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CHAPTER 1

Early Developments in Stability and Control

While scientists and mathematicians in the United States and Europe built the
foundations of future advances by developing fundamental aeronautical theory, practical
aeronautical designers invented and improved the airplane empirically. As recognized by
the Wright brothers, solutions to the stability and control problem had to be found. This
chapter presents the largely empirical development of airplane stability and control from
the precursors of the Wrights through the end of the first World War. It was only then that
aeronautical theory started to have an impact on practical airplane design.

1.1 Inherent Stability and the Early Machines

Pioneer airplane and glider builders who came before the Wright brothers recog-
nized the importance of airplane stability. They had discovered that some degree of inherent
stability in flight could be obtained with an appropriate combination of aft-mounted tail
surfaces (Cayley and Pénaud), wing dihedral angle or lateral area distribution (Langley and
Lanchester), and center of gravity location (Lilienthal).

However, very little thought had been given to the problem of control except for the
provision of horizontal and vertical rudders (Langley et al.). It was commonly held that an
airplane should hold its course in the air while the pilot decided what to do next. Then the
pilot would deflect the rudder to steer it, more or less in the manner of a boat. Only the
Wrights recognized that (1) an airplane has to be banked to turn in a horizontal plane; (2) an
interaction exists between the banking or roll control and the yawing motion of an airplane;
(3) excessive dihedral effects hinder pilot control unless sideslip is suppressed and makes
the machine unduly sensitive to atmospheric turbulence; (4) wings can be stalled, leading to
loss in control; and (5) control can be regained after stalling by reducing the angle of attack.

After the Wright brothers, Blériot and Levavasseur, the constructor and designer of the
Blériot and Antoinette machines, respectively, pioneered in developing tractor monoplanes
with normal tail surfaces and wing dihedral angles (Figure 1.1). These two airplanes had a
fair amount of inherent stability, unlike the Wright biplanes. They had superior speed, which
helped establish the aft tail as the normal arrangement. In fact, the Blériot and Antoinette
machines were the transitional forms that led from the Wright brothers’ biplanes to the
famous pursuit airplanes of World War I.

1.2 The Problem of Control

Otto Lilienthal (1848–1896), Sir Hiram Maxim (1840–1916), and Dr. Samuel
Pierpont Langley (1834–1906) followed the empirical route, much as did the Wrights, but
they failed to demonstrate man-carrying mechanical flight mainly because they underesti-
mated the problem of control. Lilienthal died of a broken back after losing control of his
hang glider. Langley’s airplane flew stably in uncontrolled flight as a quarter-scale model
but broke up twice in full-scale launches. Maxim’s steam-driven airplane might have flown,
but it broke free of the down-holding rails on its test track and was wrecked.

1
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Figure 1.1 Two early flying machines with inherent longitudinal and lateral stability, the Blériot XI
Cross-Channel airplane (above) and the Levavasseur Antoinette IV (below). Both used pronounced
wing dihedral, unlike the Wright Flyers.

Maxim’s well-engineered failure has had a continuing fascination for modern aeronau-
tical engineers. Bernard Maggin, a noted stability and control engineer with a long career
at NACA and the National Research Council, has done extensive research into Maxim’s
work for the National Air and Space Museum. Another stability and control expert,
W. Hewitt Phillips, built and flew a rubber-powered, dynamically scaled, scale model of
Maxim’s large machine. In unpublished correspondence Phillips reports as follows:

The model flies fine, despite the lack of vertical tail on the configuration that Maxim used
when he ran it on tracks. It flies like a twin pusher, which is what it is. The big propellers
aft of the center of gravity give it a marginal amount of directional stability. . . . Of course,
the Reynolds number is far from the full-scale value, but this may not be very important
since Maxim used thin airfoils. . . .

My conclusion is that Maxim’s airplane would have flown, at least as a giant free-flight
model . . . I feel that Maxim should get more credit for his engineering contributions than
has been given by historians.

The Wrights, on the other hand, addressed the control problem head-on. They taught
themselves to fly with three experimental biplane gliders, each fitted with warpable wings
for lateral control and all-moving foreplanes for pitch control. The third incorporated an
all-moving vertical tail coupled to the wing warp for suppression of adverse yaw due to
lateral control actuation, and they learned to fly it quite nicely by 1902. They applied for a
patent, describing coupled lateral, or roll and yaw, controls.

In 1903 the Wrights built a powered machine based on the 1902 glider, with a four-
cylinder gasoline engine geared to turn its two propellers, and they designed and built the
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engine and propellers too. They flew it first on 17 December 1903. Modern analysis by
Professor Fred E. C. Culick and Henry R. Jex (1985) has demonstrated that the 1903 Wright
Flyer was so unstable as to be almost unmanageable by anyone but the Wrights, who had
trained themselves in the 1902 glider. In 1904 and 1905 the Wrights improved the lateral
stability of their 1903 airplane by removing the downward arch of the wings as seen from
the front (the so-called cathedral), reduced its longitudinal instability by ballasting it to be
more nose-heavy, and improved its lateral control by removing the mechanical roll–yaw
control interconnect.

Henceforth, appropriate roll–yaw control coupling would be provided by pilot skill.
Finally, the Wrights learned to sense wing stall, especially in turning flight, and to avoid
it by nosing down slightly. By practice they became masters of precision flight in their
unstable machine. They also received a patent for their control innovations on 22 May
1905. Confident of their skill and achievements, they built two new machines and sent one
to France in 1907.

1.3 Catching Up to the Wright Brothers

Two public demonstrations of perfectly controlled mechanical flight in 1908 by
Wilbur Wright in France and by Orville Wright in the United States were clarion calls to the
rest of the aeronautical community to catch up with and surpass their achievements. The
airplane builders – Curtiss, Blériot, Levavasseur, the Voisins, Farman, Bechereau, Esnault-
Pelterie, and others – responded; by 1910 they flew faster and almost as well; by 1911 they
flew better. However, even after these momentous achievements, neither the Wrights nor
their competitors still had any real understanding of aerodynamic theory.

1.4 The Invention of Flap-Type Control Surfaces and Tabs

Flap-type control surfaces, in which a portion of the wing or tail surface is hinged
to modify the surface’s overall lift, are at the heart of airplane control. Airplanes designed
to fly at supersonic speeds often dispense with flap-type longitudinal controls, moving the
entire horizontal surface. Also, some airplanes use spoiler-type lateral controls, in which
a control element pops out of the wing’s upper surface to reduce lift on that side. Aside
from these exceptions, flap-type controls have been the bread-and-butter for airplane control
since a few years after the Wright brothers.

It was in 1908 that the aviation pioneer Glenn Curtiss made the first flight of his June
Bug airplane, which was equipped with flap-type lateral controls. This was an early, if
not the first, advance in lateral control beyond the Wright brothers’ wing warping. The
Curtiss lateral controls were attached to the interplane struts between the biplane wings
and were all-moving. Curtiss evidently saw them as lateral trim devices, since the wheel
was connected to the rudder. The French called the flap-type lateral controls ailerons –
little wings – and the name has persisted in the English language. The Germans call them
querrudern, or lateral rudders.

The first true flap-type aileron control appears to have been on the French Farman biplane
a year or two later. An aerodynamic theory for flap-type controls was needed, but it wasn’t
until 1927 that Hermann Glauert (Figure 1.2) supplied this need. Control surface tabs
are small movable surfaces at the trailing edge, or rear, of a flap-type control. Tabs generate
aerodynamic pressures that operate with a long moment arm about the control surface hinge
line. Tabs provide an effective way to deflect main control surfaces in a direction opposite
to the deflection of the tab itself relative to the main surface.
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Figure 1.2 Hermann Glauert (1892–1934). In Glauert’s short career he made important airplane
stability and control contributions, in control surface, downwash, airfoil, wing, and propeller theory,
and in the equations of motion. (From Obit. Notices of Fellows of the Royal Soc., 1932–1935)

The tab concept is due to the prolific inventor Anton Flettner, who first applied it to
steamboat rudders. One may still find references in the literature to “Flettners,” meaning
tabs. Flettner received a basic German patent for the tab in 1922. This was for its application
to aeronautics. Flettner’s patent includes a description of a spring tab device (see Chapter 5),
which was promptly forgotten. Glauert’s aerodynamic theory for flap-type controls was
extended to the tab case in 1928 by W. G. Perrin.

1.5 Handles, Wheels, and Pedals

Before the Wright brothers demonstrated their airmanship, little thought had been
given to handles, wheels, and pedals for steering flying machines. Cayley provided his
reluctant coachman-aviator with an oar having cruciform blades to “influence” the horizontal
and vertical paths of his man-carrying glider. Langley provided Manley, his pilot and engine
builder, with a cruciform tail that could be deflected vertically to control pitch attitude and
horizontally to turn. Langley expected the dihedral angle of the tandem wings to keep them
level, as they had done on his free-flying scale models.

Lilienthal shifted his weight sideways or fore-and-aft on his hang glider to control roll
and pitch. This works, but it has limited effectiveness. A roll angle established by a hang
glider pilot will make the machine turn if it has weathervane stability, that is, a fixed vertical
tail. Hiram Maxim provided his steam-powered airplane with a gyroscopically controlled
foreplane to regulate pitch attitude and thought of steering horizontally with differential
power to its two independently driven pusher propellers. Fortunately he never had to try this
arrangement in flight.
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1.7 Blériot and Déperdussin Controls 5

1.6 Wright Controls

In the Wright brothers’ 1902 glider and their 1903 Flyer the pilot had a vertical
lever for the left hand that was pulled back to increase foreplane incidence. The pilot lay
on a cradle that shifted sideways on tracks to cause wing warp. To roll to the left the pilot
decreased the incidence of the outer left wings and increased the incidence of the outer right
wings. The rudder motion was mechanically connected to the wing warp mechanism to turn
the nose left when the pilot wished to lower the left wing, and vice versa for lowering the
right wing, thereby overcoming the adverse yaw due to wing warp.

When they began to fly sitting up in 1905, the Wrights retained the left-hand vertical
lever for foreplane incidence but added a right-hand vertical lever for wing warp and rudder.
They moved the new right-hand lever to the left for left wing down and forward for nose-
left yaw. The right-hand lever was moved to the right for right wing down and aft for
nose-right yaw. Turn coordination required the pilot to phase control motions, leading with
yaw inputs. These unnatural control motions had to be learned and practiced on dual control
machines or simple simulators. Bicyclists to the last, they never used their feet for control.
They retained this scheme until 1909. Since wing warping involved considerable elastic
deformation of the wing structure, they later changed the fore-and-aft motion of the right-
hand lever to wing warp and mounted a new, short lever on its top for side-to-side movement
to control the rudder. When the Wrights abandoned the all-moving foreplane array for an
all-moving rear horizontal tail in 1911, the left-hand lever still controlled its incidence, but
now reversed.

The Wrights’ patent was for mechanically linked roll and yaw controls. Other airplane
builders, notably Curtiss, built airplanes with ailerons, rudders, and elevators, providing
independent three-axis control. Curtiss and others asserted that the Wright machine now
had independent three-axis control, but U.S. courts upheld the Wright patent against them.
The courts maintained that the coupling of roll and yaw controls in the Curtiss machines
existed in the mind of the aviator and was essential to the art of flying. Therefore, the Curtiss
independent three-axis control infringed on the Wright patent!

1.7 Blériot and Déperdussin Controls

Louis Blériot devised what has become the standard stick and rudder cockpit
controls for small airplanes. A central stick between the pilot’s legs is moved forward for
nose down, aft for nose up, to the left for left wing down, and to the right for right wing
down. The pilot’s feet rest on a rudder bar from the ends of which a pair of cables run
straight back to the rudder horns. Thus left foot forward deflects the rudder to the left and
turns the machine to the left (Figure 1.3). Blériot fitted a nonrotatable wheel to the top of
the control stick, perhaps to give the pilot a firmer grip for wing warping.

The Blériot rudder pedal convention, now quite standard, is just the opposite of bicycle
or “Flexible Flyer” sled steering, where operators turn the handlebars or hand grips in
the direction of the desired turn. Igor Sikorsky thought that the Blériot convention was
backward. Sikorsky crossed the rudder wires on all of his airplanes, to make them steer
like bicycles. He warned conventionally trained pilots not to try to fly these particular
machines.

Before the war, the company Société pour Avions Déperdussin (SPAD) produced a
series of military airplanes and racers that were designed by Bechereau. These streamlined
airplanes were fitted with Blériot-style rudder bars and a vertical wheel that could be moved
fore and aft for pitch and turned sideways for wing warp. The wheel’s increased mechanical
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Figure 1.3 Diagrammatic sketch of a simple airplane control system. When the controls are moved
as shown by arrows on the stick and rudder bar, the surfaces move as shown by the arrows. (From
Chatfield, Taylor, and Ober, The Airplane and Its Engine, McGraw-Hill, 1936)

advantage as compared with levers was needed to warp wings of increased torsional rigidity.
The Déperdussin wheel is the ancestor of modern control yokes.

1.8 Stability and Control of World War I Pursuit Airplanes

By 1917 trial and error during the first World War had established the wire braced
biplane with aft-tailed surfaces as the normal configuration. Diagonal brace wires between
the wing struts and fuselage and within the wing frames made a torsionally rigid structure
that resisted twisting and instability failure in high-speed dives. The heavy engine in front
and the generous tail surfaces behind tended to keep the fuselage and wings aligned with
the velocity of flight. The pilot could apply roll control by aileron deflection, yaw control by
rudder deflection, and pitch control by elevator deflection – all independently. Aerodynamic
hinge moments tended to center the controls. By ground adjustment of wing, fin, and
tailplane rigging the airplane could be made to maintain level flight with cruising power in
calm air for a minute or so.

Violent maneuvering in combat was provided mainly by the elevator, which had sufficient
authority to bring the airplane to a full stall. Horizontal turning flight required rolling the
airplane about its longitudinal axis quickly, which was most often accomplished by com-
bined rudder and aileron deflection. The rudder-induced sideslip produced an unsymmetric
stall and a snap or flick roll that could be checked at the desired angle by relieving stick
back pressure and centering the rudder and ailerons.

The ailerons were difficult to deflect at combat speeds but could be used to produce a
slow or barrel roll. An important use of the ailerons was to produce a cross-controlled (e.g.,
right rudder and left stick) nonrolling sideslip for glide path control while landing. The glide
angle could be steepened appreciably by sideslipping in a steep bank, incidentally giving
the pilot a good view of the touchdown point.

A dangerous aspect of stability and control of the otherwise benign World War I air-
planes was inadvertent stalling and spinning at low altitudes, the so-called arrival and de-
parture stalls (and spins). Moderate sideslip at stall would provoke a snap roll, which rapidly
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developed into the dreaded tail spin, or spinning nose dive. Generally there was insufficient
room for recovery before ground contact.

Arrival stalls are still produced in modern airplanes by attempting to rudder the airplane
around to the proper heading on final approach at a low speed without banking. The inner
wing stalls and drops. The pilot attempts to pick it up with aileron deflection, which ag-
gravates the situation. The airplane stalls and spins into the intended turn. The pilot who
survives complains that the ailerons did not work.

Departure stalls are more spectacular. The pilot takes off from a small field. As the
obstacles at the end of the field get near, with the engine at full power, the pilot rolls with the
ailerons to a steep bank angle and turns away. The airplane has insufficient power to climb
in steeply turning flight, so the pilot applies top rudder to hold up the nose. The resulting
sideslip stalls the top wing, and the airplane performs an over-the-top snap roll and spin
entry, followed by a fiery crash at full power.

Because of the stall–spin propensity of World War I airplanes, student pilots were given
flight instruction on spin entry and recovery in airplanes with generally docile behavior.
However, some airplanes, notably the Sopwith Camel, killed many student pilots because
of its particularly vicious stalling characteristics. The Camel’s main fuel tank was behind
the pilot, and the fully loaded center of gravity was so far aft that the airplane was unstable
in pitch just after takeoff. Constant pilot attention was required to keep it from stalling.

Not only that, but, like many other World War I airplanes, the Camel’s vertical tail was
too small. Any stall automatically became a snap roll spin entry, even without intentional
rudder deflection. Finally, once spinning, the Camel required vigorous rudder deflection
against the spin to stop the motion. A well-behaved airplane, on the other hand, has to be
held in a spin; letting the controls go free should result in automatic recovery. Directional
instability was so common among World War I airplanes that the Royal Air Force (R.A.F.)
resisted closed cockpits for years so that pilots could use wind on one cheek as a sideslip
cue.

Another dangerous feature of World War I airplanes was the gyroscopic effect of rotary
engines. According to Gibson (2000), engine gyroscopic effect in the Sopwith Camel re-
quired left rudder for both left and right turns and caused a departure if full power was used
over the top of a loop at too low an airspeed. Pilots were warned to attempt their first hard
right turns only above 1,000 feet.

1.9 Contrasting Design Philosophies

Comparison of the 1917 British (Royal Aircraft Factory) S.(scouting)
E.(experimental)-5 and the Fokker D-VII shows an interesting contrast between the design
philosophies of the Royal Aircraft Factory designers, who had been exposed to primitive
airplane stability theory, and Anthony H. G. Fokker and his co-worker, Reinhold Platz,
neither of whom had any formal technical training. Platz had been trained in the art of
acetylene gas welding, which he applied to the construction of steel tube airplane fuselages,
while Fokker was an experienced craftsman, pilot, and small boat sailor with an instinct for
aerodynamics.

The strong dihedral (5 degrees) of the S.E.-5 wings (Figure 1.4) is evidence of an
attempt to give the airplane inherent spiral stability. On spirally stable airplanes, if the pilot
establishes a banked turn, the rudder and elevator have to be held in a deflected position
to continue the turn. If the pilot centers the rudder bar and control stick, a correctly rigged
airplane will automatically, but slowly, regain wings-level flight.
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Figure 1.4 The British paid attention to inherent spiral stability during World War I days, building
5 degrees of dihedral into the S.E.-5. (From Jane’s All the World’s Aircraft, 1919. Jane’s used a German
source for these drawings since the S.E.-5 was still classified in Britain in 1919.)

The S.E.-5’s control surfaces had no aerodynamic balance and were difficult to move
at diving speeds. Thin wing sections were used. The designers also had embraced a whim
for numerology; the wings had 250 square feet of area and 5-foot chords; they were set at
5 degrees with respect to the thrust line, and so on.

Modern flight tests of World War I fighters (using the Shuttleworth Collection) give the
S.E.-5A high ratings. Ronald Beaumont says this airplane was

perhaps the best handling fighter on either side, with excellent pitch and yaw control and
inherent stability on both axes, and with light and responsive ailerons up to the quite high
speed of 130 mph.

The Fokker D VII (Figure 1.5) had wooden-frame cantilever wings, almost without
dihedral, with a thick airfoil section, an early result of Prandtl/Lanchester circulation theory.
David Lednicer reported (2001) that the D VII wing airfoil was close to the Göttingen
418. The D VII had a steel-tube–welded fuselage and tail assembly. Horn balances (called
elephant ears) were provided to lessen the pilot effort to deflect the ailerons, elevators, and
rudder.

When Fokker flew the first version he realized he had created a dangerous airplane.
Before the German Air Ministry officials could get a good look at it, he rebuilt it secretly
in the hangar, moving the wings aft to make it less unstable, lengthening the fuselage, and
modifying the vertical tail to incorporate a fixed fin. As a result of the D VII’s long tail
moment arm; blunt-nosed, cambered airfoil sections; and mechanically limited up elevator
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Figure 1.5 The Fokker D-VII, built without wing dihedral, showing no concern for spiral stability.
This machine had horn aerodynamic balances at the tips of all control surfaces, to reduce control forces.
(From Progress in Airplane Design Since 1903, NASA Publication L-9866, 1974.)

deflection, stability and control at low speeds and climb rate were quite good. In its final form
it pleased everyone so much that it was mentioned in the Treaty of Versailles as a military
airplane that had to be surrendered to the Allied authorities, the only one so designated.

1.10 Frederick Lanchester

Airplane stability and control theory in the modern sense began with Frederick
William Lanchester. Lanchester was not really a theoretician but a mechanical engineer who
devoted most of his effort to the construction of very innovative motor cars. He performed
aeronautical experiments with free-flying gliders. He speculated correctly on the vortex
theory of lift and the nature of the vortex wake of a finite wing but was unable to give
these ideas a useful mathematical form. His free-flying gliders were inherently stable and
exhibited an undulating flight path, which he analyzed correctly in 1897. He misnamed
the motion the “phugoid,” intending to call it the “flying” motion; actually he called it the
“fleeing” motion, having forgotten that the Greek root already existed in the English word
“fugitive.”

Lanchester published two books, Aerodynamics in 1907 and Aerodonetics in 1908, which
expressed his views and the results of his experiments. He even talked with Wilbur Wright,
evidently to no avail, because Wilbur had no understanding of inherent stability in flight,
already demonstrated by Pénaud, Langley, and Lanchester on a small scale.

1.11 G. H. Bryan and the Equations of Motion

The mathematical theory of the motion of an airplane in flight, considered as a rigid
body with 6 degrees of freedom, was put into essentially its present form by Professor George
Hartley Bryan (frontispiece) in England in 1911. In an earlier (1903) collaboration with W. E.
Williams, Bryan had developed the longitudinal equations of airplane motion only. Bryan’s
important contribution rested on fundamental theories of Sir Isaac Newton (1642–1727)
and Leonhard Euler (1707–1783). Today’s stability and control engineers are generally
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Figure 1.6 G. H. Bryan’s modern-looking 6-degree-of-freedom equations of airplane motion, sup-
plemented by the Euler angular rate equations. For NASA symbols interchange Y and Z, M and N, q
and r, and v and w. A, B, and C are moments of inertia about NASA’s X-, Y-, and Z-axes, respectively.
(From Bryan, Stability in Aviation, 1911)

Figure 1.7 The perturbation form of Bryan’s equations of airplane motion. The longitudinal equations
are above, the lateral equations below. Note the absence of control derivatives. (From Bryan, Stability
in Aviation, 1911)

astonished when they first see these equations (Bryan, 1911). As his book’s (Bryan, 1911)
title indicated, he focused on airplane stability, not control. Aside from minor notational
differences, Bryan’s equations are identical to those used in analysis and simulation for the
most advanced of today’s aircraft (Figures 1.6 and 1.7).

Not surprisingly, at this early date he does not cover in detail control force and moments,
nor does he treat the airplane as an object of control. The perturbation equations in Fig. 1.7
include stability but not control derivatives. The influence of external disturbances such as
gusts is also not addressed, although he recognizes this and other problems by presenting
a summary of questions not covered in his book that set an agenda for years of research.

Bryan calculated stability derivatives based on the assumption that the force on an airfoil
is perpendicular to the airfoil chord. W. Hewitt Phillips points out that while this theory
is not the most accurate for subsonic aircraft, it is quite accurate for supersonic aircraft,
particularly those with nearly unswept wings, such as the Lockheed F-104. Thus, Bryan
might be considered even more ahead of his time than is usually acknowledged.


