High global demand for mineral commodities has led to increasing application of geophysical technologies to a wide variety of mineral deposits. Co-authored by a university professor and an industry geophysicist, this state-of-the-art overview of geophysical methods provides a careful balance between principles and practice. It takes readers from the basic physical phenomena, through the acquisition and processing of geophysical data, to the creation of subsurface models and their geological interpretation.

- Presents detailed descriptions of all the main geophysical methods, including gravity, magnetic, radiometric, electrical, electromagnetic and seismic methods.
- Explains the cutting-edge current practice in exploration and mining geophysics for the discovery of ‘blind’ mineral deposits.
- Describes techniques in a consistent way and without the use of complex mathematics, enabling easy comparison between the various methods.
- Gives a practical guide to data acquisition, processing and accurate interpretation of geophysical datasets.
- Includes presentation and analysis of new petrophysical data, giving geologists and geophysicists key information on the physical properties of rocks.
- Emphasises extraction of maximum geological information from geophysical data, providing explanations of data modelling, and common interpretation pitfalls.
- Provides examples from all the main types of mineral deposit around the world, giving students exposure to real geophysical data.
- Richly illustrated with over 300 full-colour figures, with access to electronic versions for instructors.

Designed for advanced undergraduate and graduate courses in minerals geoscience and geology, this book is also a valuable reference for geologists and professionals in the mining industry wishing to make greater use of geophysical methods.

Michael Dentith is Professor of Geophysics at The University of Western Australia and a research theme leader in the Centre for Exploration Targeting. He has been an active researcher and teacher of university-level applied geophysics and geology for more than 25 years, and he also consults to the minerals industry. Professor Dentith’s research interests include geophysical signatures of mineral deposits (about which he has edited two books), petrophysics and terrain scale analysis of geophysical data for exploration targeting. He is a member of the American Geophysical Union, Australian Society of Exploration Geophysicists, Society of Exploration Geophysicists and Geological Society of Australia.

Stephen Mudge has worked as an exploration geophysicist in Australia for more than 35 years, and currently works as a consultant in his own company, Vector Research. He has worked in many parts of the world and has participated in a number of new mineral discoveries. Mr Mudge has a keen interest in data processing techniques for mineral discovery and has produced several publications reporting new developments. He is a member of the Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists, Australian Society of Exploration Geophysicists, Society of Exploration Geophysicists and European Association of Engineers and Geoscientists.
More and more, great ore deposits are being found under cover and knowledge of exploration geophysics provides a distinct advantage in their discovery. Dentith and Mudge provide a clear, comprehensive, up-to-date, and (very significantly) applied approach for the general geologist, demonstrating how to locate concealed orebodies by employing modern-day geophysical techniques.

Richard J. Goldfarb, Fellow, Society of Economic Geologists

'Readers will really appreciate the up-to-date system descriptions, examples and case histories presented in this new book. In particular, the diagrams in this textbook are superb; the explanatory diagrams have been drawn professionally and the geophysical data and images are shown in full colour.'

Professor Richard Smith, Laurentian University, Ontario, Canada
Geophysics for the Mineral Exploration Geoscientist

Michael Dentith
The University of Western Australia, Perth

Stephen T. Mudge
Vector Research Pty Ltd, Perth
CONTENTS

List of online appendices ix
List of figure credits xi
Preface xv
Acknowledgements xvi

1
Introduction

1.1 Physical versus chemical characterisation of the geological environment 2

1.2 Geophysical methods in exploration and mining

1.2.1 Airborne, ground and in-ground surveys 3

1.2.2 Geophysical methods and mineral deposits 4

1.2.3 The cost of geophysics 5

1.3 About this book 6

Further reading 11

2
Geophysical data acquisition, processing and interpretation

2.1 Introduction 13

2.2 Types of geophysical measurement

2.2.1 Absolute and relative measurements 14

2.2.2 Scalars and vectors 15

2.2.3 Gradients 15

2.3 The nature of geophysical responses 16

2.4 Signal and noise

2.4.1 Environmental noise 17

2.4.2 Methodological noise 18

2.5 Survey objectives

2.5.1 Geological mapping 23

2.5.2 Anomaly detection 24

2.5.3 Anomaly definition 25

2.6 Data acquisition

2.6.1 Sampling and aliasing 25

2.6.2 System footprint 27

2.6.3 Survey design 27

2.6.4 Feature detection 31

2.7 Data processing

2.7.1 Reduction of data 32

2.7.2 Interpolation of data 34

2.8 Data display

2.8.1 Types of data presentation 48

2.8.2 Image processing 51

2.9 Data interpretation – general

2.9.1 Interpretation fundamentals 59

2.9.2 Removing the regional response 60

2.10 Data interpretation – qualitative analysis

2.10.1 Spatial analysis of 2D data 63

2.10.2 Geophysical image to geological map 67

2.11 Data interpretation – quantitative analysis

2.11.1 Geophysical models of the subsurface 70

2.11.2 Forward and inverse modelling 74

2.11.3 Modelling strategy 78

2.11.4 Non-uniqueness 79

Summary 81

Review questions 82

Further reading 82

3
Gravity and magnetic methods

3.1 Introduction 85

3.2 Gravity and magnetic fields

3.2.1 Mass and gravity 87

3.2.2 Gravity anomalies 88

3.2.3 Magnetism and magnetic fields 89

3.2.4 Magnetic anomalies 93

3.3 Measurement of the Earth’s gravity field

3.3.1 Measuring relative gravity 96

3.3.2 Measuring gravity gradients 98

3.3.3 Gravity survey practice 98

3.4 Reduction of gravity data

3.4.1 Velocity effect 99

3.4.2 Tidal effect 99

3.4.3 Instrument drift 100

3.4.4 Variations in gravity due to the Earth’s rotation and shape 100

3.4.5 Variations in gravity due to height and topography 102

3.4.6 Summary of gravity data reduction 106

3.4.7 Example of the reduction of ground gravity data 106
Contents

3.5 Measurement of the Earth’s magnetic field 106
3.5.1 The geomagnetic field 109
3.5.2 Measuring magnetic field strength 112
3.5.3 Magnetic survey practice 114

3.6 Reduction of magnetic data 116
3.6.1 Temporal variations in field strength 116
3.6.2 Regional variations in field strength 117
3.6.3 Terrain clearance effects 117
3.6.4 Levelling 117
3.6.5 Example of the reduction of aeromagnetic data 117

3.7 Enhancement and display of gravity and magnetic data 118
3.7.1 Choice of enhancements 122
3.7.2 Reduction-to-pole and pseudogravity transforms 123
3.7.3 Wavelength filters 124
3.7.4 Gradients/derivatives 125

3.8 Density in the geological environment 127
3.8.1 Densities of low-porosity rocks 127
3.8.2 Densities of porous rocks 129
3.8.3 Density and lithology 130
3.8.4 Changes in density due to metamorphism and alteration 131
3.8.5 Density of the near-surface 133
3.8.6 Density of mineralised environments 133
3.8.7 Measuring density 134
3.8.8 Analysis of density data 134

3.9 Magnetism in the geological environment 135
3.9.1 Magnetic properties of minerals 136
3.9.2 Magnetic properties of rocks 138
3.9.3 Magnetism of igneous rocks 140
3.9.4 Magnetism of sedimentary rocks 144
3.9.5 Magnetism of metamorphosed and altered rocks 145
3.9.6 Magnetism of the near-surface 151
3.9.7 Magnetism of mineralised environments 151
3.9.8 Magnetic property measurements and their analysis 155
3.9.9 Correlations between density and magnetism 159

3.10 Interpretation of gravity and magnetic data 160
3.10.1 Gravity and magnetic anomalies and their sources 160
3.10.2 Analysis of gravity and magnetic maps 163
3.10.3 Interpretation pitfalls 164
3.10.4 Estimating depth-to-source 165
3.10.5 Modelling source geometry 167
3.10.6 Modelling pitfalls 167

3.11 Examples of gravity and magnetic data from mineralised terrains 169
3.11.1 Regional removal and gravity mapping of palaeochannels hosting placer gold 169
3.11.2 Modelling the magnetic response associated with the Wallaby gold deposit 172
3.11.3 Magnetic responses from an Archaean granitoid-greenstone terrain: Kirkland Lake area 173

3.11.4 Magnetic responses in a Phanerozoic Orogenic terrain: Lachlan Foldbelt 179
3.11.5 Magnetic and gravity responses from mineralised environments 186

Summary 188

Review questions 190
Further reading 190

4 Radiometric method 193

4.1 Introduction 193

4.2 Radioactivity 194
4.2.1 Radioactive decay 194
4.2.2 Half-life and equilibrium 195
4.2.3 Interaction of radiation and matter 196
4.2.4 Measurement units 197
4.2.5 Sources of radioactivity in the natural environment 198

4.3 Measurement of radioactivity in the field 199
4.3.1 Statistical noise 199
4.3.2 Radiation detectors 201
4.3.3 Survey practice 204

4.4 Reduction of radiometric data 205
4.4.1 Instrument effects 205
4.4.2 Random noise 206
4.4.3 Background radiation 207
4.4.4 Atmospheric radon 207
4.4.5 Channel interaction 208
4.4.6 Height attenuation 208
4.4.7 Analytical calibration 208

4.5 Enhancement and display of radiometric data 209
4.5.1 Single-channel displays 209
4.5.2 Multichannel ternary displays 209
4.5.3 Channel ratios 210
4.5.4 Multivariant methods 210

4.6 Radioelements in the geological environment 210
4.6.1 Disequilibrium in the geological environment 212
4.6.2 Potassium, uranium and thorium in igneous rocks 216
4.6.3 Potassium, uranium and thorium in altered and metamorphosed rocks 216
4.6.4 Potassium, uranium and thorium in sedimentary rocks 217
4.6.5 Surficial processes and K, U and Th in the overburden 217
4.6.6 Potassium, uranium and thorium in mineralised environments 219

4.7 Interpretation of radiometric data 220
4.7.1 Interpretation procedure 222
4.7.2 Interpretation pitfalls 222
4.7.3 Responses of mineralised environments 223
4.7.4 Example of geological mapping in a fold and thrust belt: Flinders Ranges 227
4.7.5 Interpretation of γ-logs 229
5 Electrical and electromagnetic methods

5.1 Introduction

5.2 Electricity and magnetism
5.2.1 Fundamentals of electricity
5.2.2 Fundamentals of electromagnetism
5.2.3 Electromagnetic waves

5.3 Electrical properties of the natural environment
5.3.1 Conductivity/resistivity
5.3.2 Polarisation
5.3.3 Dielectric properties
5.3.4 Properties of the near-surface

5.4 Measurement of electrical and electromagnetic phenomena
5.4.1 Electrodes
5.4.2 Electrical and electromagnetic noise

5.5 Self-potential method
5.5.1 Sources of natural electrical potentials
5.5.2 Measurement of self-potential
5.5.3 Display and interpretation of SP data
5.5.4 Examples of SP data from mineral deposits

5.6 Resistivity and induced polarisation methods
5.6.1 Electric fields and currents in the subsurface
5.6.2 Resistivity
5.6.3 Induced polarisation
5.6.4 Measurement of resistivity/IP
5.6.5 Resistivity/IP survey practice
5.6.6 Display, interpretation and examples of resistivity/IP data
5.6.7 Interpretation pitfalls
5.6.8 Resistivity/IP logging
5.6.9 Applied potential/mise-à-la-masse method

5.7 Electromagnetic methods
5.7.1 Principles of electromagnetic surveying
5.7.2 Subsurface conductivity and EM responses
5.7.3 Acquisition of EM data
5.7.4 Processing and display of EM data
5.7.5 Interpretation of EM data
5.7.6 Interpretation pitfalls
5.7.7 Examples of EM data from mineral deposits

5.8 Downhole electromagnetic surveying
5.8.1 Acquisition of DHEM data
5.8.2 Display and interpretation of DHEM data
5.8.3 Examples of DHEM responses from mineral deposits
5.8.4 Induction logging

5.9 Airborne electromagnetic surveying
5.9.1 Acquisition of AEM data
5.9.2 AEM systems
5.9.3 AEM survey practice

5.9.4 Display and interpretation of AEM data
5.9.5 Examples of AEM data from mineralised terrains

6 Seismic method

6.1 Introduction

6.2 Seismic waves
6.2.1 Elasticity and seismic velocity
6.2.2 Body waves
6.2.3 Surface waves

6.3 Propagation of body waves through the subsurface
6.3.1 Wavefronts and rays
6.3.2 Fresnel volume
6.3.3 Seismic attenuation
6.3.4 Effects of elastic property discontinuities

6.4 Acquisition and display of seismic data
6.4.1 Seismic sources
6.4.2 Seismic detectors
6.4.3 Displaying seismic data

6.5 Seismic reflection method
6.5.1 Data acquisition
6.5.2 Data processing

6.6 Variations in seismic properties in the geological environment
6.6.1 Seismic properties of common rock types
6.6.2 Effects of temperature and pressure
6.6.3 Effects of metamorphism, alteration and deformation
6.6.4 Seismic properties of mineralisation
6.6.5 Seismic properties of near-surface environments
6.6.6 Anisotropy
6.6.7 Absorption
6.6.8 Summary of geological controls on seismic properties
6.6.9 Measuring seismic properties

6.7 Interpretation of seismic reflection data
6.7.1 Resolution
6.7.2 Quantitative interpretation
6.7.3 Interpretation pitfalls
6.7.4 Examples of seismic reflection data from mineralised terrains

6.8 In-seam and downhole seismic surveys
6.8.1 In-seam surveys
6.8.2 Tomographic surveys

6.9 Comparison of electromagnetic and seismic methods
ONLINE APPENDICES

Available at www.cambridge.org/dentith

Appendix 1 Vectors

- **A1.1** Introduction
- **A1.2** Vector addition

Appendix 2 Waves and wave analysis

- **A2.1** Introduction
- **A2.2** Parameters defining waves and waveforms
- **A2.3** Wave interference
- **A2.4** Spectral analysis

Appendix 3 Magnetometric methods

- **A3.1** Introduction
- **A3.2** Acquisition of magnetometric data
- **A3.3** Magnetometric resistivity
 - **A3.3.1** Downhole magnetometric resistivity
- **A3.4** Magnetic induced polarisation
 - **A3.4.1** Example: Poseidon massive nickel sulphide deposit
- **A3.5** Total magnetic field methods

Appendix 4 Magnetotelluric electromagnetic methods

- **A4.1** Introduction
- **A4.2** Natural source magnetotellurics
 - **A4.2.1** Survey practice
- **A4.3** Controlled source audio-frequency magnetotellurics
 - **A4.3.1** Acquisition of CSAMT data
 - **A4.3.2** Near-field and far-field measurements
 - **A4.3.3** Survey design
- **A4.4** Reduction of MT/AMT and CSAMT data
 - **A4.4.1** Resistance and phase-difference
 - **A4.4.2** Static effect
- **A4.5** Display and interpretation of MT data
 - **A4.5.1** Recognising far-field responses in CSAMT data
 - **A4.5.2** Model responses
 - **A4.5.3** Interpretation pitfalls
 - **A4.5.4** Modelling
- **A4.6** MT versus other electrical and EM methods
- **A4.7** Examples of magnetotelluric data
 - **A4.7.1** AMT response of the Regis kimberlite pipe
 - **A4.7.2** CSAMT response of the Golden Cross epithermal Au-Ag deposit
- **A4.8** Natural source airborne EM systems
 - **A4.8.1** AFMAG

Appendix 5 Radio and radar frequency methods

- **A5.1** Introduction
- **A5.2** High-frequency EM radiation in the geological environment
- **A5.3** Ground penetrating radar surveys
 - **A5.3.1** Acquisition of GPR data
 - **A5.3.2** Processing of GPR data
 - **A5.3.3** Display and interpretation of GPR data
 - **A5.3.4** Examples of GPR data from mineralised terrains
- **A5.4** Continuous wave radio frequency surveys
 - **A5.4.1** Example RIM data – Mount Isa copper sulphide deposit

Appendix 6 Seismic refraction method

- **A6.1** Introduction
- **A6.2** Acquisition and processing of seismic refraction data
 - **A6.2.1** Picking arrival times
- **A6.3** Interpretation of seismic refraction data
 - **A6.3.1** Travel times of critically refracted arrivals
List of online appendices

A6.3.2 Analysis of travel time data
A6.3.3 Determining subsurface structure from travel times
A6.3.4 Interpretation pitfalls
A6.3.5 Example – mapping prospective stratigraphy using the CRM

Appendix 7 Sources of information on exploration and mining geophysics

A7.1 Journals and magazines
A7.1.1 Exploration Geophysics and Preview
A7.1.2 Geophysics and The Leading Edge
A7.1.3 Geophysical Prospecting and First Break
A7.1.4 Journal of Applied Geophysics
A7.1.5 Other periodicals

A7.2 Case-histories/geophysical signatures publications
A7.3 Internet
The following institutions, publishers and authors are gratefully acknowledged for their kind permission to use redrawn figures based on illustrations in journals, books and other publications for which they hold copyright. We have cited the original sources in our figure captions. We have made every effort to obtain permissions to make use of copyrighted materials and apologise for any errors or omissions. The publishers welcome errors and omissions being brought to their attention.

<table>
<thead>
<tr>
<th>Institutions and publishers</th>
<th>Figure number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen & Unwin (Taylor and Francis)</td>
<td>Fig. 5.42, page 147 2.31b</td>
</tr>
<tr>
<td>American Association of Petroleum Geologists</td>
<td>AAPG Bulletin 5.62</td>
</tr>
<tr>
<td>Australasian Institute of Mining and Metallurgy</td>
<td>Geology of the Mineral Deposits of Australia and Papua New Guinea 3.76c, 5.55c</td>
</tr>
<tr>
<td>Australian Society of Exploration Geophysicists</td>
<td>Exploration Geophysics 3.17, 5.55a,b,c, 5.81a,b,c, 5.89a,b,c, 5.93, A3.3, A5.6, A5.8, A6.9, A6.10d</td>
</tr>
<tr>
<td>Geophysical Signatures of South Australian Mineral Deposits</td>
<td>5.55a, 5.61</td>
</tr>
<tr>
<td>Geophysical Signatures of Western Australian Mineral Deposits</td>
<td>4.24d, 4.30, 5.59</td>
</tr>
<tr>
<td>Preview</td>
<td>3.54</td>
</tr>
<tr>
<td>Burval Working Group, Leibniz Institute for Applied Geosciences</td>
<td>Groundwater Resources in Buried Valleys. A Challenge for the Geosciences 2.19</td>
</tr>
<tr>
<td>Canadian Institute of Mining, Metallurgy and Petroleum</td>
<td>Fundamentals of Geophysics 4.2</td>
</tr>
<tr>
<td>CIM Bulletin</td>
<td>Methods and Case Histories in Mining Geophysics, Proceedings of the Sixth Commonwealth Mining and Metallurgical Congress 3.74, 5.49, A5.3 3.77a</td>
</tr>
<tr>
<td>Canadian Society of Exploration Geophysicists</td>
<td>CSEG Recorder 5.89d</td>
</tr>
<tr>
<td>Centre for Exploration Targeting, The University of Western Australia</td>
<td>Geophysical Signatures of South Australian Mineral Deposits 5.55a 5.61</td>
</tr>
<tr>
<td>Geophysical Signatures of Western Australian Mineral Deposits</td>
<td>4.24d, 4.30, 5.59</td>
</tr>
<tr>
<td>SEG 2004: Predictive Mineral Discovery Under Cover, (Extended Abstracts)</td>
<td>6.41a,c</td>
</tr>
<tr>
<td>Department of Manufacturing, Innovation, Trade, Resources and Energy – South Australia</td>
<td>Geophysical Signatures of South Australian Mineral Deposits 5.55a, 5.61</td>
</tr>
</tbody>
</table>
Institutions and publishers

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elsevier</td>
</tr>
<tr>
<td>Geochimica et Cosmochimica Acta</td>
</tr>
<tr>
<td>Geoexploration</td>
</tr>
<tr>
<td>Journal of Applied Geophysics</td>
</tr>
<tr>
<td>Journal of Geodynamics</td>
</tr>
<tr>
<td>Tectonophysics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Association of Geoscientists and Engineers</td>
</tr>
<tr>
<td>First Break</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Association of Canada</td>
</tr>
<tr>
<td>Geophysics in Mineral Exploration: Fundamentals and Case Histories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Society of America</td>
</tr>
<tr>
<td>Geological Society of America Bulletin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Society of London</td>
</tr>
<tr>
<td>Journal of the Geological Society</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Survey of India</td>
</tr>
<tr>
<td>Indian Minerals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrics</td>
</tr>
<tr>
<td>Applications Manual for Portable Magnetometers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geonics</td>
</tr>
<tr>
<td>Technical Note TN-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoscience Australia</td>
</tr>
<tr>
<td>© Commonwealth of Australia (Geoscience Australia) 2013. These products are released under the Creative Commons Attribution 3.0 Australia Licence.</td>
</tr>
<tr>
<td>AGSO Journal of Australian Geology and Geophysics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Research Centre for Telecommunications, Transmission and Radar; Delft University of Technology</td>
</tr>
<tr>
<td>Proceedings of the Second International Workshop on Advanced Ground Penetrating Radar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralogical Society of America</td>
</tr>
<tr>
<td>Elements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Resources Canada</td>
</tr>
<tr>
<td>© Department of Natural Resources Canada. All rights reserved.</td>
</tr>
<tr>
<td>Geophysics and Geochemistry in the Search for Metallic Ores</td>
</tr>
<tr>
<td>Mining and Groundwater Geophysics 1967</td>
</tr>
<tr>
<td>Uranium Prospecting Handbook (Institute of Materials, Minerals and Mining)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Mining Association</td>
</tr>
<tr>
<td>PG III Northwest Mining Association’s 1998 Practical Geophysics Short Course: Selected Papers</td>
</tr>
<tr>
<td>Practical Geophysics for the Exploration Geologist II</td>
</tr>
<tr>
<td>Institutions and publishers</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>NRC Research Press</td>
</tr>
<tr>
<td>Canadian Journal of Earth Sciences</td>
</tr>
<tr>
<td>Pergamon (Elsevier)</td>
</tr>
<tr>
<td>Applied Geophysics for Geologists and Engineers</td>
</tr>
<tr>
<td>Physical Properties of Rocks: Fundamentals and Principles of Petrophysics</td>
</tr>
<tr>
<td>Plenum Press (Springer Science + Business Media)</td>
</tr>
<tr>
<td>Electrical Properties of Rocks (Fig. 24, page 90)</td>
</tr>
<tr>
<td>Prospects and Developers Association of Canada (Society of Exploration Geophysicists)</td>
</tr>
<tr>
<td>Proceedings of Exploration '97: Fourth Decennial International Conference on Mineral Exploration</td>
</tr>
<tr>
<td>Society of Economic Geologists</td>
</tr>
<tr>
<td>Economic Geology</td>
</tr>
<tr>
<td>Society of Exploration Geophysicists</td>
</tr>
<tr>
<td>An Overview of Exploration Geophysics in China</td>
</tr>
<tr>
<td>Electromagnetic Methods in Applied Geophysics</td>
</tr>
<tr>
<td>Seventy-second Annual Conference (Expanded Abstracts)</td>
</tr>
<tr>
<td>Geophysics</td>
</tr>
<tr>
<td>Geotechnical and Environmental Geophysics, Volume 1</td>
</tr>
<tr>
<td>Hardrock Seismic Exploration</td>
</tr>
<tr>
<td>Springer Science + Business Media</td>
</tr>
<tr>
<td>Pure and Applied Geophysics</td>
</tr>
<tr>
<td>Studia Geophysica et Geodaetica</td>
</tr>
<tr>
<td>Handbook of Geochemistry (Fig. 26-G-1, page 26-G-3)</td>
</tr>
<tr>
<td>Taylor & Francis (www.tandfonline.com on behalf of the Geological Society of Australia)</td>
</tr>
<tr>
<td>Australian Journal of Earth Sciences</td>
</tr>
<tr>
<td>© Geological Society of Australia</td>
</tr>
<tr>
<td>Wiley-Blackwell</td>
</tr>
<tr>
<td>A Petroleum Geologist’s Guide to Seismic Reflection</td>
</tr>
<tr>
<td>Geophysical Prospecting</td>
</tr>
<tr>
<td>Authors</td>
</tr>
<tr>
<td>Bolt, B.</td>
</tr>
<tr>
<td>Francke, J.C. and Yelf, R.</td>
</tr>
<tr>
<td>Garrels, R.M. and Christ, C.L.</td>
</tr>
<tr>
<td>Heithersay, P.S.</td>
</tr>
<tr>
<td>Reeve, J.S. (Cross, K.C.)</td>
</tr>
<tr>
<td>Stanley, J.M.</td>
</tr>
<tr>
<td>Titley, S.R.</td>
</tr>
<tr>
<td>Whiteley, R.J.</td>
</tr>
</tbody>
</table>
PREFACE

This book is about how geophysics is used in the search for mineral deposits. It has been written with the needs of the mineral exploration geologist in mind and for the geophysicist requiring further information about data interpretation, but also for the mining engineer and other professionals, including managers, who have a need to understand geophysical techniques applied to mineral exploration. Equally we have written for students of geology, geophysics and engineering who plan to enter the minerals industry.

Present and future demands for mineral explorers include deeper exploration, more near-mine exploration and greater use of geophysics in geological mapping. This has resulted in geophysics now lying at the heart of most mineral exploration and mineral mapping programmes. We describe here modern practice in mineral geophysics, but with an emphasis on the geological application of geophysical techniques. Our aim is to provide an understanding of the physical phenomena, the acquisition and manipulation of geophysical data, and their integration and interpretation with other types of data to produce an acceptable geological model of the subsurface. We have deliberately avoided presenting older techniques and practices not used widely today, leaving descriptions of these to earlier texts. It has been our determined intention to provide descriptions in plain language without resorting to mathematical descriptions of complex physics. Only the essential formulae are used to clarify the basis of a geophysical technique or a particular point. Full use has been made of modern software in the descriptions of geophysical data processing, modelling and display techniques. The references cited emphasise those we believe suit the requirements of the exploration geologist.

We have endeavoured to present the key aspects of each geophysical method and its application in the context of modern exploration practice. In so doing, we have summarised the important and relevant results of many people’s work and also included some of our own original work. Key features of the text are the detailed descriptions of petrophysical properties and how these influence the geophysical response, and the descriptions of techniques for obtaining geological information from geophysical data. Real data and numerous real-world examples, from a variety of mineral deposit types and geological environments, are used to demonstrate the principles and concepts described. In some instances we have taken the liberty of reprocessing or interpreting the published data to demonstrate aspects we wish to emphasise.

M.D. has been an active researcher and teacher of university-level geology and applied geophysics for more than 25 years. S.M. has been an active minerals exploration geophysicist and researcher for more than 35 years. We hope this book will be a source of understanding for, in particular, the younger generation of mineral explorers who are required to embrace and assimilate more technologies more rapidly than previous generations, and in times of ever-increasing demand for mineral discoveries.
ACKNOWLEDGEMENTS

This project would not have been possible without the great many individuals who generously offered assistance or advice or provided materials. Not all of this made it directly into the final manuscript, but their contributions helped to develop the final content and for this we are most grateful. They are listed below and we sincerely apologise for any omissions:

We also thank Simon Tegg for his work ‘colourising’ the figures. From Cambridge University Press, we thank Laura Clark, Susan Francis, Matthew Lloyd, Lindsay Nightingale and Sarah Payne.

We are also very grateful to the following organisations for providing, or allowing the use of, their data or access to geophysical software:

Barrick (Australia Pacific) Limited
CGG
Department of Manufacturing, Innovation, Trade, Resources and Energy, South Australia
EMIT Electromagnetic Imaging Technology
Evolution Mining
Geological Survey of Botswana
Geological Survey of NSW, NSW Trade & Investment
Geological Survey of Western Australia, Department of Mines and Petroleum
Geometrics
Acknowledgements

Geonics
Geoscience Australia
Geotech Geophysical Surveys
GPX Surveys
Ground Probe (SkyTEM)
Haines Surveys
Mines Geophysical Services
Montezuma Mining Company
Natural Resources Canada, Geological Survey of Canada
Northern Territory Geological Survey
Ontario Geological Survey
University of British Columbia, Geophysical Inversion Facility (UBC-GIF)

Finally we are most grateful to the six industry sponsors: Carpentaria Exploration, First Quantum Minerals, MMG, Rio Tinto Exploration, AngloGold Ashanti and St Barbara, plus the Centre for Exploration Targeting at The University of Western Australia, whose financial support has allowed us to produce a textbook with colour throughout, greatly improving the presentation of the data.

Mike Dentith and Stephen Mudge