INDEX

α-decay, 194–95

β-decay, 194–95

γ-logging. See downhole logging:
γ-decay, 194–95

γ-ray
attenuation, 134
energy, 194–95, 197–98
interaction with matter, 196–97

A, U, V reference frame (downhole EM), 332–33

Abitibi Subprovince, Canada, 148, 160, 176, 284, 400

absorption
of radiation, 196
of seismic waves, 357, 372
and rock type, 392

acoustic impedance, See also seismic properties
contrasts
continuous (reflectors), 359
energy partitioning, 360–61
local (diffractions), 359
definition, 358
active geophysical methods, 2–3, 18, 235, 257, 299

AEM. See airborne EM method
aerogravity. See gravity method: airborne aerometrics. See magnetic method
AFMAG method. See audio-frequency magnetic method
AGC. See automatic gain control
airborne EM method, 24, 48, 236,
See also EM method
data acquisition, 342, 344–45
data display, 345
example data, 317, 345–46
fundamentals, 339–40
interpretation, 345

systems, 342
examples, 344
rigid frame, 344
towed bird, 343
waveforms, 340–44
aliasing, 25–27, 78, 364, See also sampling and interpolation, 36

and survey design, 30, 115
of magnetic data, 114, 186
alkaline rocks, 224, See also kimberlite magnetic response, 49, 176, 178
magnetism, 142–43
radioelement content, 213, 216, 227
radiometric response, 227
allotrope, 127
alluvial deposits, 170, 178, 218, 225
alteration, See also serpentinitisation
argillic, 154–55
chloritic, 266
hydrothermal, 133, 153–54
illitic, 220
low-temperature, 140
magnetite-creative, 172
magnetite-destructive, 151, 153–54, 156, 225
phyllitic, 154, 219
potassic, 154, 219–20, 225
propylitic, 154–55
sericitic, 220
silicic, 289
ambiguity. See non-uniqueness
amphibolite, 119, 147, 170, 217
amplitude normalisation (EM data), 316
AMS. See anisotropy:magnetic:susceptibility
analytic signal, 44, 65, 119, 126–27, 164
example data, 121, 226
andesite, 142, 155, 186, 225,
See also intermediate rocks
angle of incidence, 360–61, 367
anisotropy
electrical, 247, 289, 293, 303, 328
and rock type, 297
magnetic, 93–94, 138, 144
susceptibility (AMS), 156, 169
seismic, 353, 391
anomaly, 59
bulls-eye, 37
definition, 16, 25, 30, 316,
See also sampling
detection, 5, 24–25, 31–32, 65,
See also targeting
data processing and display, 54, 60, 118, 209, 223
EM, 344
gravity and magnetics, 160, 163–64
radiometrics, 193
resistivity/IP, 274, 289
dipole, 16, 94, 115, 124
one-line, 260
polarity, 17, 161–62
relationship with source, 16–17, 68–70, 89,
See also depth-to-source, modelling
single-point, 36
SP, 262–63
antiferromagnetism, 92, 136–37,
See also ferromagnetism
AP method, 294
data acquisition, 295
data display, 295
example data, 69, 297–99
fundamentals, 294–95
interpretation, 295–97
applied potential method. See AP method
Archie’s equation, 250–52
argillaceous rocks, See also shale density, 130
electrical properties, 249
magnetic response, 178
magnetism, 147
radioelement content, 215, 217
seismic properties, 384
array. See also system geometry (EM)
resistivity/IP
definition, 267, 270
dipole–dipole, 275, 293
downhole, 277
gradient, 275, 277, 288, 291–93
lateral, 277
normal, 277
pole–dipole, 275
pole–pole, 275, 295
Schlumberger, 275, 277–78, 291–93
Wenner, 277–78, 293
seismic, 364
arrival. See seismic arrivals
artefacts
definition, 18
in electromagnetic data, 318
in gravity data, 106, 165, 172
in magnetic data, 124, 163, 165
in radiometric data, 223
Index

427

in seismic data, 383
related to cultural noise, 60
related to data processing, 33, 60
related to interpolation, 36–38, 60, 170
related to sampling, 25–26, 29, 59, 170
related to topography, 20, 59
AS. See analytic signal
astrobleme, 64
Athabasca Basin, Canada, 224
attenuation
electromagnetic fields, 246–47
seismic waves, 356–57, 392–93, 397, 404
audio-frequency magnetic method.
See Appendix 4
automatic gain control, 46, 372
baked contact, 148
banded iron formation. See iron formation
bar magnet, 89–90, 109, 243
basalt, See also mafic rocks
density, 135
magnetic response, 177, 186
magnetism, 142, 146–49
base frequency, 305, 312–13
borne airborne EM, 340–42, 344
base station, 15, 22
ground surveys, 96, 98, 100–1
magnetic surveys, 35, 114, 116, 118
SP surveys, 262
baseline (sand and shale), 229–31, 264–65
bedding, 59, 67, 144, 159, 252, 391
graded, 144

B-field
data, 305, 316, 320, 336
example, 330
recovered, 305, 342
sensor (EM), 258, 304–5, 330, 332, 341,
See also magnetometer
BIF. See iron formation
body wave. See waves body
Bonnet Plume Basin, Canada, 169
Bouguer
anomaly, 106, 126, 167
complete, 106
partial (incomplete), 106
correction, 102–6, 167
density, 104–5
gravity
example data, 107, 121, 171, 185
branched decay, 194, 198
breccia, 328
flow, 170
haematitic, 287
hydrothermal, 106, 287
volcanic, 106
Bushveld Complex, South Africa, 398
calc-alkaline rocks, 143, 154, 178
calcite, 224, 227, 293
Canadian Shield, 65, 219
capacitance, 241–43, 247, 253, 271
carbonates, 19, See also limestone
density, 131
magnetic response, 184
magnetism, 144, 147
radioelement content, 217
radiometric response, 227, 229
seismic properties, 384
CBI. See current-depth imaging
channels
EM, 304–5, 342
amplitude, 316
IP, 272
radiometric, 201
chargeability, 254, 272
chemical sediments, See also evaporites, iron
formation
magnetic response, 184
magnetism, 144, 156
radioelement content, 217
radiometric response, 231
resistivity/IP response, 283
chilled margin, 143, 158
circle-of-investigation (radiometrics), 202–3
clastic sediments, 173, 286, See also
sandstone, heavy mineral sand
density, 131
electrical properties, 251
magnetic response, 178, 184, 186
magnetism, 144
radioelement content, 217
radiometric response, 227, 229
seismic properties, 386
clay minerals, 261, 280
density, 132–33
electrical properties, 249, 252, 254–56
magnetism, 136
radioelement content, 211, 218
seismic properties, 391–92
CMP. See common midpoint gather
coal
anthracite, 261, 390
bituminous, 390
density, 131, 134, 399
electrical properties, 249
in-seam seismic response, 402
flame, 265
 lignite, 390
measures, 135, 188, 231, 264, 393, 398
radioelement content, 217
seismic properties, 386, 389–90, 392
seismic reflection response, 398–99
SP response, 261
coefficient
absorption, 357
Compton correction, 208
height attenuation, 208
reflection, 360–61, 396, 399, 403
sensitivity, 208
transmission, 360, 396
coil sensor. See db/dsensor
colour
drape, 58, 64, 164
model, 51–52, 58
space, 51–52, 57–58
stretch, 54–56
wheel, 52
compaction, 130–31, 145, 399
component
A, 333
across-line, 166, 304
along-line, 304
axial, 332
cross-hole, 332
horizontal, 15
radial, 332
three-, 16
U and V, 333
vertical, 15
X, Y and Z, 15–16, 304
composite display, 56–58
example, 58
Compton scattering, 134, 196, 198, 200, 208
conductance, 309, 318–19
definition, 240
of a confined conductor, 310, 312, 320, 322
conductive terrain
effect of current channelling, 311–12
effect on depth penetration, 308, 311
effect on IP data, 273
and interpretation, 320, 326
and survey design, 314–15, 322
telluric currents, 259
conductivity, 3
definition, 235
from inverse modelling, 318
units, 240
conductivity–thickness product.
See conductance
conductor
3D, 303, 336
bedrock, 319
closely spaced, 315, 326, 330, 332, 334
confined, 309–10, 312, 320, 322
continuity between drillholes, 297
cultural, 319
definition, 240
dipping, 314, 319, 328, 336
profile analysis, 320–22
early-time, 310
effect on electric field of a current
dipole, 274
electrically polarisable, 327
flat-lying, 322, 328
in-hole, 334–35
late-time, 310
off-hole, 334–35
Index

conductor (cont.)
perfect, 240
plate-like, 310, 315, 320, 326, 336
quality, 268, 310, 312, 318, 322, 344
and current channelling, 311, 326
definition, 312
good, 312–13, 331, 340–41
poor, 311–13, 341
regional (formational), 316, 319, 326
size, 312
surficial, 319, 330
unconfined, 307, 309, 312
contact aureole, 59, 64, 145, 148, 176
continuation
gravity and magnetic data, 103, 117, 119, 125, 164
example data, 121, 170
radiometric data, 223
contour
map (topographic), 105
plot, 49, 51, 164, 278, 295
examples, 50, 69, 266–67, 281, 289, 298
zero level, 127
controlled source audio frequency magnetotelluric method.
See Appendix 4
convolution, 41–42, 44, 47
coordinate systems, 23, 101
correlation
between drillhole intersections, 297
stratigraphic, 4, 134, 156, 231, 264, 293
corruations, 20, 33, 46, 117, 164
example, 118
cost of geophysics, 1, 5–6, 27–28
airborne EM, 340, 345
airborne surveys, 4, 31
downhole EM, 333
EM, 299
ground surveys, 4, 29
magnetics, 112, 115
radiometrics, 204
resistivity/IP, 277
seismic, 351, 398
coupling
and airborne EM, 340, 344
between primary field and target conductor, 302, 331
downhole EM, 331, 333, 336
fixed-loop mode, 315
moving-loop mode, 314
between secondary field and sensor, 304
electromagnetic (resistivity/IP), 19, 273, 275, 289
dipole–dipole array, 277
example, 291
gradient array, 277
variability causing noise (EM), 258
variable field (downhole EM), 332
cover. See overburden
Cripple Creek mining district, USA, 106–8, 133
critical angle, 361
CRM. See remanent magnetism:
crystallisation
cross-cutting relationships, 57, 59, 70
examples, 118, 227, 401
CSAMT. See controlled source audio frequency magnetotelluric method
Curie point, 93, 143–44, 150
current, See also electric current
channelling, 268, 311–12, 320, 322, 326, 337
–depth imaging, 318–19, 328, 345,
See also paraspection
example, 317, 347
dipole, 268, 273–74, 277–78, 289
filament, 326, 336–37, 339
gathering. See current-channeling curvature. See derivative:2nd
data acquisition, 25–32, See also individual geophysical methods
data display, 48–58, See also individual geophysical methods
1D, 48
2D, 49–51
3D, 50–51
data processing, 32–48, See also individual geophysical methods
data reduction, 32–34, See also individual geophysical methods
dataum level, 102–3
dughter isotopes, 194–95, 198
radiometric detection, 198, 201, 212, 221
dB/dt
data, 305–6
examples, 317, 328–30, 334, 337, 345
sensor (EM), 304, 330, 340
decay (EM), See also time constant (τ)
analysis, 322
amplitude maps, 318–19, 346
amplitude plots, 317–18, 322
profile analysis, 320–22
currents, 308–9, 341
effect of conductive overburden, 319, 330
of terrain, 327
exponential
confined conductor, 309–12, 322
induced polarisation effects, 327
time
amplitude, 341
analysis of responses, 310–11
logarithmic
superparamagnetism, 327
power-law
current channelling, 311–12
half-space, 308, 312
superparamagnetism, 327
thin conductor (overburden), 310, 312, 322
step vs impulse response, 312, 330
decay analysis, See also profile analysis (EM)
decay constant (radioactivity), 195
decay series, 194–95, 222
thorium, 198, 208, 212
uranium, 198, 207–8, 212, 224
deconvolution, 47, 369
of seismic data, 369, 372, 397
delay time
channel width, 305
definition, 304
diffusion depth, 307
DEM. See model terrain
density, See also seismic properties
analysis of data, 135
and attenuation of γ-rays, 134, 197, 208, 218
average crustal, 104, 127
bulk, 127
contrast, 88
definition, 87
measuring, 134
of the geological environment, 127
effects of metamorphism and alteration, 131–33
low-porosity rocks, 127–29
mineralised environments, 5, 133–34
near-surface, 133
porous rocks, 129–30
relationship with rock type, 130–31
relationship with magnetism, 160
relationship with porosity, 129
relationship with seismic velocity, 353, 384
units, 87
density logging. See downhole logging:
density (gamma-gamma)
deep conversion, 351, 372, 377, 381
depth of erosion, 22, 225, 280
depth slicing, 124
depth-to-source, 165, 318, 344, See also
anomaly:relationship with source
derivatives, 15–16
1st, 34–35, 42, 166
2nd (curvature), 34–35, 44, 126, 167
and noise, 33, 44, 117, 126
as edge detectors, 16, 38, 124–25, 163–64,
See also edge detection
fractional, 44
higher-order, 44, 126, 167
horizontal, 42

© in this web service Cambridge University Press
www.cambridge.org
measuring, 15
time, 304–5
X-, 15, 42
Y-, 15, 42, 44, 126
Z- (vertical), 15, 42, 164
de-spiking, 33, 44–45, 116, See also spikes: and data processing
diagnosis, 144, 250, 252
diamagnetism, 91
minerals, 136
diamond, 129, 134, 179
dielectric permittivity, 238
dielectric properties. See electrical properties
diffractions. See seismic arrivals: diffracted
diffractions, See also
diffractor,
diffraction, 354, 403
disequilibrium, 222
dispersal, 242
See also
dip moveout, 380, 383
dipole. See anomaly:dipole, current:dipole, magnetic:dipole
disequilibrium, 222–24, 231, See also

equilibrium (radioactive)
in the geological environment, 212–16, 218
dispersion, 354, 403
diurnal variation, 110–12, 114, 116
dix equation, 368
dMO. See dip moveout
dolerite, 143, 148–49, 176, See also
madic rocks
domain, See also
frequency domain, space domain, time domain
magnetic, 92–93, 327
magnetic, multi-, 92, 138, 143–44, 150
single, 92, 138, 143
dowhole EM method, See also EM method
data acquisition, 330–33
data display, 333–34
element data, 334, 337–39
fundamentals, 330
interpretation, 333–37
dowhole logging, 4–5
density (gamma-gamma), 134, 399
examples, 135, 399
induction, 330, 339
example, 339
multi parameter, 48, 193
prompt fission neutron (PFN), 231
resistivity/IP, 277, 293–94
elements, 293
sonic, 393
example, 393
full-waveform, 393
SP, 261, 263–65
elements, 231, 265, 293
susceptibility, 156
elements, 156
γ-, 193, 197, 204–5, 229–32
examples, 230–31
drape
close, 21
correction, 117, 125
loose, 21
drift
correction, 100–1
instrument, 22, 96
gavity meter, 98, 100
scintillometer, 201
spectrometer, 205
drillcore, 156, 158, 229
drillhole casing, 230, 260, 331
DTM. See model terrain
duty cycle, 344
dykes, 143, 148, 403
dielectric constant, 237
magnetic response, 46, 64
dielectric permittivity, 238
magnetic response, 47, 163, 176, 184
eddy currents, 303–4
current channeling, 311
and frequency domain EM, 304
and inductive coupling, 390
time domain EM, 300, 306
decay, 303–4, 330
definition, 246, 300
flow paths, 303, 306, 326, 328, 336
in confined conductors, 309
in heterogeneous conductors, 303
in plate-like conductors, 302–3, 336
in thick conductors, 303
in thin conductive layers, 309
migration, 304, 326
in a confined conductor, 303, 320, 322,
334, 336
in a half-space, 306
in a thin layer, 309
in complex bodies, 326
strength, 301–3, 310
edge
detection, 16, 68, 167, 221, See also
derivatives:as edge detectors
effects, 36, 71, 328
Eh–pH conditions, 151–52
electric properties. See seismological
electric
current, 238, 240, 252, 254
electric field, 237
forces between, 238
moving, 237, 239–40, 243, 260
on grain surfaces, 252, 254, 261
storage, 241
circuit, 239–43, 254
plumbing-system analogy, 237, 239–40,
242–43
field, 237–38
and sub-surface currents, 268–69
and topography, 292–93
potential, 257, 267
seismological
electric current, 250–51
conductivity of rocks and minerals, 254–50
controls on conductivity, 252–53
controls on polarisation, 254–55
dielectric properties, 255
mechanisms of polarisation, 253–54
near-surface, 22, 255–57
electrochemical processes, 251, 258, 261,
263, 265
electrode, 258
current, 257, 267
non-polarising, 258, 295
potential, 267
reference, 262, 295
roving, 262, 295
electrofiltration. See potential:streaming
electromagnetic
induction, 3, 235, 239, 244–46, 299, 301
wavelength, 3, 73, 235, 246
velocity, 256
electromagnetic coupling. See coupling:
electromagnetic (Resistivity/IP)
elevation correction, 103
EM method, See also airborne EM,
dowhole EM
data acquisition, 312–16
data processing and display, 316–18
example data, 328–30
fundamentals, 299–306
interpretation, 318–28
responses and subsurface conductivity,
306–12
time and frequency domain, 301
Index

emf, 244–45, 316
back, 244, 301
definition, 239
Eötvös correction, 99
equilibrium (radioactive), 195–96, See also disequilibrium
equivalence, 70, 167–68, See also non-uniqueness
equivalent thorium (eTh), 209
errors, 17
heading, 116
residual, 29, 33–34, 44, 117–18
statistical, 199, 201, 204
survey-induced, 22–23, 25, 33, 97, 113–14
Euler deconvolution, 65, 165–67, 172
example, 174
evaporites, 351, See also chemical sediments
density, 131
electrical properties, 249
radioelement content, 211, 217
radiometric response, 230
seismic properties, 389, 392
seismic reflection response, 382, 398
excess mass, 88, 168
facies analysis, 230, 264, 294
Faraday’s Law, 244, 246, 300, 303
faults, 23, 70, 173, 283, 398, 403
effect on AP response, 297
effect on electrical and EM data, 326, 328
electrical and EM response, 259, 294, 319–20
electrical properties, 249
geophysical response, 64–65, 68, 81
magnetic response, 163, 172, 176, 178–79, 184
magnetism, 145, 151
radiometric response, 227
seismic properties, 389, 392
seismic reflection response, 359, 393–94, 401–2
SP response, 263
FDEM. See frequency domain:EM
efelic rocks, 173, See also granite, granitoid, rhyolite
density, 130
magnetic response, 176, 178, 184, 186
magnetism, 142, 147, 176
radioelement content, 216
radiometric response, 230
seismic properties, 384, 390
seismic reflection response, 400–1
fences, 18, 260, 290, 327
ferromagnetism, 92, 157, See also ferromagnetism
minerals, 136–37
ferromagnetism, 92–93, 139, 145, 147, 327,
See also antiferromagnetism,
ferromagnetism
minerals, 136, 142
rock types, 142–43
field of view, 202, 204
filter, 42
1D, 41, 44–45
amplitude scaling, 46
band-pass, 44
band-stop, 44
coefficients, 41
curvature, 41
derivative (gradient), 41–45, 123, 125–27
dip, 380
directional (trend), 34, 46–47, 57
Earth, 47, 372
f–k, 47, 370
high-pass, 44, 46–47, 49, 58, 125
kernel, 41
low-pass, 44–45, 125, 170, 226
median, 40, 46–47, 156
operator, 41
running-average, 41, 45
smoothing, 45–46
spectral (frequency, wavelength), 45, 124–25, 269, 372
terracing, 45
window, 41, 45
filtering, 38–40, 42, 51
by convolution, 41–42
by transform, 40
definition, 38
EM data, 259, 337
elements, 47–48, 372–73
gravity and magnetic data, 114, 118, 164
inverse, 47
radiometric data, 209
spectral (frequency, wavelength), 44, 63
Flinders Ranges, Australia, 227–28
fold
axes, 67
graphical response, 64
magnetic response, 126, 178, 184–85
radiometric response, 227
seismic reflection response, 377
synform vs antiform, 68
test, 159
foliation, 59, 150, 252, 293, 328
footprint. See system footprint
formation factor, 250–52
forward modelling. See modelling:forward
Fourier domain. See frequency domain
Fourier transform, 33, 40, 42, 47, 62, See also Appendix 2
fracture zone. See faults
free-air anomaly, 106, 167
correction, 102–3, 106
frequency domain, 14, 40–41, See also Appendix 2
EM, 301
filtering, 41
IP, 272–73
Fresnel volume, 355–57, 394
zone, 355, 359, 376, 394
full-waveform sampling (EM), 342
gabbro, See also mafic rocks
magnetic response, 163, 178, 184
magnetism, 143, 147
seismic properties, 388
seismic reflection response, 401
tomographic seismic response, 405
gangue, 133, 188, 266, 288, 297, 389
Gather common midpoint, 372–76
3D, 376
definition, 365
dot, 365–70
examples, 45, 366, 373
geographic information system, 67
geoID, 86, 100, 102–3
glacial
glacial
glacial
geological mapping, 3, 5, 23–24, 26, 68–69, See also pseudo-geological map
and data display, 48, 54
using airborne EM, 340
using EM, 236, 319, 339
using gravity, 97, 159, 163
using magnetics, 119, 159, 163, 173
using radiometrics, 193, 209, 227
generalized
generalized
geological plausibility, 80
gemographic field, 93, 109–10, 124, 138, 150, 162
correcting for, 117
temporal variation, 112, 114
geometric factor, 270–71, 275, 295
spreading, 356–57, 360
geophone, 364
gyrophase
gyrophase
gyrophase
geophysical paradox, 18, 47, 60
definition, 6
gravity, 104
magnetism, 117
radiometrics, 200, 205
seismic reflection, 373, 377
GIS. See geographic information system
glacial
deposits, 19–21, 219, 284, 288
magnetism, 151, 165
landforms, 165
processes, 165

global positioning system, 21, 96–98, 114, 342
equipment, 97
gneiss, 119, 293, 297–98
density, 132, 134
magnetic response, 176
magnetism, 147
radioelement content, 217
tomographic seismic response, 405
GPR. See ground penetrating radar
GPS, See global positioning system
grade control, 156, 339
See grade control.
gradient. See derivative
gradiometer, 15, 22
gravity, 89, 96, 98
magnetic, 109, 113
grain (electrode) polarisation. See electrical propertiof the geological environment:mechanisms of polarisation
granite. See also felsic rocks
density, 132–33, 135
magnetism, 142, 151, 153, 156
radioelement content, 216
seismic properties, 222
seismic properties, 387, 391
granitoid, 173, 177, 184, 227, See also felsic rocks
anorogenic, 143
A-type, 142
ilmenite-series, 142
I-type, 142
magnetite-series, 142
muscovite–biotite, 143
S-type, 142
granitoid–greenstone terrain, 172, 284, 391, 400, See also Abitibi Subprovince, Canada, Kirkland Lake area, Canada, Wawa area, Canada
granodiorite, 142–43, 170, 176, 216
graphite, 262, 293, 328
electrical properties, 249, 252, 254
resistivity/IP response, 293, 298
SP response, 261, 264–65
gravity acceleration due to, 87
equation, 87
field fundamentals, 86–87
of a sphere, 87
of the Earth, 100–1
full-tensor measurements, 89
normal, 101
units of measurement, 87
universal gravitational constant, 87
universal law of gravitation, 87
gravity meter, 22, 96–98, 100
gravity method
airborne, 24, 85, 96–98, 105

data acquisition, 94–99
data enhancement, 118–27
data reduction, 99–106
downhole, 85, 96
example data, 169–72, 184–88
fundamentals, 85–86
interpretation, 160–69
Grenville Province, Canada, 298, 388
grey-scale display, 52, 56, 64, 67, 209, 365
elements, 53, 383
grounding. See interpolation
ground penetrating radar. See Appendix 5
groundwater, 19, 212, 219, 249, 257
contaminated, 294
flow, 260, 263
saline, 256
salinity, 261
Hamersley iron-ore province, Australia, 20, 93, 106, 144, 156, 231
heading correction, 116
heavy mineral sand, 116, 224, See also clastic sediments
density, 131
electric properties, 255
magnetism, 152
radioelement content, 217
herring-bone effect, 319
histogram
data (image display), 54
display (image display), 54
equalisation, 55
frequency (image display), 54
linearisation, 55
normalisation, 55
HSI. See hue–saturation–intensity
hue–saturation–intensity, 51–52, 58
hydrophone, 364
Iberian Pyrite Belt, Spain, 118
igneous differentiation, 216
IGRF. See International Geomagnetic Reference Field
Illinois Basin, USA, 398–400
image processing, 51–58
impact structure. See astrobleme
impedance (electrical), 239, 243–44
impulse response
and conductor quality, 310, 312, 318, 331
and conductor size, 312
and superparamagnetism, 327
conductive overburden, 309
confined conductor, 309, 312
half-space, 308–9
measuring, 305–6
airborne EM, 341–42
induced currents. See eddy current
induced magnetism. See also susceptibility
analysis of data, 158
and magnetic anomalies, 93, 110, 115
fundamentals, 91
measuring, 155–56
induced polarisation method.
See resistivity/IP method
induction. See electromagnetic-induction
induction logging. See downhole logging: induction
in-mine surveys, 4, 18, 25, 78
EM, 260, 299, 331, 337
resistivity/IP, 260, 296
seismic, 401
insulator, 240, 248, 251, 297
definition, 240
integration period, 197, 199, 201, 203–5
intermediate rocks, 142, 284, 289,
See also andesite, diorite
density, 130
magnetic response, 176–77
magnetism, 142, 155, 173
radioelement content, 216
seismic properties, 384
seismic reflection response, 401
International Geomagnetic Reference Field, 110, 117–18, 124
International Gravity Formula, 101
Interpolation, 32, 34–38
bi-directional, 36
choice of parameters, 36–38, 209
function-based, 35–36
inverse distance, 35
kriging, 35
nearest neighbour, 35
statistical, 35
trend enhancement, 38
interpretation general, 58–63
qualitative, 63–70, See also individual geophysical methods
quantitative, 70–81, See also individual geophysical methods
inverse modelling. See modelling: inverse inversion. See modelling: inverse
IOCG. See mineralisation: type: IOCG
IP method. See resistivity/IP method
iron formation, 116, 145, 173, 176, 218
See also chemical sediments
density, 131, 134
magnetic response, 161, 177–78
magnetism, 93, 144–45, 147, 153, 156, 176
radioelement content, 217
radiometric response, 227, 231
iron ore
haematitic, 153
magnetite, 176
skarn, 186
strata-bound, 161
isograd
magnetic, 151
metamorphic, 389

Jharia Coalfield, India, 186, 188, 265
Josephine Creek, USA, 150

K-capture, 195, 198–99
kimberlite, 22, 64, 116, 134, 280, 340,
See also alkaline rocks
density, 134
EM response, 301, 328
gravity response, 98
magnetic response, 49, 179
radioelement content, 216
seismic response, 281–82
Kirkland Lake area, Canada, 50, 173

layered Earth inversion, 318
laterite, 133, 218, 256, 391
lakes, 29, 105, 107, 207, 259
lake, 29, 105, 207, 259
effect on gravity and magnetic data, 176
effect on radiometric data, 57, 196
laterite, 133, 218, 256, 391
latitude correction, 99, 101–2
tilted Earth inversion, 318–19, 328,
See also parasaction
tilted intrusions, 134, 389
LEI. See layered Earth inversion
levelling, 33–34
example, 118
magnetic, 117
limestone, 283, See also carbonates
density, 132
electrical properties, 250–51
magnetism, 145
radioelement content, 218
seismic reflection response, 399
lineation (metamorphic), 150
logging. See downhole logging
Lone Star district, USA, 265
look-up table, 52–54, 68
loop. See system geometry (EM)
low-velocity zone, 371
LUT. See look-up table

mafic rocks, 134, 170, 173, 176, 218, 284,
See also basalt, dolerite, gabbro
density, 130–32
magnetic response, 178, 184
metamorphism, 145, 147, 160, 176
radioelement content, 216
seismic properties, 384, 388–90, 392
seismic reflection response, 400–1
magnetite, 19, 27, 151
magnetism, 137, 151
magnetic dipole, 90
dipole moment, 301, 315, 341,
343–44
field, 90
fundamentals, 86–87
of a coil, 243
of a dipole, 90
of a loop, 243
of a straight wire, 243
permeability, 90, 246, 307
pole, 89, 109
storm, 112, 114
magnetic induced polarisation method. See Appendix 3
magnetic method
data acquisition, 106–16
data enhancement, 118–27
data reduction, 116–18
downhole, 109
effect, 112–16
example data, 172–88
fundamentals, 85–86
interpretation, 160–69
magnetic susceptibility. See susceptibility
magnetism
fundamentals, 89–90
intrinsic, 92, 138
of the geological environment, 135–36
effects of grain size, 138
igneous rocks, 140–44
iron sulphides, 137–38
magnetic properties of minerals, 136
mineralised environments, 5, 151–55
near-surface, 22, 151
rock magnetism, 140
sedimentary rocks, 144–45
titanohematites, 137
titanomagnetics, 136–37
relationship with density, 159–60
units, 90
magnetite, 188
density, 131
electrical properties, 249
relationship between volume and rock
susceptibility, 138
SP response, 261
magnetite–distribution map, 139
magnetometer, 107, 113–15, 342,
See also B-field/sensor (EM)
base station, 114
magnetometric resistivity method. See Appendix 3
magnetotelluric method. See Appendix 4
MALM. See AP method
marble, 132, 298, 384
mass deficiency, 88
Matagami mining camp, Canada, 400–1
maximum noise fraction, 206
measurements
absolute, 14
gradient, 15
relative, 14–15
tensor, 16
vector, 15
membrane (electrolytic) polarisation. See electrical properties of the
geological environment: mechanisms of polarisation
merging datasets, 38, 49, 98, 110, 318
metal factor, 273
metamorphism
amphibolite-facies, 173, 176, 337
and density, 132
and magnetism, 138, 147, 150
and radioelement content, 217
and seismic properties, 388
and contact (thermal), 148, 151, 184
eclogite-facies, 388
granulite-facies, 145, 147, 150, 216
greenschist-facies, 132, 173, 185, 298
and magnetism, 138, 146–48, 160
and radioelement content, 217
high-grade, 150
low-grade, 147, 150, 388
medium-grade, 147, 150
prehnite–pumpellyte facies, 147
prograde, 149, 389
regional, 145, 151
retrograde, 147–49
zeolite-facies, 145, 147
microlevelling, 34, 117
micro pulsation, 112, 116, 259
migmatite, 214, 217
migration, 369, 372, 377–83
aperture, 382
choice of type, 383
depth, 377, 381–83
diffraction-summation, 379
Kirchhoff summation, 379
of 3D data, 380
post-stack, 377–81
pre-stack, 380
time, 377–83
mineralisation
disseminated, 24, 268, 337
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrical properties</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>resistivity/IP response</td>
<td>283, 286</td>
<td></td>
</tr>
<tr>
<td>SP response</td>
<td>261–62, 266</td>
<td></td>
</tr>
<tr>
<td>massive</td>
<td>24, 220, 328, 330, 337, 340</td>
<td></td>
</tr>
<tr>
<td>electrical properties</td>
<td>249, 252</td>
<td></td>
</tr>
<tr>
<td>EM response</td>
<td>328, 337</td>
<td></td>
</tr>
<tr>
<td>gravity response</td>
<td>69, 118</td>
<td></td>
</tr>
<tr>
<td>magnetic response</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>magnetism</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>resistivity/IP response</td>
<td>283, 286, 297–98</td>
<td></td>
</tr>
<tr>
<td>seismic properties</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>SP response</td>
<td>261, 264–65</td>
<td></td>
</tr>
<tr>
<td>stockwork</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>strata-bound</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>stringer</td>
<td>328, 337</td>
<td></td>
</tr>
<tr>
<td>types</td>
<td>328, 345</td>
<td></td>
</tr>
<tr>
<td>calcrete-hosted uranium</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>magnatic (Cr)</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>magnatic (Cu)</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>magnatic (NiS)</td>
<td>69, 152, 156, 188, 328, 330, 337, 405</td>
<td></td>
</tr>
<tr>
<td>manganese</td>
<td>261, 328, 345</td>
<td></td>
</tr>
<tr>
<td>MVT</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>orogenic gold</td>
<td>172, 176</td>
<td></td>
</tr>
<tr>
<td>palaeoplacer</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>placer</td>
<td>169, 340</td>
<td></td>
</tr>
<tr>
<td>porphyry-style</td>
<td>22, 133, 186</td>
<td></td>
</tr>
<tr>
<td>sandstone-type uranium</td>
<td>230, 264, 294, 340</td>
<td></td>
</tr>
<tr>
<td>SEDEX</td>
<td>230, 286, 328, 330</td>
<td></td>
</tr>
<tr>
<td>skarn</td>
<td>31, 186</td>
<td></td>
</tr>
<tr>
<td>tin–tungsten granites</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>unconformity-style uranium</td>
<td>224, 230, 328, 340</td>
<td></td>
</tr>
<tr>
<td>VMS</td>
<td>118, 135, 153, 188, 220, 225, 297, 328, 337, 400</td>
<td></td>
</tr>
<tr>
<td>vein</td>
<td>106, 154, 220, 225, 255</td>
<td></td>
</tr>
<tr>
<td>resistivity/IP response</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>SP response</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>minimum curvature</td>
<td>34–38</td>
<td></td>
</tr>
<tr>
<td>MIP. See magnetic induced polarisation method mise–à-la-masse. See AP method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMR. See magnetometric resistivity method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNF. See maximum noise fraction model</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1D, 49, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5D, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75D, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D, 49, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D, 51, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell-based</td>
<td>71–74, 78, 80</td>
<td></td>
</tr>
<tr>
<td>choosing a type</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>equivalent</td>
<td>70, 168</td>
<td></td>
</tr>
<tr>
<td>half-space</td>
<td>73, 173, 306</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td>70, 72, 74–75, 77</td>
<td></td>
</tr>
<tr>
<td>parametric</td>
<td>74, 160, 263, 320, 326, 336</td>
<td></td>
</tr>
<tr>
<td>shape-based</td>
<td>71–74, 80</td>
<td></td>
</tr>
<tr>
<td>starting</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>modelling</td>
<td>24–25, 59, 68, 70</td>
<td>See also anomaly:relationship with source and survey design, 25–28, 117</td>
</tr>
<tr>
<td>resistivity/IP</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>AP data</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>choosing number of dimensions</td>
<td>49, 72</td>
<td></td>
</tr>
<tr>
<td>EM data</td>
<td>318, 320, 322–26, 336–37, 345</td>
<td></td>
</tr>
<tr>
<td>fundamentals</td>
<td>70–71</td>
<td></td>
</tr>
<tr>
<td>gravity and magnetic data</td>
<td>160–69</td>
<td></td>
</tr>
<tr>
<td>inverse</td>
<td>74–75, 89</td>
<td></td>
</tr>
<tr>
<td>constrained</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>fundamentals</td>
<td>75–77</td>
<td></td>
</tr>
<tr>
<td>joint</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>smooth</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>tomographic</td>
<td>77–78</td>
<td></td>
</tr>
<tr>
<td>resistivity/IP data</td>
<td>268, 278–79, 284</td>
<td></td>
</tr>
<tr>
<td>seismic data</td>
<td>396–97</td>
<td></td>
</tr>
<tr>
<td>SP data</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>strategy</td>
<td>78–79</td>
<td></td>
</tr>
<tr>
<td>monzonite</td>
<td>143, 155, 186</td>
<td></td>
</tr>
<tr>
<td>Mount Barren, Western Australia</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Mount Isa Inlier, Australia</td>
<td>320, 334</td>
<td></td>
</tr>
<tr>
<td>moveout</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>MT. See magnetotelluric method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC. See mean terrain clearance multiple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVT. See mineralisation:type:MVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVSVD. See noise-adjusted singular value deconvolution</td>
<td>409, 410</td>
<td></td>
</tr>
<tr>
<td>NMO. See normal moveout noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and modelling</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>and sampling</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>coherent</td>
<td>46, 372</td>
<td></td>
</tr>
<tr>
<td>cultural</td>
<td>18, 60</td>
<td></td>
</tr>
<tr>
<td>electrical and EM</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>environmental</td>
<td>18–22, 33, 110</td>
<td></td>
</tr>
<tr>
<td>electrical and EM</td>
<td>258–60</td>
<td></td>
</tr>
<tr>
<td>SP, 261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>example of removal (EM)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>example of removal (seismic)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>geological</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>electrical and EM</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>instrument</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>level</td>
<td>24, 28, 31</td>
<td></td>
</tr>
<tr>
<td>methodological</td>
<td>22–23</td>
<td></td>
</tr>
<tr>
<td>electrical and EM</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>seismic</td>
<td>353–54, 366</td>
<td></td>
</tr>
<tr>
<td>near-surface related</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>gravity and magnetics</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>resistivity/IP</td>
<td>289–92</td>
<td></td>
</tr>
<tr>
<td>non-geological</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>27, 39</td>
<td></td>
</tr>
<tr>
<td>radiometrics</td>
<td>206–7</td>
<td></td>
</tr>
<tr>
<td>seismic</td>
<td>364, 372</td>
<td></td>
</tr>
<tr>
<td>source-generated</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>statistical</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>radiometrics</td>
<td>199–202</td>
<td></td>
</tr>
<tr>
<td>topography-related</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>gravity and magnetics</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>resistivity/IP</td>
<td>292–93</td>
<td></td>
</tr>
<tr>
<td>noise-adjusted singular value deconvolution</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>non- uniqueness</td>
<td>17, 59, 75, 79–81, 167</td>
<td></td>
</tr>
<tr>
<td>NRM. See remanent magnetism:natural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyquist</td>
<td>25, 27</td>
<td></td>
</tr>
<tr>
<td>frequency</td>
<td>26, 31</td>
<td></td>
</tr>
<tr>
<td>interval</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>objective function</td>
<td>75–77</td>
<td></td>
</tr>
<tr>
<td>off-time (EM)</td>
<td>305, 313, 342</td>
<td></td>
</tr>
<tr>
<td>measurements</td>
<td>304–5, 315, 342</td>
<td></td>
</tr>
<tr>
<td>off-time (IP)</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Ohm’s Law</td>
<td>240, 254, 269</td>
<td></td>
</tr>
<tr>
<td>on-time (EM)</td>
<td>305, 344</td>
<td></td>
</tr>
<tr>
<td>measurements</td>
<td>304–5, 342–44</td>
<td></td>
</tr>
<tr>
<td>on-time (IP)</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>ophiolite</td>
<td>132, 389</td>
<td></td>
</tr>
<tr>
<td>optical illusion</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>overburden</td>
<td>73</td>
<td>See also regolith conductive and current channelling, 311</td>
</tr>
<tr>
<td>effect on EM data</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>effect on frequency domain EM</td>
<td>301, 340</td>
<td></td>
</tr>
<tr>
<td>effect on resistivity/IP data</td>
<td>259, 263, 277, 289–90, 297</td>
<td></td>
</tr>
<tr>
<td>and electromagnetic coupling</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>and EM survey design</td>
<td>312, 314–15, 344</td>
<td></td>
</tr>
</tbody>
</table>
Index

overburden (cont.)
definition, 255
EM response, 308–10, 312, 319–20, 326, 330
airborne EM, 344
downhole EM, 336–37
fixed-loop configuration, 322
in-loop configuration, 320
separated-loop configuration, 322
mapping, 318–19
resistivity/IP response, 285
effect on gravity and magnetics, 164–65
effect on γ-rays, 196
oxygen fugacity, 140–41, 149
downhole logging: prompt
pair production, 196
palaeochannel, 24, 224, 259, 340
EM response, 345
gap response, 196
pants-legs response, 283–84
examples, 285–87
paramagnetism, 92, 139, 145, 157, 160
and Curie temperature, 93
and Curie temperature, 93
and electrical properties, 237, 239
and gravitational anomalies, 86
liquid-junction, 261, 264
mineral (sulphide), 261
shale (Nernst), 261, 264
streaming (electrofiltration), 260, 263
differential, 387
effect on density, 130
effect on magnetic field, 130
effect on radioelement content, 216
effect on radiometric data, 205, 207–8
effect on seismic properties, 386–88, 392
over-, 387
pore, 387
primary
magnetic field, 244, 246, 300
creating, 301
waveform, 271, 313, 340–44
principal components analysis, 206
probe (downhole), 29, 330
profile analysis (EM), See also decay (EM): analysis
profile plot, 48, 209
examples, 48, 61, 161, 186, 283
multichannel (EM), 316
examples, 48, 317, 329, 334, 347
prompt fission neutron logging.
See downhole logging: prompt
prospect-scale surveys, 4, 24–25, 37
EM, 236, 313, 333, 337
gravity, 85
magnetics, 85, 116, 173
resistivity/IP, 236, 295
seismic, 352, 401
pseudocolour display, 51, 63, 67, 106, 209
pseudodepth, 49
(EM), 345
resistivity/IP, 273, 275, 278
maps, 37, 278
pseudo-geological map, 58, 67–70,
See also geological mapping
definition, 24
polygons, 68
structural framework, 68
pseudogravity, 120, 122, 124, 126, 165
pseudosection, 49
resistivity/IP, 274, 278, 283–88
seismic, 351, 377
pseudovolume, 51
resistivity/IP, 274
seismic, 351, 377
publications on mining geophysics. See Appendix 7
radio imaging in mine. See Appendix 5
radioactivity
genuine, 194–96
sources in the natural environment, 198–99
units, 197–98
radioelements
crustal abundances, 198–99
in the geological environment, 210–13
altered and metamorphic rocks, 216–17
igneous rocks, 216
mineralised environments, 219–20, 223–27
near-surface, 217–19
sedimentary rocks, 217
radio-frequency EM methods. See Appendix 5
radioisotopes. See radioelements
radiometric method
data acquisition, 199–205
data enhancement and display, 209–10
data reduction, 205–9
example data, 57, 223–29
fundamentals, 193–94
interpretation, 220–23
physical property contrasts, 2, 17, 23, 67
and geophysical responses, 16–17, 24
and modelling, 70, 75, 79–80
Pine Point area, Canada, 61, 288
pipelines, 18–19, 60, 260
and electrical and EM data, 260, 290
and magnetic data, 164
polarisation. See electrical properties
potential difference, 239–40
electrical, 237, 239
gravitational anomaly, 86
liquid-junction, 261, 264
mineral (sulphide), 261
shale (Nernst), 261, 264
streaming (electrofiltration), 260, 263
trend, 159
pseudovolume, 51
downhole EM, 336
airborne EM, 344
powerlines, 18
Prairie Evaporite, Saskatchewan, 230, 382
Pine Point area, Canada, 61, 288
P–S waves: P–S conversion
metamorphic rocks, 147, 150
mineralised environments, 152, 188
relationship between volume and rock
susceptibility, 138
sedimentary rocks, 144
seismic properties, 390
Qian’an area, China, 161
quality factor, 357, 392
quartzite, 132, 265, 384
radioactive.
radioisotopes. See radioelements
radioelements
fundamentals, 194–96
sources in the natural environment, 198–99
units, 197–98
radioisotopes
radiofrequency EM methods. See Appendix 5
radioactivity
radon, 198, 205, 207–8, 212, 223
railways, 18, 60
and electrical and EM data, 260
and magnetic data, 164
and radiometrics, 222
ramp time, 301, 313, 315
ratios, 39
of radioelements, 216, 220, 223, 225, 227
of radiometric channels, 210
examples, 224, 226
rays
critically refracted, 361
definition, 355
diffracted, 358–59
incident, 359
post-critically reflected, 361
reflected, 359, 362
transmitted, 359, 362
reactance
capacitive, 243–44
inductive, 243–44
receiver, 3
airborne EM, 340, 342, 344
coil, 244
dipole, 267, 292
downhole EM, 330–31
electrodes, 269
EM, 300, 304, See also B-field sensor (EM), dB/dsensor (EM)
multichannel, 275
resistivity/IP, 262, 272
reconnaissance surveys, 4, 26, 37
EM, 313–14
gravity, 97
radiometrics, 204, 224
resistivity/IP, 275, 277, 289
Red Mountain, USA, 150
red–green–blue, 51
reduction-to-pole, 123–24, 163, 165
reflections. See seismic arrivals: reflected
reflectivity series, 396, 399
reflector. See acoustic impedance: contrasts: continuous (reflectors)
refraction, 358, 360, 368
critical, 359, 361
regolith, 19, 21, 59, 217, See also overburden
density, 133
electrical and EM response, 263
electrical properties, 256–57
gravity response, 164
magnetic response, 164
magnetism, 151
mapping, 194, 236
radioelement content, 218
seismic properties, 391
relative phase shift, 273
remnant magnetism, 92
age of, 159
analysis of data, 159
and data processing, 124
and magnetic anomalies, 143–44, 162–63
and modelling, 169
and survey design, 115
crystallisation, 144, 150
detrital, 144
direction, 91, 93
effect of lightning strikes, 158, 176
fundamentals, 91
magnetic response, 163, 179, 184
measuring, 158
natural (NRM), 91, 158
of the geological environment
altered and metamorphosed rocks, 147–48, 150
igneous rocks, 143–44
magnetic minerals, 92, 136–38, 140
metamorphosed and altered rocks, 147, 150–51
mineralised environments, 152, 155
near-surface, 151
sedimentary rocks, 144–45
post-depositional, 145
primary, 91, 143–44
removal using palaeomagnetic cleaning, 158
secondary, 91, 144
stability, 138, 144, 150
thermo-, 143, 150
tissue, 91, 150
remote sensing, 1, 57, 60, 222
repeat measurements. See stacking (repeat measurements)
resistance, 240, 253
contact, 275
definition, 239
single-point, 277, 294
units, 240
resistivity, 3
apparent, 271
complex, 272
definition, 235, 240
of the sub-surface, 269–71
time, 270
units, 240
resistivity/IP. See also B-field sensor (EM), dB/dsensor (EM)
logging. See downhole logging: resistivity/IP
resistivity/IP method
data acquisition, 273–78
data display and interpretation, 278, 289–93
maps, 288
profiles, 281–82
pseudosections, 283–84
soundings, 278–80
downhole surveys, 277
electrical parameters, 269–73
example data
maps, 288–90
profiles, 282–83
pseudosections, 284–88
soundings, 280–81
fundamentals, 266–68
time and frequency domain, 271
resolution, 4
airborne EM surveys, 339–40
and gradient data, 16, 44, 126
and modelling, 72, 79
and survey height, 28
and survey line spacing, 29, 31
downhole EM surveys, 330
EM surveys, 313–15, 319
radiometric surveys, 202, 204
resistivity/IP surveys, 274
seismic surveys, 357, 393–96
RGB. See red–green–blue
rhylolite, 142, 155, 401
See also felsic rocks
right-hand rule, 243
RIM. See radio imaging in mine
time, 29, 165, 259
RPS. See relative phase shift
RTP. See reduction-to-pole
SAM. See sub-audio magnetic method
sampling, 14, 25–26, 30
See also aliasing, anomaly: definition
frequency, 25
interval, 25–26, 37
sandstone, 239, See also clastic sediments
density, 132
electrical properties, 250–51
magnetic response, 178
magnetism, 147
radioelement content, 217–18
seismic properties, 387
seismic reflection response, 399
saprolite, 133, 151, 249, 256, 391
Saskatchewan Potash Belt, Canada, 398
Sato and Mooney electrochemical model,
261, 265
scalar quantity, 15
schist, 214, 217, 265, 293, 297, 320
graphic, 148, 265, 293
Index

scintillometer, 201
secondary magnetic field, 300, 302–4
secular variation, 110, 117
SEDEX. See mineralisation type:SEDEX
seismic arrivals
air wave, 371
critically refracted, 371
definition, 351
direct, 365
air wave, 365
body wave, 365
surface wave, 365
first, 352, 371–72, 403, 405
ghost, 369
multiples, 368–69
recognising different types, 365
reflected, 366–68, 372
seismic attributes, 393
seismic method
data acquisition, 363–64
data display, 364–66
fundamentals, 351–52
in-seam surveys, 402–3
tomographic surveys, 403–4
seismic properties. See also acoustic impedance, density, velocity
definition, 383
measuring, 392–93
of the geological environment
absorption, 392
common rock types, 384
effects of chemistry and mineralogy, 384
effects of metamorphism and alteration, 388–89
effects of porosity and pore contents, 384–87
effects of temperature and pressure, 387
faults and fault rocks, 389
mineralised environments, 389–90
near-surface, 390–91
summary, 392
relationship with density, 353, 384
relationship with elasticity, 353
relationship with porosity, 386
seismic reflection method
data acquisition, 367–69
data processing, 369–83
example data, 383, 394–95, 398–401
interpretation, 393–98
seismic refraction method. See Appendix 6
seismic sources, 351–52, 363–64
self-demagnetisation, 93–94
self-inductance, 244
self-potential method. See SP method
seismoconductor, 248
sensor. See geophone, hydrophone, receiver
serpentinitisation, 131, See also alteration and density, 131, 133, 159
and magnetism, 143, 149–50, 159
and seismic properties, 384, 389–90, 392
and seismic responses, 398
serpentine, 150, 389
seric, 19, 259
shaded relief, 56–57
and data QC, 33, 117
applications, 58, 64, 164
pitfalls, 60, 65, 67, 70
shale, 286, See also argillaceous rocks
black, 118
density, 132
electrical and EM response, 259, 263,
319–20, 345
electrical properties, 249–50
graphic, 320
magnetic response, 184
magnetism, 147–48
radioelement content, 217–18
radiometric response, 222, 230
seismic reflection response, 399
sulphide, 320
shear zone. See faults
sideswipe, 382, 398
Sierra Nevada, USA, 170
silts, 143, 401
SIP. See resistivity:complex skin depth, 247, 307
slate, 132, 170, 217, 328
smoke ring, 307–8, 318
Snell’s Law, 360–61
SNR. See signal-to-noise ratio
sonic logging. See downhole logging:sonic sounding, 73
definition, 14
EM, 313, 315
vertical electric, 274, 277–78, 281, 290
SP logging. See downhole logging:SP
SP method
data acquisition, 262–63
example data, 61, 264–66
fundamentals, 260
interpretation, 263–65
space domain, 14, 40–42, 46–47, See also Appendix 2
spectral analysis. See Appendix 2
spectral smoothing, 206
spectrometer, 201–2, 205, 207–8
spherelite, 263, 284, 286, 288, 298
electrical properties, 248, 252, 268
magnetism, 136
seismic properties, 390
spheroid (reference), 100–1
spikes, 19, 27, 33, 43, 116
and data processing, 42, 44–46, See also de-spiking
example, 26, 47
splits, 35–36, 38
Akima, 36
cubic, 35
tension, 36
SPM. See superparamagnetism
spontaneous polarisation method. See SP method
spread (seismic), 363
stacked profiles, 49, 164, 209
example, 50
stacking (repeat readings), 38–39, 97, 342, 364
example, 39, 47
stacking (seismic data), 367–69, 372–77, 380
fold of, 369, 376, 380
static correction, 19, 371–72
step response, 306
and conductor quality, 310, 312, 318, 331
and conductor size, 312
and superparamagnetism, 327
confined overburden, 309
half-space, 308–9
measuring, 305–6, 342
airborne EM, 341–42
stereographic projection, 158
stitching. See merging datasets
strip-of-investigation (radiometrics), 203–4
structural index, 166, 174
sub-audio magnetic method. See Appendix 3
Sudbury area, Canada, 61, 93
sulphides, 24, 118, 152, 263, 266, 283–84,
286, 288, 298. See also pyrrhotite, sphalerite
density, 127, 129
electrical properties, 251, 255
magnetism, 136–37, 147
seismic properties, 390, 392
SP response, 262
superparamagnetism, 138, 327–28
surface wave. See wavesurface
survey design, 27–31
susceptibility. See also induced magnetism fundamentals, 90–91
susceptibility logging. See downhole logging: susceptibility
susceptibility meter, 155
swamps, 223, 239
S-wave. See waves:
Swiss Alps, Switzerland, 147–48
synthetic seismogram, 393, 396–97, 399, 401
system footprint, 27–29, 59, 73
radiometrics, 202, 209, 222
system geometry (EM)
co-axial loops, 314
co-planar loops, 314
fixed-loop mode, 315–16
horizontal loop, 313
Index

in-loop configuration, 314, 316
loop size, 301, 314–15
moving-loop mode, 314–15
separated-loop configuration, 314

T0, 367–68, 371, 373–76
tares, 22, 96, 98
targeting, 3, 26, 58, 65, See also anomaly: detection
and data display, 48
and survey design, 27, 31
drill, 6, 25, 330
electrical and EM, 258
EM, 248, 318–20, 328, 344
gravity, 85, 98, 134, 159, 162, 169
magnetics, 85, 116, 159, 162, 169
mineralised environments, 23
radiometrics, 209, 223
resistivity/IP, 20, 223
TDEM. See time domain-EM
TDR. See tilt derivative
telluric currents, 259, 263, 271, 289
tensor, 16
time-domain, 16
measurements
gravity, 98
magnetic, 94, 109, 113
ternary image, 58, 164, 209–10, 223
examples, 57, 225, 227–28
terrain
clearance, 20, 59, 115, 342, 345
mean (MTC), 28
correction, 102, 104–6, 164–65
effects. See artefacts: related to topography
model, 21, 164–65, 209, 227
and reduction of gravity data, 98, 105
rugged, 78
EM, 18, 21, 29, 331, 344–45
gravity, 104–5, 165
magnetics, 94, 115–17, 165
resistivity/IP, 284
texture
effect on electrical properties, 250–52, 254–55, 303
effect on magnetic properties, 145
in EM images, 319
in images, 63
in magnetic images, 177, 184, 186
in radiometric images, 207
thorium. See radioelements
tidal correction, 100
tie lines, 29, 33, 114–15, 117–18
tilt derivative, 119, 122, 127
time constant (τ), 312, 317, 320, 322, 326, See also decay (EM)
and conductor quality, 310, 312
definition, 310
map, 317, 320
time domain, 14, 40, See also Appendix 2
EM, 244, 300–1
filtering, 44
IP, 271–72
time series, 25, 28
definition, 14
EM, 39, 47, 304, 342
IP, 272
seismic, 46, 49, 351
time–distance (T–X) graphs, 365–66
TMI. See total magnetic intensity
and tomography. See modelling: inverse
tomographic
tonalite, 142, 176, 401
topography. See terrain
total count, 202, 204, 209, 224
total gradient. See analytic signal
total horizontal gradient, 42, 44,
119–20, 126
total magnetic intensity (TMI), 93, 113
trace (seismic), 351, 364–65, 377
migrated, 379
scaling, 366, 372, 376
stacked, 369, 373, 376
synthetic, 396
transmitter, 3, 14, 17–18, 78, 244
airborne EM, 340–41, 343
coil, 244
dipole, 267, 292
downhole EM, 330–31, 333
electrodes, 257, 269
EM, 244, 257–58, 300–1, 304
loop size and shape, 313, 315, 333
radio, 260
resistivity/IP, 257, 275, 295
TRM. See remanent magnetism: thermoturbidites, 184, 337
magnetic response, 178, 184
magnetism, 144
radioelement content, 217
ultramafic rocks, 216, See also pegmatite
ultramafic rocks, 216, 234, 173, 176, 218,
See also komatiite
density, 130–33
magnetic response, 178, 184
magnetism, 143, 147, 150, 176
radioelement content, 216
seismic properties, 384, 389–90, 392
seismic reflection response, 400
uranium. See radioelements
vectors, 7, See also Appendix 1
components, 304, 332
magnetic, 89, 91–92, 136, 148, 158, 184
magnetic field, 93
measurement, 51, 258
quantity, 15, 80, 86
vegetation, 21, 29, 112
effect on radionics, 205, 219, 222, 227
effect on SP data, 263
velocity, See also seismic properties
current system, 307–8
electromagnetic, 246
flow (ions), 260
ground, 364
interval, 368, 373
measuring, 392–93
migration, 381, 383
model, 377, 381, 405
of direct arrivals, 365
of reflected arrivals, 368
pull-up, 377, 381
push-down, 382
P-wave, 354
relationship with elasticity, 353
relationship with frequency, period and wavelength, 352
root-mean-square (RMS), 368, 373
smoke ring, 308
stacking, 376–77
surface wave, 354
S-wave, 354
tomogram, 403–5
vertical electrical sounding. See sounding: vertical electric
VES. See vertical electric sounding
VMS. See mineralisation: type: volcanicogenic
massive sulphide
volcaniclastics, 118, 154, 178, 225, 284, 297, 401
electrical properties, 251
radioelement content, 221
voltage, 239–40
induced, 304, 339
primary, 271
relationship with current, 240, 243–44
secondary, 271, 290
VRM. See remanent magnetism: viscous
water table
electrical properties, 249, 257, 261
seismic properties, 387
wave, See also electromagnetic wave
waveforms (fundamentals). See Appendix 2
wavefront
incident, 361
wavefronts
definition, 355
diffracted, 359, 363
distance, 356–57, 360
incident, 359, 361, 363
reflected, 361, 363
snapshot, 358, 361–63
transmitted, 361
Index

- wavelet, 353, 363–64
 - definition, 352
- distortion during propagation, 357
- dominant frequency/period, 355–57, 393, 395, 397
 - definition, 352
- Ricker, 396, 399
- zero phase, 372
- waves
 - body, 352–54, 357
 - amplitude, 356
 - wavefront, 356
- diving, 361
- guided, 361
- head, 361, 363
- P-, 353–54, 364–65
- Rayleigh, 354, 364
- S-, 354
- surface, 352, 354, 364–65, 369, 372
 - amplitude, 357
- wavefront, 355–56
- Wawa area, Canada, 163
- Witwatersrand Basin, South Africa, 394, 398
- Yankee Fork mining district, USA, 133, 154
- zero-offset seismic data, 367, 369, 372–73, 394
- zoned intrusions, 64, 143–44