ken Shih, Franz Himpsel, Joe Demuth, Sokrates Pantelides, Pantelis Kelires, Peter Blöchl, Dimitri Papaconstantopoulos, Barry Klein, Jeremy Broughton, Warren Pickett, David Singh, Michael Mehl, Koblar Jackson, Mark Pederson, Steve Erwin, Larry Boyer, Joe Feldman, Daryl Hess, Joe Serene, Russ Hemley, John Weeks, Ellen Williams, Bert Halperin, Henry Ehrenreich, Daniel Fisher, David Nelson, Paul Martin, Jene Golovchenko, Bill Paul, Eric Heller, Cynthia Friend, Roy Gordon, Howard Stone, Charlie Lieber, Eric Mazur, Mike Aziz, Jim Rice, Frans Spaepen, John Hutchinson, Michael Tinkham, Ike Silvera, Peter Pershan, Bob Westervelt, Venky Narayanamurti, George Whitesides, Charlie Marcus, Leo Kouwenhoven, Martin Karplus, Dan Branton, Dave Weitz, Eugene Demler, Uzi Landman, Andy Zangwill, Peter Feibelman, Priya Vashishta, Rajiv Kalia, Mark Gyure, Russ Cafflisch, Dimitri Vvedensky, Jenna Zink, Bill Carter, Lloyd Whitman, Stan Williams, Dimitri Maroudas, Nick Kioussis, Michael Duesbery, Sidney Yip, Farid Abraham, Shi-Yu Wu, John Wilkins, Ladislas Kubin, Rob Phillips, Bill Curtin, Alan Needleman, Michael Ortiz, Emily Carter,

CAMBRIDGE

Cambridge University Press 0521810108 - Atomic and Electronic Structure of Solids Efthimios Kaxiras Frontmatter More information

XX

Acknowledgments

John Smith, Klaus Kern, Oliver Leifeld, Lefteris Economou, Nikos Flytzanis, Stavros Farantos, George Tsironis, Grigoris Athanasiou, Panos Tzanetakis, Kostas Fotakis, George Theodorou, José Soler, Thomas Frauenheim, Riad Manaa, Doros Theodorou, Vassilis Pontikis and Sauro Succi. Certain of these individuals played not only the role of a colleague or collaborator, but also the role of a mentor at various stages of my career: they are, John Joannopoulos, Kosal Pandey, Dimitri Papaconstantopoulos, Henry Ehrenreich, Bert Halperin and Sidney Yip; I am particularly indebted to them for guidance and advice, as well as for sharing with me their deep knowledge of physics.

I was also very fortunate to work with many talented graduate and undergraduate students, including Yumin Juan, Linda Zeger, Normand Modine, Martin Bazant, Noam Bernstein, Greg Smith, Nick Choly, Ryan Barnett, Sohrab Ismail-Beigi, Jonah Erlebacher, Melvin Chen, Tim Mueller, Yuemin Sun, Joao Justo, Maurice de Koning, Yannis Remediakis, Helen Eisenberg, Trevor Bass, and with a very select group of Postdoctoral Fellows and Visiting Scholars, including Daniel Kandel, Laszlo Barabàsi, Gil Zumbach, Umesh Waghmare, Ellad Tadmmor, Vasily Bulatov, Kyeongjae Cho, Marcus Elstner, Ickjin Park, Hanchul Kim, Olivier Politano, Paul Maragakis, Dionisios Margetis, Daniel Orlikowski, Qiang Cui and Gang Lu. I hope that they have learned from me a small fraction of what I have learned from them over the last dozen years.

Last but not least, I owe a huge debt of gratitude to my wife, Eleni, who encouraged me to turn my original class notes into the present book and supported me with patience and humor throughout this endeavor.

The merits of the book, to a great extent, must be attributed to the generous input of friends and colleagues, while its shortcomings are the exclusive responsibility of the author. Pointing out these shortcomings to me would be greatly appreciated.

Cambridge, Massachusetts, October 2001